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Abstract. This paper proposes a novel evolutionary regression frame-
work with Gaussian process and adaptive segmentation strategy (named
ES-GP) for regression problems. The proposed framework consists of t-
wo components, namely, the outer DE and the inner DE. The outer DE
focuses on finding the best segmentation scheme, while the inner DE fo-
cuses on optimizing the hyper-parameters of GP model for each segment.
These two components work cooperatively to find a piecewise gaussian
process solution which is flexible and effective for complicated regression
problems. The proposed ES-GP has been tested on four artificial regres-
sion problems and two real-world time series regression problems. The
experiment results show that ES-GP is capable of improving prediction
performance over non-segmented or fixed-segmented solutions.
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1 Introduction

Regression analysis is an active and important research topic in scientific and en-
gineering fields. Traditional methods for regression analysis focus on choosing an
appropriate model and adjusting model parameters to estimate the relationships
between inputs and outputs. These methods usually make strong assumptions
of data, which are ineffective if the assumptions are invalid. Gaussian Process
(GP) is a powerful tool for regression analysis, which makes little assumption of
data. Developed base on Statistical Learning and Bayesian theory, GP is flexible,
probabilistic, and non-parametric. It has been shown quite effective in dealing
with regression problems with high dimension and nonlinear complex data [1].

However, there are some drawbacks of GP. First, GP requires a matrix in-
version which has a time complexity of O(n3) where n is the number of training
data. Second, the covariance function and the hyper-parameters of GP model
should be carefully fine-tuned to achieve satisfying performance. In the literature,
many efforts have been made to solve the above problems, but most methods
mainly focus on constructing a single type of GP model, not flexible enough for
complicated regression data involving multiple significant different segments.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_71

https://dx.doi.org/10.1007/978-3-319-93713-7_71


2 Shijia Huang and Jinghui Zhong

To address the above issues, we propose an evolutionary segmentation GP
framework named ES-GP, which can automatically identify the segmentation in
regression data and construct suitable GP model for each segment. In ES-GP,
there is an outer DE focuses on finding a suitable segmentation scheme, while
an inner DE, embedded in the outer DE, focuses on tuning the GP model as-
sociated to each segment. Once the GP model for each segment is determined,
the fitness of the given segmentation scheme can be evaluated. Guided by this
fitness evaluation mechanism, the proposed framework is capable of evolving
both segmentation scheme and the GP model for each segment automatically.
Experimental results for six regression problems show that ES-GP is capable of
improving prediction performance over non-segmented or fixed-segmented solu-
tions.

2 Preliminaries
2.1 Gaussian Process for Regression

GP is a non-parametric model that generates predictions by optimizing a Multi-
variate Gaussian Distribution (MGD) over training data such that the likelihood
of the outputs given the inputs is maximized[2]. Specifically, given a set of train-
ing data s = [x, y] and predict output of a query input x∗ is y∗ , then we have:[

y
y∗

]
∼ N

(
µ,

[
K KT

∗
K∗ K∗∗

])
(1)

where µ is the mean of the MGD which is commonly set to zero, T indicates
matrix transposition, K , K∗ and K∗∗ are covariance matrixes, i.e.,

K =


k(x1, x1) k(x1, x2) · · · k(x1, xn)
k(x2, x1) k(x2, x2) · · · k(x2, xn)

...
...

. . .
...

k(xn, x1) k(xn, x2) · · · k(xn, xn)

 (2)

K∗ =
[
k(x∗, x1) k(x∗, x2) · · · k(x∗, xn)

]
(3)

K∗∗ = k(x∗, x∗) (4)

where k(x, x
′
) is the covariance function used to measure the correlation be-

tween two points. There are a number of covariance functions in the literatures,
“Squared Exponential” is a common one which can be expressed as:

k(x, x
′
) = σ2

fexp

[
−(x− x′

)2

2l2

]
(5)

where σf and l are hyper-parameters of the covariance function.
Based on (1) and using the marginalization property, we can get that the

conditional distribution of y∗ given y also follows a Gaussian-distributed, i.e.,

y∗|y ∼ N (K∗K
−1y,K∗∗ −K∗K

−1KT
∗ ) (6)

Hence, the best estimate of y∗ is the mean of this distribution and the uncertainty
of the estimate is captured by the variance.
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2.2 Related Works on Enhanced GPs for Regression

Various efforts have been proposed to improve GP for regression. Generally,
there are two major research directions. The first direction focuses on mod-
el calibration. Traditional methods of optimizing hyper-parameters have risks
of falling into a local minima, Petelin[6] shown that evolutionary algorithms
such as DE and PSO can outperform the deterministic optimization methods.
Sundararajan and Keerthi[9] proposed some predictive approachs to estimate
the hyper-parameters. Meanwhile, commonly used covariance functions may not
model the data well, Kronberger[3] proposed a Genetic Programming to evolve
composite covariance functions. Paciorek and Schervish[5] introduced a class of
nonstationary covariance functions for GP regression. Seeger[7] proposed a vari-
ational Bayesian method for model selection without user interaction.

