
Evaluating Dynamic Scheduling of Tasks in
Mobile Architectures using ParallelME

Framework ?

Rodrigo Carvalho1, Guilherme Andrade2, Diogo Santana1, Thiago Silveira3,
Daniel Madeira1, Rafael Sachetto1, Renato Ferreira2, and Leonardo Rocha1

1 Universidade Federal de São João del Rei, Brazil
{rodrigo,diogofs,dmadeira,sachetto,lcrocha}@ufsj.edu.br

2 Universidade Federal de Minas Gerais, Brazil
{gandrade,renato}@dcc.ufmg.br

3 Tech., Tsinghua University, China
zhuangzq16@mails.tsinghua.edu.cn

Abstract. Recently we observe that mobile phones stopped being just
devices for basic communication to become providers of many applica-
tions that require increasing performance for good user experience. Inside
today’s mobile phones we find different processing units (PU) with high
computational capacity, as multicore architectures and co-processors like
GPUs. Libraries and run-time environments have been proposed to im-
prove applications’ performance by taking advantage of different PUs in
a transparent way. Among these environments we can highlight the Par-
allelME. Despite the importance of task scheduling strategies in these en-
vironments, ParallelME has implemented only the First Come Firs Serve
(FCFS) strategy. In this paper we extended the ParallelME framework by
implementing and evaluating two different dynamic scheduling strategies,
Heterogeneous Earliest Finish Time (HEFT) and Performance-Aware
Multiqueue Scheduler (PAMS). We evaluate these strategies consider-
ing synthetic applications, and compare the proposals with the FCFS.
For some scenarios, PAMS was proved to be up to 39% more efficient
than FCFS. These gains usually imply on lower energy consumption,
which is very desirable when working with mobile architectures.

Keywords: Dynamic scheduling · Parallel Mobile architectures.

1 Introduction

Recently we observe a growth in developing new technologies. An example is
the evolution of traditional processors, which have become massively parallel
and heterogeneous in response to the increasing demand posed to them by the
new challenges in many different areas. Mobile devices as well are currently ex-
periencing a substantial growth in processing power. They stopped being just
? This work was partially supported by CNPq, CAPES, Fapemig, INWEB and
MAsWeb.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


2 R. Carvalho, et al.

devices for basic communication among people to be providers of many applica-
tions such as Internet access, media playing, and general purpose applications, all
requiring increasing performance for good user experience. Inside today’s mobile
phones we find processing units with high computational capacity, as multicore
architectures and co-processors like GPUs, making these devices very powerful.

Effectivetly use these devices is still a challenge. Many applications from dif-
ferent domains need to explore all of the available Processing Units (PUs) in
a coordinated way to achieve higher performance. Faced with this requirement,
libraries and run-time environments have been proposed, providing a set of ways
to improve applications’ performance by using the different PUs in a transparent
way to mobile developers [9, 10, 3, 4, 1]. Among these libraries and run-times sys-
tems, we highlight ParallelME [4], a Parallel Mobile Engine designed to explore
heterogeneity in Android devices.

At the moment ParallelME has implemented just a simple First Come First
Serve scheduling strategy and all results reported by in recent works [4, 14] used
just that strategy. The purpose of this work is to extend the ParallelME, im-
plementing and evaluating different dynamic scheduling strategies4, whose re-
sults reported in the literature are promising in traditional architectures [6, 5,
15]. More specifically, we implemented two different scheduling strategies: (1)
Heterogeneous Earliest Finish Time (HEFT) and; (2) Performance-Aware Mul-
tiqueue Scheduler (PAMS). HEFT was originally implemented in StarPU [7].
PAMS (Performance Aware Scheduling Technique) was proposed in [5]. Both uses
knowledge of the tasks to create the task queues. In order to evaluate our strat-
egy, we prepared a experimental set using a tunnable synthetic application, and
compared our proposals with the FCFS implemented in ParallelME. With our
results, we show that the new scheduling strategies, in special PAMS, achieves
the best results in different scenarios, further improving the ParallelME’s per-
formance. For some scenarios, PAMS was up to 39% more efficient than FCFS.

2 Related Work

This section presents an overview of the main programming frameworks for par-
allel applications in mobile systems and dynamic scheduling strategies.

