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Abstract. The so-called clean numerical simulation (CNS) is used to
simulate the Rayleigh-Bénard (RB) convection system. Compared with
direct numerical simulation (DNS), the accuracy and reliability of inves-
tigating turbulent flows improve largely. Although CNS can well control
the numerical noises, the cost of calculation is more expensive. In order
to simulate the system in a reasonable period, the calculation schemes
of CNS require redesign. In this paper, aiming at the CNS of the two-
dimension RB system, we first propose the notions of equal difference
matrix and balance point set which are crucial to model the unbalanced
calculation of the system under multi-core platform. Then, according to
the notions, we present algorithms to optimize the unbalanced calcula-
tion. We prove our algorithm is optimal when the core number is the
power of 2 and our algorithm approaches the optimal when the core
number is not the power of 2. Finally, we compare the results of our
optimized algorithms with others to demonstrate the effectiveness of our
optimization.
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1 Introduction

It is of broad interest to understand the evolution of non-equilibrium systems
involves energy exchange through the system boundary with the surroundings,
for example, Rayleigh-Bénard (RB) system. With the help of direct numerical
simulation (DNS), we can get high resolution, both spatially and temporally.
However, because of the numerical noises, e.g. truncation error and round-off
error, are inevitable in DNS, the solution reliability remains controversial. Fortu-
nately, the so-called clear numerical simulation (CNS) can well control such kind
of numerical uncertainty. Aiming at investigating the laminar-turbulent transi-
tion of the two-dimension Rayleigh-Bénard (RB) system, the numerical noise of
CNS can be well controlled even much lower than the microscopic thermal com-
pared fluctuation [11]. Although CNS is more accurate, the cost of calculation
is more expensive. In order to simulate the system in a reasonable period, the
calculation schemes of CNS require optimization. In this paper, we first propose

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_70

https://dx.doi.org/10.1007/978-3-319-93713-7_70


2 Lu Li, Zhiliang Lin, and Yan Hao

the notions of equal difference matrix and balance point set which are crucial
to model the unbalanced calculation under multi-core platform. Then, accord-
ing to the notions, we present algorithms to optimize the unbalanced calculation.

One significant property of our proposed optimization algorithm is provable
to optimal when the core number is the power of 2 and to approach the optimal
when the core number is not the power of 2 theoretically. We first model the
amount of the calculation as equal difference matrix, which is the basis to un-
derstand and optimize the unbalanced calculation. The equal difference matrix
reveals the relationship of the calculation amount between different grid points
in spectral space quantitatively. Based on the properties of the equal difference
matrix, we propose the notion of balance point set, which is the key to optimize
the unbalanced calculation.

The other significant property of our proposed algorithm is high efficiency.
For arbitrary cores under multi-core platform, our algorithm can complete the
assignment of the calculation to different cores on the stage of the initialization
procedure. On one hand, the arrangement does not disturb the calculation of
CNS. It is straightforward to integrate our method into the original CNS. On
the other hand, the arrangement is only done once; the time overhead of the
assignment is little.

This paper is organized as follows: In Section 2, we discuss relevant methods
in literature. In section 3, first, we describe the CNS of the two-dimensional
Rayleigh-Bénard system. Then, we establish the model of the calculation amount
of the simulation and present the general notions of equal difference matrix and
balance point set. Based on the proposed notions, we present the algorithms to
optimize the unbalanced calculation under multi-core platform. In Section 4, we
use several concrete examples to demonstrate the effectiveness of our proposed
algorithms, followed by the conclusion in Section 5. In the Appendix, we give
the proofs adopted by our algorithms.

2 Related Work

Direct numerical simulation (DNS) [1, 15, 3] provides an effective way to under-
stand the evolution of non-equilibrium system involving energy exchange through
the system boundary with the surroundings. However, because of the inevitable
numerical noises, e.g. truncation error and round-off error, the solution reliabil-
ity provided by DNS is very controversial [23]. For example, Lorenz discovered
the dynamic systems governed by the Navier-Stokes equations are chaotic due
to the butterfly effect no only depending on the initial conditions [12] but also
on numerical algorithms [13]. Furthermore, [20, 16] reported some spurious tur-
bulence evolution cases provided by DNS.
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Fortunately, the inevitable numerical noises can be well controlled by clean
numerical simulation (CNS)[7, 21, 8, 10, 6, 9]. CNS adopts arbitrary-order Taylor
series method (TSM) [2] and arbitrary multiple-precision (MP) data [4] to reduce
the round-off error and truncation error, respectively. Lin et al. [11] simulated
Saltzman’s model of Rayleigh-Bénard convection by means of CNS with con-
sidering the propagation of the inherent micro-thermal fluctuation. Compared
with DNS, CNS can investigate turbulent flows with well-improved reliability
and accuracy.