The second direction focuses on reducing the computational cost for GP
model construction. Nguyen-Tuong[4] proposed the LGP which clusters data
and establishes local prediction model. Williams and Seeger[10] proposed using
Nyström Method to speed up kernel machines. Snelson and Ghahramani[8]
proposed sparse GP whose covariance is parameterized by pseudo-input points.

3 The proposed method

3.1 General Framework

As illustrated in Figure 1, the proposed framework consists of two components.
The outer DE for finding the best segmentation scheme, and the inner DE for
optimizing the GP model associated to each segment. Accordingly, the data
are divided into three parts to facilitate the search. The training data is used
by the inner DE to calibrate the GP model. For each segment, the commonly
used covariance functions are enumerated to construct the GP model, and the
hyper-parameters are optimized by Inner DE. Once the best GP model in each
segment is obtained, the validation data is used to evaluate the quality of the
segmentation scheme. Guided by this fitness evaluation mechanism, the outer DE
evolve a group of candidate solutions iteratively, until the termination condition
is met. The testing data is used to test the performance of the final solution.
JADE[12] is adopted as the solver in both outer DE and inner DE.

3.2 Framework Implementation

Chromosome Representation In this paper, we focus on dealing with one
dimensional regression data. It can use a set of segment points to describe the
segmentation scheme. Hence, in the proposed framework, we use an array of real
numbers to represent the chromosome of the outer DE, as expressed by:

Xi = {Xi,1, Xi,2, ..., Xi,D} (7)

where bXi,jc represents the length of the ith segment and D is the maximum
number of segments set by users. When the length sum of the former segments
is greater than or equal to the total length of the data, the latter parts of the
chromosome is ignored.
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Fig. 1. Algorithm framework

Step 1 - Initialization The first step is to form the initial population. For
each chromosome Xi, the jth dimension value is randomly set by:

Xi,j = rand(Lmin, Lmax), j = 1, 2, ..., D (8)

where Lmin and Lmax are the lower bound and the upper bound of the segment
length set by users, prevent producing extremely short (or long) segments.

Step 2 - Fitness Evaluation This step aims to evaluate the fitness of the
segmentation scheme. Specifically, for each segment, we enumerate commonly
used covariance function and optimize the hyper-parameters by the inner DE.
The GP model with optimal hyper-parameters which has the maximum marginal
likelihood will be considered as the most suitable model. In the inner DE, each
chromosome is a set of real numbers, with each representing one hyper-parameter
of the GP model. The marginal likelihood of the GP model is used as the fitness
value of the individual. Guided by this, the inner DE is capable of fine-tuning
the hyper-parameter setting of the GP models associated to the segmentation.

The validation data is used to test the quality of the entire solution. For
each point, we firstly determine which segment it belongs to according to its
x-coordinate and make prediction by the corresponding GP model. The average
error is used as the fitness value of the segmentation scheme. Root-Mean-Square-
Error (RMSE) is adopted to calculate the error value, i.e.,

f(S(·)) =

√∑N
i=1(yi − oi)2

N
(9)

where yi is the output of current solution S(·), oi is the true output of the ith
input data, and N is the number of the samples be tested.

Step 3 - Mutation & Crossover The mutation and crossover is same as in
JADE, so we omit the description of them, the details can be found in [12].
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Step 4 - Evaluation and Selection The selection operation selects the better
one between parent vector xi,g and trial vector ui,g to become a member of the
next generation. In our method, the ones that have better prediction results have
a smaller fitness value and will be retained to the next generation.

4 Experiment Studies

We test the effectiveness of ES-GP on four one-dimensional artificial data sets
and two real-world time series regression problems. The four artificial data are
generated by combining different kinds of functions (e.g., periodic functions and
linear functions). The two real time series data sets are obtained from data-
market.com. The first one is ExRate-AUS1. The second one is ExRate-TWI2.
Distribution of the six experiment data sets can refer to Figure 2.

We compare our algorithm with three other algorithms. The first one is the
classic GP with single kernel function. The second one is a hybrid GP with
multiple kernel functions (named FS-GP), in which data are divided into fixed
length segments (set to 40 in this study). The third algorithm is SL-GEP [11],
which has been show quite effective for symbolic regression.