2.1 Parallel Mobile Frameworks

Nowadays, there are several high-level frameworks designed to facilitate the de-
velopment of parallel applications in heterogeneous mobile architectures. Among
these frameworks, we can highlight OpenCL and RenderScript, both providing
tools for programming generic functions that can be executed in both GPUs
and CPUs in Android OS, being the basis for several works [11, 2]. OpenCL is a
framework originally proposed for desktop systems which allows the execution of
4 Dynamic Scheduling Strategies evaluating the characteristics of the tasks at runtime,
considering a limited view of the execution of entire application and thus a more
challenging scenario.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


Evaluating Dynamic Scheduling using ParallelME Framework 3

user code (kernels) in statically-chosen processing units. RenderScript, in turn,
is a framework designed by Google to perform data-parallel computations in An-
droid devices, transparently running user code in heterogeneous architectures.
Besides the frameworks presented above, we can find others in the literature,
such as Pyjama [10] and Cuckoo [13]. Pyjama focuses on multi-thread program-
ming with an OpenMP-like programming model in Java. Cuckoo [13], provides a
platform for mobile devices to offload applications in a cloud using a stub/proxy
network interface.

Although the presented frameworks share the same design goal, they have dif-
ferent features and programming interfaces, limited by it’s complex programming
abstraction, preventing their popularization among mobile developers. Recently
we find in literature the framework Parallel Mobile Engine (ParallelME)[4], that
was designed to explore heterogeneity in Android devices. ParalleME automati-
cally coordinates the parallel usage of computing resources keeping the program-
ming effort similar to what sequential programmers expect. ParallelME distin-
guishes itself from other frameworks by its high-level programming abstraction
in Java and the ability to efficiently coordinate resources in heterogeneous mobile
architectures.

2.2 Dynamic Scheduling Strategies

Many proposals of dynamic schedulers are found in literature [8, 17, 16, 12]. In [8]
the authors focus on a strategy that minimizes the workload between processing
units. The task distribution between the PUs is made randomly, but the inactive
PUs can run tasks scheduled to another if it becames idle, using an approach
called “work stealing”. In [17] the authors presents Dynamic Weighted Round
Robin (DWRR), which is focused on compute intensive applications. It’s policy
assigns a weight to each task in each PU and use this weight to sort the task
queue of each PU. In [16], the authors present a strategy based on run time pre-
dictors. In this, the scheduler makes a prediction of the execution time for each
task as well as the total time for a given PU to run all its tasks. Based on this
prediction, the tasks are associated the less busy PUs, aiming to balance to load
between the PUs. In [12] is presented a similar proposal, where such execution
models are based on past run-time histories.

Another scheduling strategy that presents good results is HEFT (Heteroge-
neous Earliest Finish Time) [7]. HEFT uses a queue for each available processing
unit and task distribution across queues is computed according to the processing
capacity of each unit, based on expected execution time of previous tasks. Based
on this strategy, in [5] the authors proposed another strategy called called PAMS
(Performance-Aware Multiqueue Scheduler). Instead to consider the expected
execution time as HEFT, PAMS takes into account performance variabilities to
better utilize hybrid systems. Therefore, it uses speedup estimates for each task
in order to maintain the order of tasks in the queues for each available processing
unit. In this paper we implement HEFT and PAMS strategies in ParallelME and
evaluate them using several synthetic applications with different characteristics.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


4 R. Carvalho, et al.

3 Experimental Evaluation

This section presents the experimental results that were conducted to evaluate
the implemented scheduling strategies in ParallelME: FCFS HEFT, and PAMS.

3.1 Workload Description

This subsection describes the workloads that were used to evaluate our dynamic
scheduler. These workloads are composed of a synthetic application that allows
fully control over several characteristics of the tasks. In a heterogeneous archi-
tecture a determining factor for the scheduler is the execution time ratio for the
tasks on the different processing units, termed relative speedup. To create the
workloads for our tests, first we divided our load into three groups:

– Group 1: Mostly CPU tasks.
– Group 2: Mostly GPU tasks.
– Group 3: Balanced CPU and GPU tasks.

In Group 1, the tasks on CPU consumes less time than on GPU. In Group
2, the inverse is observed (GPU are faster than CPU). Tasks in Group 3 are not
significantly different in terms of execution time when executed on the CPU or
on the GPU. For each group we varied the execution time for CPU and GPU,
creating two different classes:

– Class 1: Tasks with high relative speedup (higher than 5x). For this, a bad
decision can yield large performance hit on the application execution time.

– Class 2: Tasks with low relative speedup (lower than 5x). For this class, the
performance penalty on the bad decisions are less significant.

Combining these three groups and the two classes above, we have created six
distinct workloads, as presented in Table 1.