Numerically, introducing TSM and MP, the data and the calculation amount
of CNS is much larger than DNS. In order to simulate the system in a rea-
sonable period, CNS requires large amount of computing resources from a high
performance computing (HPC) cluster. However, because of the complexity of
the parallel computing there exists difficulty in fully utilizing the capacity and
scalability of the HPC cluster [24, 25, 22]. In order to achieve high performance,
it is necessary to re-design the CNS calculation scheme from various aspects
including parallel algorithm, data arrangement, etc. Even though Lin et al. [11]
have optimized the data arrangement to reduce the amount of simulation data
by utilizing the symmetry of the two-dimensional Rayleigh-Bénard system.

3 Methods

3.1 2-D CNS Rayleigh-Bénard

The two-dimensional Rayleigh-Bénard system has been extensively studied [17,
19, 5, 18, 14, 26]. Following Saltzman [19], the corresponding non-dimensional
governing equations in the form of stream function ψ with the Boussinesq ap-
proximation is {

∂
∂t∇

2ψ + ∂(ψ,∇2ψ)
∂(x,z) − ∂θ

∂x − Ca∇4ψ = 0
∂θ
∂t +

∂(ψ,θ)
∂(x,z) −

∂ψ
∂x − Cb∇2θ

(1)

where t denotes time, θ denotes the temperature departure from a linear variation
background, x and z represent the horizontal and vertical spatial coordinates,
Ca =

√
Pr /Ra and Cb = 1/

√
PrRa with the Prandtl number Pr = ν/κ, where

ν is the kinematic viscosity, κ is the thermal diffusivity, and the Rayleigh num-
ber Ra = gαH3∆T/νκ, where H is the distance between the two parallel free
surfaces, g is the gravity acceleration and α is the thermal expansion coefficient
of the fluid, ∆T is the prescribed constant temperature difference.

As described by Saltzman [19], we use the double Fourier expansion modes
to expand the stream function ψ and temperature departure θ as follows:

ψ(x, z, t) =
+∞∑

m=−∞

+∞∑
n=−∞

Ψm,n(t) exp[2πHi(
m
L x+ n

2H z)]

θ(x, z, t) =
+∞∑

m=−∞

+∞∑
n=−∞

Θm,n(t) exp[2πHi(
m
L x+ n

2H z)]
(2)
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where m and n are the wave numbers in the x and z directions, Ψm,n(t) and
Θm,n(t) are the expansion coefficients of the stream function and temperature
components with wave numbers (m,n). Separate the real part from the imagi-
nary part: {

Ψm,n = Ψ1,m,n − iΨ2,m,n

Θm,n = Θ1,m,n − iΘ2,m,n
(3)

Following Lin et al. [11], denote the time increment as δt and f(j) as the
value of f(t) at t = j∆t. We use the P th-order Taylor series to expand Ψi,m,n
and Θi,m,n as follows:

Ψ
(j+1)
i,m,n = Ψi,m,n(tj +∆t) = Ψ

(j)
i,m,n +

P∑
k=1

βj,ki,m,n(∆t)
k

Θ
(j+1)
i,m,n = Θi,m,n(tj +∆t) = Θ

(j)
i,m,n +

P∑
k=1

γj,ki,m,n(∆t)
k

(4)

where
βj,k+1
1,m,n

=

(
M∑

p=−M

N∑
q=−N

Cm,n,p,q
α2

p,q

α2
m,n

k∑
l=0

[βj,l1,p,qβ
j,k−l
1,m−p,n−q

+βj,l2,p,qβ
j,k−l
2,m−p,n−q] +

l∗m
α2

m,n
γj,k2,m,n

−Caα2
m,nβ

j,k
1,m,n

)
/(1 + k)

(5)

βj,k+1
2,m,n

=

(
M∑

p=−M

N∑
q=−N

Cm,n,p,q
α2

p,q

α2
m,n

k∑
l=0

[βj,l1,p,qβ
j,k−l
2,m−p,n−q

+βj,l2,p,qβ
j,k−l
1,m−p,n−q] +

l∗m
α2

m,n
γj,k1,m,n

−Caα2
m,nβ

j,k
2,m,n

)
/(1 + k)