JADE is adopted to optimize the hyper-parameters in GP for ES-GP, FS-GP
and classic GP, related parameters of JADE are set according to author’s recom-
mended and the Maximum Evaluation Time is set to 5000. The kernel functions
considered are: Squared Exponential, Rational Quadratic and SE with Periodic Element.
Parameters setting in outer DE of ES-GP is same as in inner DE, except that
MAXEVAL is 3000. Parameters of SL-GEP are set as suggested in [11].

4.1 Results

Table 1. RMSE of the six problems.

Algorithm SLGEP [11] GP FS-GP ES-GP

Artificial 1 5.5837889 - 0.0779977 - 0.1753696 - 0.01658

Artificial 2 10.8493016 - 1.1830659 - 1.41982 - 1.0192136

Artificial 3 21.4422843 - 2.2163847 - 3.2910243 - 1.571685

Artificial 4 23.2971078 - 4.5284973 - 5.2494532 - 3.390701

ExRate-AUS 12.337935 - 1.91834331 - 2.1590919 - 1.7031436

ExRate-TWI 9.5056589 - 1.8520972 ≈ 2.0035029 - 1.7073585

Symbols -, ≈ and + represent that the competitor is respectively signif-
icantly worse than, similar to and better than ES-GP according to the
Wilcoxon signed-rank test at α = 0.05.

Table 1 shows the average RMSE of six data sets and the Wilcoxon’s signed-
rank test is conducted to check the differences. The statistical results indicate

1 https://datamarket.com/data/set/22wv/exchange-rate-of-australian-dollar-a-for-1-
us-dollar-monthly-average-jul-1969-aug-1995.

2 https://datamarket.com/data/set/22tb/exchange-rate-twi-may-1970-aug-1995.
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that ES-GP exhibited better performance than SLGEP, FS-GP and GP. Among
them, ES-GP showed greater advantages in data set 3 and data set 4, indicating
that ES-GP is very suitable for complex time series regression problem. As for
the two real-world problems, ES-GP’s advantage is not so obvious as in previous
data sets because the segmentation characteristics are less obvious, but with the
suitable segmentation scheme, the RMSE found by ES-GP is lower than other
methods.

Figure 2 shows the example segmentation schemes found by ES-GP, which
shows that ES-GP can find the appropriate segmentation. In artificial data set
1 and 2, the number of segments found by ES-GP is the same as we make
the data and all segmentation points are almost sitting the right place. ES-GP
finds more segments than originally setting in data set 3, however the original
segments are within the set of these segments so the segmentation is successful.
In data set 4, ES-GP finds less segments, but GP model in each segment can also
perform well in such situation. The optimal segmentation is unknown for the two
real-world problems. However, our method can find a promising segmentation
scheme, which can help GP models perform better.
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Fig. 2. Result of segmentation in experiment data sets. The blue lines represent the
boundary between segments.

5 Conclusion

In this paper, we have proposed a novel evolutionary regression framework
with Gaussian process and adaptive segmentation named ES-GP. In ES-GP, a
new chromosome representation is proposed to represent the data segmentation
scheme. An outer DE is utilized to optimize the segmentation scheme and an in-
ner DE is utilized to optimize the Gaussian process associated to each segment.
The proposed ES-GP is tested on four artificial data sets and two real-world time
series regression problems. The experimental results have demonstrated that the
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proposed ES-GP can properly divide the data and provide promising prediction
performance.

6 Acknowledgment

This work was supported in part by the National Natural Science Foundation of
China (Grant No. 61602181), and by the Fundamental Research Funds for the
Central Universities (Grant No. 2017ZD053).

References

1. Sofiane Brahim-Belhouari and Amine Bermak. Gaussian process for nonstationary
time series prediction. Computational Statistics & Data Analysis, 47(4):705–712,
2004.

2. Rasmussen Carl Edward, Williams, Christopher KI. Gaussian processes for machine
learning. MIT press Cambridge, 2006

3. Gabriel Kronberger and Michael Kommenda. Evolution of covariance functions for
gaussian process regression using genetic programming. In International Conference
on Computer Aided Systems Theory, pages 308–315. Springer, 2013.

4. Duy Nguyen-Tuong, Jan R Peters, and Matthias Seeger. Local gaussian process
regression for real time online model learning. In Advances in Neural Information
Processing Systems, pages 1193–1200, 2009.

5. Christopher J Paciorek and Mark J Schervish. Nonstationary covariance functions
for gaussian process regression. In Advances in neural information processing sys-
tems, pages 273–280, 2004.
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