Table 1. Workloads used in our tests.
Name Group Class Name Group Class
Workload 1 (WL 1) 1 1 Workload 4 (WL 4) 1 2
Workload 2 (WL 2) 2 1 Workload 5 (WL 5) 2 2
Workload 3 (WL 3) 3 1 Workload 6 (WL 6) 3 2

3.2 Experimental Results

This section presents the experimental results obtained with the new schedulers,
tested with the workloads described in section 3.1. All tests were performed on
a Motorola Moto E 2nd Gen. running a quad-core Cortex A7 CPU
@1.2GHz and an Adreno 302 GPU, with 1GB of RAM. Three tests were
performed. Firstly all workloads were scheduled only in CPU and only in GPU.
After these two tests, the schedulers were tested using both CPU and GPU, using
the schedulies strategy FCFS, HEFT and PAMS. Each workload were composed
of 100 tasks. The results presented in Figure 1 are the average results after
10 executions, normalized by the higher execution time for each workload. Our

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


Evaluating Dynamic Scheduling using ParallelME Framework 5

objective is to evaluate the behavior of each scheduler policy, identifying their
impact on application performance. As expected, independently of the schedul-
ing strategy, all workloads were faster when using both CPU and GPU (2x on
average). Also the better results were obtained in the workloads with higher
relative speedup (workloads 1-3, all in Class 1).

(a) High Relative Speedup (b) Low Relative Speedup
Fig. 1. Application performance considering specific Processing Units and Scheduling
Strategies. Lower is better.

When comparing each scheduler performance considering the two workload
classes, we noticed that in Class 1 workloads, the performance gain of the HEFT
and PAMS schedulers compared to the FCFS scheduler is greater than when we
make the same comparison in Class 2 workloads. This happens because in Class
1 workloads the correct association of the task with the best PU is crucial to
the performance of the application. When executing a task in the worse PU for
it, the execution time is at least 5 times worse. Observing the performance of
the scheduling algorithms in Class 2 tasks, the difference is much lower, that
is, the average times obtained by the schedulers HEFT and PAMS are closer to
those that were obtained by the scheduler FCFS. This can be explained because
the relative speedup of these workloads is low. Therefore, even if the scheduler
associates a task to a less appropriate PU, this does not damage too much the
total execution time, since the execution times in both PUs are closer.

Finally, comparing the performance of each scheduler implemented in Paral-
lelME, we can observe that the PAMS algorithm is more efficient than HEFT
and FCFS for all workloads. Figure 1 shows that PAMS was faster than both
FCFS and HEFT for all workloads and HEFT was only slower than FCFS on
workload 5. PAMS and HEFT were respectively 18% and 12% more efficient
than FCFS on average. The two new schedulers achieved their best when exe-
cuting workload 3 (higher relative speedup and using both CPU and GPU). In
this workload, PAMS was 39% and HEFT 33% more efficient than FCFS.

In order to better understand why performance differs among schedulers,
we evaluate how tasks are distributed among the PUs available for each of the
scheduling strategies implemented in ParallelME. The results of our studies are
presented in Figure 2. In FCFS scheduler regardless of the characteristics of the
workload, approximately 50% of the tasks are executed by the CPU and 50% by
the GPU, giving a poorer performance. The HEFT scheduler presents a slightly

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


6 R. Carvalho, et al.

better distribution than FCFS. This happens because HEFT scheduler considers
the best PU for each task according to the estimated task runtime as well as the
estimated working time for each PU. Through this strategy, the tasks, for the
most part, are executed by the most appropriate PU. As described in previous
sections, the HEFT scheduler queues are static, that is, after a task is assigned
to a PU, it will no longer be processed by another.

Fig. 2. Profile of tasks assignmentto devices for each task executed in our application.

Finally, in PAMS algorithmthe distribution of the tasks for the PUs has a
more direct relation with the characteristics of each workload. Most of the work-
load 1 and 4 (2 and 5) tasks (approximately 60%) were processed by the CPU
(GPU). We also noticed that in workloads 3 and 6 the tasks were divided evenly,
with 50% of the tasks processed by the CPU and 50% by the GPU. Since PAMS
uses shared queues, a PU can process jobs allocated to another PU when it is
idle (no jobs in its queue). This task distribution strategy used by PAMS makes
it more efficient, as it minimizes idle time.

4 Conclusion and Future Works

In this paper we extended the ParallelME framework by implementing and eval-
uating two different dynamic scheduling strategies, HEFT and PAMS. We per-
formed a comparative analysis, contrasting the performance of ParallelME origi-
nal scheduler (FCFS) against the new scheduling strategies. We used a synthetic
application in which we could control the tasks behavior, to create the six distinct
workloads. Regarding the scheduling strategies, the results shows that PAMS was
faster than both FCFS and HEFT for all workloads. HEFT was only slower than
FCFS in workload 6. On average, PAMS and HEFT were respectively 18% and
12% more efficient than FCFS. The best performance was achieved for workload
3, on which PAMS and HEFT were, respectively, 39% and 33% more efficient
than FCFS. It is important to mention that the gains in terms of execution
time usually imply on lower energy consumption, which is desirable in mobile
architectures. As future work we want to evaluate more elaborate scheduling
strategies that may also improve the performance of ParallelME framework.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72


Evaluating Dynamic Scheduling using ParallelME Framework 7

References

1. RenderScript. https://developer.android.com/guide/topics/renderscript
2. Acosta, A., Almeida, F.: Performance Analysis of Paralldroid Generated Programs.