(6)

γj,k+1
1,m,n

=

(
−

M∑
p=−M

N∑
q=−N

Cm,n,p,q
k∑
l=0

[ βj,l1,p,qγ
j,k−l
1,m−p,n−q

−βj,l2,p,qγ
j,k−l
2,m−p,n−q] + l∗mβj,k2,m,n

−Caα2
m,nγ

j,k
1,m,n

)
/(1 + k)

(7)

γj,k+1
2,m,n

=

(
−

M∑
p=−M

N∑
q=−N

Cm,n,p,q
k∑
l=0

[ βj,l1,p,qγ
j,k−l
2,m−p,n−q

−βj,l2,p,qγ
j,k−l
1,m−p,n−q] + l∗mβj,k1,m,n

−Caα2
m,nγ

j,k
2,m,n

)
/(1 + k)

(8)

with Cm,n,p,q = πl∗(mq − np), l∗ = 2πH/L and α2
m,n = l∗2m2 + π2n2.
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Numerically, For point (p, q) in the Eq. (5) (6) (7) (8), −M ≤ m − p ≤ M
and −N ≤ n − q ≤ N should be satisfied. So that let Fi, where i = {1, 2, 3, 4},
present the first term of left hand side of the four equations; fi(m,n), where
i = {1, 2, 3, 4}, present the inside part of the 2-D summations, the formulas of
the Eq. (5) (6) (7) (8) can be optimized to

Fi = (

M∑
p=m−M

N∑
q=n−N

fi(m,n))/(1 + k) (9)

In the spectral space, to calculate Fi, i = {1, 2, 3, 4} of the point (0, 0), the
2-D summation height is from −M to M and the width is from −N to N . In
comparison, for the point (M,N), which means thatm =M and n = N , the 2-D
summation height is from 0 to M and the width is from 0 to N . The calculation
amount of the 2-D summation for the point (0, 0) is 4 times more than that for
the point (M,N). Under multi-core platform, different gird points in Eq. (9) are
assigned to different cores, the unbalanced calculation exists.

For CNS calculation, the unbalanced calculation is even worse. In one hand,
the CNS calculation adopts arbitrary-precision binary floating-point computa-
tion (MPFR) [4] as the data type in order to avoid round-off error. However,
the calculation amount using MPFR is much more than adopting double as the
data type. In the other hand, the P th-order Taylor series aiming to avoid trun-
cation error, also increases the amount of calculation. After adding the two new
features, the amount of the calculation is much more than that of the scheme
using double data type, which leads to the unbalanced calculation getting worse.

3.2 Equal Difference Matrix

Although the four equations Fi, (i = 1, 2, 3, 4) are coupled, the calculations for
the points in the mesh grid of two-dimensional spectral space are independent to
each other because we adopt explicit calculation scheme for each sub-step in each
iteration. Here the sub-step means Taylor step (p = 1, 2, .., P ). In order to analyze
the unbalanced calculation for Fi, we obtain the amount of the calculation of each
grid point in the spectral space. Let the grid size be M ∗N , for the point (m,n),

the calculation amount of Fi, i = (1, 2, 3, 4) is (2M−m)∗(2N−n)∗(
4∑
i=1

k∑
p=1

ti,p),

where k is the order of the Taylor expansion (k = 1, ..., P ), 2M −m and 2N −n
are the summation times for the height and width of the point (m,n), ti is the
calculation for fi, i = (1, 2, 3, 4), which are constants for a given computing en-
vironment.

We arrange all the calculation amounts into a matrix according to each grid
index. Eq. (10) gives the calculation amount matrix, ti, i = (1, 2, 3, 4) are omit-
ted so as to simplify the analysis.
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
4MN 2M(2N − 1) ... 2M(N + 1)

2N(2M − 1) (2M − 1)(2N − 1) ... (N + 1)(2M − 1)
... ... ... ...

2N(M + 1) (M + 1)(2N − 1) ... (N + 1)(M + 1)


m∗n

(10)

For a given row j, the row array is {an} = {2N(2M − j), (2N − 1)(2M −
j)..., (N +1)(2M − j)}, the difference between two adjacent items is aj+1−aj =
2M − j, which is a constant for the given row j. So that the row j is an equal
difference array with 2M − j as the common difference. Similarly, for a given
column i in Eq. (10), the column i is an equal difference array with 2N − i as
the common difference. As a general extension to the equal difference array, we
define the matrix of Eq. (10) as equal difference matrix.

