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Abstract. In this paper, we propose a novel large margin proximal
non-parallel twin support vector machine for binary classification. The
significant advantages over twin support vector machine are that the
structural risk minimization principle is implemented and by adopting
uncommon constraint formulation for the primal problem, the proposed
method avoids the computation of the large inverse matrices before train-
ing which is inevitable in the formulation of twin support vector machine.
In addition, the dual coordinate descend algorithm is used to solve the
optimization problems to accelerate the training efficiency. Experimen-
tal results exhibit the effectiveness and the classification accuracy of the
proposed method.
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1 Introduction

As a powerfull tool in machine learning, support vector machines (SVMs) have
been gained a greate deal of attention in wide variety of fields [1–5]. The classical
support vector classifier (SVC) is trying to maximize the margin between two
parallel hyperplanes, which results in solving a convex quadratic programming
problem (QPP). Furhtermore, some non-parallel hyperplane classifiers such as
the generalized eigen-value proximal support vector machine (GEPSVM) and
twin support vector machine (TWSVM) have been proposed in [4] and [5].
TWSVM is to search two non-parallel proximal hyperplanes such that each hy-
perplane is closer to one class and as far as possible from the other one. In fact,
as an efficient generalization of the classical SVC, TWSVMs have been studied
extensively [6–14], which need to solve two samll QPPs in contrast with the

? Corresponding author: shaoyuanhai21@163.com. Supported by the Hainan Provin-
cial Natural Science Foundation of China (No.118QN181), the Scientific Research
Foundation of Hainan University, the National Natural Science Foundation of China
(Nos. 11501310, 61703370, and 61603338).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_69

https://dx.doi.org/10.1007/978-3-319-93713-7_69


2 M.Z. Liu, Y.H. Shao

classical SVC. This paper proposes a novel large margin proximal non-parallel
support vector machine for binary classification (PNSVM). The main contribu-
tions of PNSVM are:

• PNSVM minimizes the structural risk by imposing a regularization term.
• PNSVM is proximal both classes and maximizes the corresponding margin,

while TWSVM is proximal each class and far away from the other class.
• PNSVM can be solved efficiently with dual coordinate descend method [15].

2 Related Work

Benefiting from its excellent generalization performance of twin support vector
machines, the approaches of constructing the non-parallel hyperplanes have re-
ceived extensive attention [6, 8, 9, 11–14, 16]. Shao et al. [6] present a variant
of GEPSVM based on the difference measure, which seems to be superior in
classification accuracy and computation time. For the imbalanced data classi-
fication, Shao et al. [8] suggest an efficient weighted Lagrangian twin support
vector machine (WLTSVM), which is robust to ouliers and overcomes the bias
phenomenon in the original TWSVM. Liu et al. [9] present a support vector
machine for large scael regression based on the minimization of deviation distri-
bution. Tian et al. [11] propose a novel nonparallel SVM for binary classification,
which implements the structural risk minimization and is suitable for large scale
problems. Shao et al. [16] present a sparse Lq-norm least squares support vector
machine, where feature selection and prediction are performed simultaneously.

3 PNSVM

3.1 Linear PNSVM

Linear PNSVM is to find two non-parallel hyperplanes f1(x) = wT
1 x + b1 =

0 and f2(x) = wT
2 x+ b2 = 0 by solving the following two problems:

min
w1,b1,p,q1,ρ

1
2p

Tp+ 1
2c1(‖w1‖2 + b21) + c2e

T
2 q1 + c3ρ1

s.t. Aw1 + e1b1 = p, (1)

ρ1e2 ≥ −(Bw1 + e2b1) + q1 ≥ e2, q1 ≥ 0, ρ1 ≥ 1,

and

min
w2,b2,q,q2,ρ2

1
2q

Tq + 1
2c4(‖w2‖2 + b22) + c5e

T
1 q2 + c6ρ2

s.t. Bw2 + e2b2 = q, (2)