In: Parallel, Distributed and Network-Based Processing (PDP), 2014. pp. 60–67
3. Acosta, A., Almeida, F.: Performance analysis of paralldroid generated programs.

In: Parallel, Distributed and Network-Based Processing (PDP), 2014 22nd Euromi-
cro International Conference on. IEEE (2014)

4. Andrade, G., de Carvalho, W., Utsch, R., Caldeira, P., Alburquerque, A., Ferracioli,
F., Rocha, L., Frank, M., Guedes, D., Ferreira, R.: ParallelME: A Parallel Mobile
Engine to Explore Heterogeneity in Mobile Computing Architectures, pp. 447–459.
Euro-Par 2016

5. Andrade, G., Ferreira, R., Teodoro, G., da Rocha, L.C., Saltz, J.H., Kurç, T.M.:
Efficient execution of microscopy image analysis on cpu, gpu, and MIC equipped
cluster systems. In: IEEE SBAC-PAD 2014, Paris, France. pp. 89–96

6. Andrade, G., Ramos, G., Madeira, D., Sachetto, R., Clua, E., Ferreira, R., Rocha,
L.: Efficient dynamic scheduling of heterogeneous applications in hybrid architec-
tures. In: ACM SAC 2014. pp. 866–871

7. Augonnet, C., Thibault, S., Namyst, R., Wacrenier, P.: StarPU: A Unified Platform
for Task Scheduling on Heterogeneous Multicore Architectures (2011)

8. Blumofe, R.D., Leiserson, C.E.: Scheduling multithreaded compu-
tations by work stealing. Journal of the ACM 46(5), 720–748.
https://doi.org/10.1145/324133.324234

9. Frost, G.: Aparapi: Using GPU/APUs to accelerate java workloads.
https://github.com/aparapi/aparapi (2014)

10. Giacaman, N., Sinnen, O., et al.: Pyjama: OpenMP-like implementation for Java,
with GUI extensions. In: Proceedings of the 2013 International Workshop on Pro-
gramming Models and Applications for Multicores and Manycores. ACM (2013)

11. Gupta, K.G., Agrawal, N., Maity, S.K.: Performance analysis between Aparapi (a
parallel api) and Java by implementing sobel edge detection algorithm. In: Parallel
Computing Technologies (PARCOMPTECH). IEEE (2013)

12. Jooya, A., Baniasadi, A., Analoui, M.: History-aware, resource-based dynamic
scheduling for heterogeneous multi-core processors. Computers Digital Techniques,
IET 5(4), 254 –262 (july 2011). https://doi.org/10.1049/iet-cdt.2009.0045

13. Kemp, R., Palmer, N., Kielmann, T., Bal, H.E.: Cuckoo: A computation offloading
framework for smartphones. In: MobiCASE. pp. 59–79. Springer (2010)

14. d. Moreira, W., Andrade, G.N., Caldeira, P.H., Goncalves, R.U., Ferreira, R.A.,
Rocha, L.C., d. Sousa, R., Avelar, M.N.: Exploring heterogeneous mobile architec-
tures with a high-level programming model. In: 29th IEEE SBAC-PAD. pp. 25–32
(2017)

15. da Rocha, L.C., Mourão, F., Andrade, G., Ferreira, R., Parthasarathy, S., Melo,
D., Toledo, S., Chakrabarti, A.: D-sthark: Evaluating dynamic scheduling of tasks
in hybrid simulated architectures. In: ICCS 2016, California, USA. pp. 428–438

16. Smith, W., Taylor, V., Foster, I.: Using run-time predictions to estimate queue wait
times and improve scheduler performance. In: Scheduling Strategies for Parallel
Processing. pp. 202–219. Springer-Verlag (1999)

17. Teodoro, G., Sachetto, R., Sertel, O., Gurcan, M., Jr., W.M., Catalyurek, U., ,
Ferreira, R.: Coordinating the use of gpu and cpu for improving performance of
compute intensive applications. IEEE International Conference on Cluster Com-
puting (Sep 2009)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_72

https://dx.doi.org/10.1007/978-3-319-93713-7_72