Based on the equal difference matrix, we can model the issue of the unbal-
anced calculation as follows: Given an equal difference matrix EM with size
M ∗N and the core number r, the calculation of Eq. (9) under multi-core plat-
form means dividing EM into r different sets for different r cores, the differences
of the sums of the divided sets should be as small as possible.

3.3 Balance Point Set

Inspired by the Theorem 1 in the Appendix, we consider the relationship between
the sums of point sets E0 and E1 shown in Fig. 1. E0 = {a1, a2, a3, a4} and
E1 = {b1, b2, b3, b4} are in the equal difference matrix EM . {a1, a2, a3, a4} are
the four corners of the matrix. b1 and b2 are mirror symmetry about n = N/2.
b1 and b3 are mirror symmetry about m =M/2. b2 and b4 are mirror symmetry
about m = M/2. The 4 points form a rectangle, the center is (M/2, N/2). We
give point set E2 = {c1, c2, c3, c4} shown in Fig. 1 as an intermediate variable.
c1, c2, b1 and b2 are in the same row. c3, c4, b3 and b4 are in the same row.
First we consider the relationship between the sum of E0 and E2. According to
Theorem 1 in the Appendix,

a1 + a3 = c1 + c3 (11)

a2 + a4 = c2 + c4 (12)

So that

4∑
i=1

ai =
4∑
i=1

ci (13)

Similarly, we can get the relationship between the sum of E1 and E2

4∑
i=1

bi =
4∑
i=1

ci (14)
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Fig. 1. The relationship between E0 = {a1, a2, a3, a4}, E1 = {b1, b2, b3, b4} and E2 =
{c1, c2, c3, c4} in equal difference matrix. E0 is the set containing the 4 corner elements.
The 4 elements of E1 form a rectangle, the center is (M/2, N/2). E2 extends the x axis
of E1 to the border of the equal difference matrix.

So that

4∑
i=1

ai =

4∑
i=1

bi (15)

Eq. (15) indicates that the sum of an arbitrary 4 points in EM that form
a horizontal rectangle with (M/2, N/2) as center is a constant. Thus the equal
difference matrix can be divided into (M ∗N/4) sets, the sum of each set is the
same. We define each set as balanced point set. The excellent property provides
the basis to solve the unbalanced calculation.

Let (M/2, N/2) be the origin, row M/2 be the horizontal axis, column N/2
be the vertical axis, The equal difference matrix EM is divided into four quad-
rants. After an arbitrary point (i, j) is assigned to the second quadrant, the
balanced point set where bi,j can be calculated as follows:

Ei,j =

{
bi,j bi,N−j+1

bM−i+1,j bM−i+1,N−j+1
(16)

where the four elements form the balanced point set Ei,j , the first row points
are in the second and first quadrant respectively, the second row points are
in the third and fourth quadrant respectively. Using the attribute of the equal
difference array, the relationship between the 4 elements is as follows:

bi,j > bi,N−j+1, bM−i+1,j > bM−i+1,N−j+1 (17)
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3.4 Unbalanced Calculation Optimization

Based on the balanced point set, the unbalanced calculation of different cores
under multi-core platform can be optimized in two cases. Let the equal difference
matrix be EM with size M ∗N . Without loss of generality, the size M and N
are powers of 2 defined as M = 2u and N = 2v.

Case 1 We first consider the core number of the multi-core platform is r, where
r is the power of 2. This means EM is divided into r different sets. When
r = 2u ∗ 2v/4, the division of the balanced point sets Ei,j satisfies, where 1 ≤
i ≤M/2 and 1 ≤ j ≤ N/2. When r = 2u ∗ 2v/(4 ∗ 2k), where 1 ≤ k ≤ u+ v − 2,
we can merge arbitrary 2k Ei,j together as a division part for a core because
the sum of of each Ei,j is a constant. So that for each core, the calculation
amount is the same. That is to say, the unbalanced calculation between different
cores is solved theoretically. We develop the determined Algorithm (1) so as to
programme conveniently.

Algorithm 1 Assignment strategy for case 1

Require: The equal different matrix size, 2u and 2v; The number of the cores under
multi-core platform, 2k;

Ensure: The set of balanced point sets for the l th core, Ll, where 1 ≤ l ≤ 2k;
1: Arrange all the balanced point sets {Ei,j} in a row-major order, {Ei∗2v+j};
2: Calculate the number of the balanced point sets in Ll, S = 2u ∗ 2v/(4 ∗ 2l);
3: Merge the set of the balanced point set for Ll is {ES∗l+1, ES∗l+2, ...ES∗(l+1)};
4: return Ll;

Case 2 Case 1 demonstrates when the core number is r = {2, 4, 2k, ..., 2p∗2q/4},
the unbalanced calculation can be solved completely. When the core number r
is not the power of 2, we can follow the same strategy as Algorithm (1) while
handling the reminder carefully. We also arrange all the balanced point sets into
a row-major order, unlike Algorithm (1) assigns continuous indexes for set Ll,
where Ll represents the l th divided part for l th core, the assignment strategy
changes to Ll = {El, El+r, ...}, where r is the number of the core. There are
(M ∗N)%r sets with sizeM ∗N//r+1 and r−(M ∗N)%r sets with sizeM ∗N//r.
The number of the items in Ll is not equal to each other, but the maximum
difference is 1. Based our assignment strategy, we only need to consider the last
(M ∗ N)%r balanced point sets. In order to minimize the maximum difference
among different Ll, these balanced point sets composed of 4 elements should
be split to different cores. From the perspective of 2-D equal difference matrix,
the origin is (M/2, N/2), the assignment strategy mentioned above allocates the
balanced point sets those are far from the origin first. As the assignment goes
on, the variances of the balanced point sets are gradually lower. So that the
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last (M ∗ N)%r balanced point sets have relatively low variances. If 3r/4 <
(M ∗ N)%r, which means that there must be 4 elements in at least one core,
the algorithm that keeps as the original does not slow down the performance. If
r/2 < (M ∗N)%r ≤ 3 ∗ r/4, there must be more than s/4 cores are empty when
processing the last (M∗N)%r balanced point sets. For each of the last (M∗N)%r
balanced point sets, namely, Ei1,j1 , based on Eq. (17) we take out the element
bi1,N−j1+1, every three extracted elements form a set and the set is dispatched
to a free process. Based on the low variance among the elements the calculation
time nearly reduces to the 3/4 of the original. If r/4 < (M ∗ N)%r ≤ r/2,
these balanced point sets can be split into 2 parts, for set Ei1,j1 , according to
Eq. (17), one set is {bi1,N−j1+1, bM−i+1,j}, the other is {bi,j , bM−i+1,N−j+1},
each part contains 2 elements. For the last (M ∗N)%r balanced point sets the
calculation time nearly halves. Similarly, if (M ∗ N)%r ≤ r/4, these balanced
point sets can be split into 4 parts, each element is assigned to different Ll.
Algorithm (2) shows the detailed description.

Algorithm 2 Assignment strategy for case 2

Require: The equal different matrix size, M and N ; The number of the cores under
multi-core platform, r;

Ensure: The set of balanced point set for the lth core, Ll;
1: Arrange all the balanced point sets {Ei,j} in a row-major order, {Ei∗N+j};
2: Calculate the remainder (M ∗N)%r;
3: For the aliquot part, calculate the number of the balanced point set in Ll, Ll =

{El, El+r, ...};
4: if r/2 < (M ∗N)%r ≤ 3r/4 then
5: Split each balanced point set of Ei1,j1 into 2 sets, take out the element

bi1,N−j1+1, every three extracted elements form new set.
6: Merge the split Ei1,j1 to Ll;
7: end if
8: if r/4 < (M ∗N)%r ≤ r/2 then
9: Split each balanced point set of Ei1,j1 into 2 sets, one set is

{bi1,N−j1+1, bM−i+1,j}, the other is {bi,j , bM−i+1,N−j+1}
10: Merge the split to Ll;
11: end if
12: if (M ∗N)%r < r/4 then
13: Split each balanced point set of Ei1,j1 into 4 sets, each set contains 1 elements;
14: Merge the split Ei1,j1 to Ll;
15: end if
16: return Ll;
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4 Evaluation

4.1 Experimental Environment

Our cluster is composed of 8 homogenous nodes. The configuration of each n-
ode is shown in Table 1. We compare our algorithm with two other elementary
assignment algorithms. One assigns the EM elements [i ∗ N∗M

r , (i+ 1) ∗ N∗M
r )

to the i th core(we name it ”i++”), where M,N is the grid width and height, r
is the number of the cores. The other assigns the elements {i, i+ r, ..., i+ n ∗ r}
to the i th core (We name it ”i+r”), where {i+ n ∗ r|n ∈ N, i+ n ∗ r < M ∗N}.
Acoording to Lin et al. [11], we set M = N = 127, the significand of MPRF to
100-bit and the number of the Taylor expansion terms to 10.

We first compare the unbalanced calculation using the maximum elapse time
difference of the {Fi}, i = (1, 2, 3, 4) in eq. (9) among the three element assign-
ment algorithms under a fixed P th-order Taylor expansion. Then we compare
the elapsed time and the speedup ratio for the iterations of Ψi,m,n and Θi,m,n in
eq. (4).

Configuration Setting

CPU Intel Xeon E5-2699 v4@2.2GHz(2*22 cores)

Memory 128GB DDR4

Hard Disk 500GB SSD

MPI Intel MPI Version 5.1.3

Network InfiniBand

Operating System CentOS 7.2 x86 64
Table 1. The configuration of the nodes.

4.2 Unbalanced Calculation

The maximum time difference between different cores to calculate {Fi}, i =
(1, 2, 3, 4) for different P th Taylor series can be used to quantitatively describe
the unbalanced calculation. Fig. 2 and Fig. 3 show the comparison of the max-
imum time difference of all the cores among the three algorithms when we use
4 nodes of the cluster. For a fixed P th Taylor expansion, the maximum time
difference of our algorithm is much smaller than ”i++” and ”i+r” no matter
whether the core number is the power of 2 or not. In general, our algorithm is
quite effective to reduce the unbalanced calculation.

4.3 Speedup Ratio

In addition, Fig.4 and Fig.5 show the comparison of the elapsed time of the cal-
culation of Ψi,m,n and Θi,m,n in eq. (4) in a iteration among the three algorithms.
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Fig. 2. The comparison of the maximum time difference among our algorithm, ”i++”
and ”i+r”. The core number is 128.

Fig. 3. The comparison of the maximum time difference among our algorithm, ”i++”
and ”i+r”. The core number is 176 which is the total CPU cores of 4 nodes.

For a fixed core number, the elapsed time of our algorithm is shorter than the
other two algorithms due to the more balanced calculation of our algorithm and
low cost for core assignment. Table. 2 gives the speedup ratios between our
algorithm and ”i++”,”i+r”. In general, our algorithm can accelerate the calcu-
lation.

Core Number 32 44 64 88 128 176 256 352
Our algorithm VS ”i++” 1.288 X 1.290 X 1.309 X 1.281 X 1.266 X 1.371 X 1.460 X 2.950 X
Our algorithm VS ”i+r” 1.067 X 1.087 X 1.198 X 1.077 X 1.269 X 1.213 X 1.269 X 1.238 X

Table 2. The speedup ratios under different core numbers.
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Fig. 4. The comparison of the elapsed time of an iteration among our algorithm, ”i++”
and ”i+r”. The core number is the power of 2.

Fig. 5. The comparison of the elapsed time of an iteration among our algorithm, ”i++”
and ”i+r”. We use all the cores in the nodes.

5 Conclusion

In this paper, we propose an algorithm to optimize the unbalanced calculation
for the CNS calculation of the two-dimensional Rayleigh-Bénard turbulence. We
first establish the model of the unbalanced calculation. Then we introduce the
notions of equal difference matrix and balance point set. Based on these notions,
we introduce the algorithm to optimize the unbalanced calculation under multi-
core platform. We prove our algorithm is optimal when the core number is the
power of 2 and our algorithm approaches to the optimal when the core number
is not the power of 2. Finally, we compare our algorithms with ”i++” and ”i+r”
algorithms and demonstrate our algorithm is effective.
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6 Appendix

6.1 Theorem 1

Given an arbitrary equal difference array, namely {an} = {a1, a2, ..., an}, the
common difference is d. For i, j ∈ N and 1 ≤ i, j ≤ n. an−i+1+ai = an−j+1+aj .
Use the general formula to expanse an:

an = a1 + (n− 1) ∗ d (18)

So an−i+1 is:
an−i+1 = a1 + (n− i) ∗ d (19)

So an−i+1 + ai is:

an−i+1 + ai = a1 + (n− i) ∗ d+ a1 + (i− 1) ∗ d = 2 ∗ a1 + (n− 1) ∗ d (20)

The Eq. (20) is independent with i. Hence we have

an−i+1 + ai = an−j+1 + aj (21)

where i, j ∈ N and 1 ≤ i, j ≤ n. From the perspective of the geometry, if we
consider the equal difference array as a line segment, point n− i+ 1 and point
i is symmetrical about point (n+ 1)/2, which is the center of the line segment.
The Eq. (21) expresses that the sums of the two symmetrical points about the
center are the same.
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