ρ2e1 ≥ (Aw2 + e1b2) + q2 ≥ e1, q2 ≥ 0, ρ2 ≥ 1,

where ci, i = 1, 2, · · · , 6 are parameters.
The formulation given at (1) can be understood as follows: The first term

in (1) is the sum of squared distances from f(x) = w1x + b1 = 0 to points of
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positive class, whose minimization means to keep f(x) = w1x+ b1 = 0 close to
the positive class. The minimization of the second term in (1) implies that the
structural risk principle is implemented by the term 1

2c2(‖w2
1 + b21‖). The second

constraints in (1) require the hyperplane f(x) = wT
1 x + b1 to be at a distance

of at least 1 and at most ρ1 from points of negative class. The third term in
(1) tries to minimize mis-classification. The last term in (1) requires the points
of negative class to be a distance no far away from the hyperplane. A similar
interpretation may also be given to the formulation given at (2).

The Lagrangian of the formulation (1) is given by

L(w1, b1,p, q1, ρ1;α1,α2,α3,α4, β)

=
1

2
c1(‖w1‖2 + b21) +

1

2
pTp+ c2e

T
2 q1 + c3ρ1 +αT1 (Aw1 + e1b1 − p)

− αT2 (−(Bw1 + e2b1) + q1 − e2)−αT3 (ρ1e2 + (Bw1 + e2b1)− q1)

− αT4 q1 − β(ρ1 − 1)

where α1 ∈ Rm1×1,α2 ∈ Rm2×1,α3 ∈ Rm2×1,α4 ∈ Rm1×1, β ∈ R are the
vectors of Lagrange multipliers. The optimality conditions forw1, b1,p, q1, ρ1 are
given by

∇w1
L = c1w1 +ATα1 +BTα2 −BTα3 = 0 (3)

∇b1L = c1b1 + eT1 α1 + eT1 α2 − eT2 α3 = 0 (4)

∇pL = α1 − p = 0 (5)

∇q1L = c2e2 −α2 +α3 −α4 = 0 (6)

∇ρ1L = c3 − eT2 α3 − β = 0 (7)

α2 ≥ 0,α3 ≥ 0,α4 ≥ 0, β ≥ 0. (8)

Then substituting (3) and (7) into the Lagrangian, we obtain the dual prob-
lem of the problem

min
α1,α2,α3

f(α1,α2,α3) = 1
2 (αT1 ,α

T
2 ,α

T
3 )H̄(αT1 ,α

T
2 ,α

T
3 )T − [0,0,−c1e1] (αT1 ,α

T
2 ,α

T
3 )T

s.t. 0 ≤ α2 ≤ (c2 + c3)e2 (9)

0 ≤ α3 ≤ c3e2,

where

H̄ =

AAT + c1I ABT −ABT

BAT BBT −BBT

−BAT −BBT BBT

 +

 e1e
T
1 e1e

T
2 −e1eT2

e2e
T
1 e2e

T
2 −e2eT2

−e2eT1 −e2eT2 e2e
T
2

 .
The dual of the problem (2) is

min
β1,β2,β3

f(β1,β2,β3) = 1
2 (βT1 ,β

T
2 ,β

T
3 )H̃(βT1 ,β

T
2 ,β

T
3 )T − [0,0,−c4e1] (βT1 ,β

T
2 ,β

T
3 )T

s.t. 0 ≤ β2 ≤ (c5 + c6)e2 (10)

0 ≤ β3 ≤ c6e2,
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where

H̃ =

BBT + c4I −BAT BAT

−ABT AAT −AAT

ABT −AAT AAT

 +

 e2e
T
2 −e2eT1 e2e

T
1

−e1eT2 e1e
T
1 −e1eT1

e1e
T
2 −e1eT1 e1e

T
1

 .
Once the (w1, b1) and (w2, b2) are obtained from the (9) and (10) by means

of the dual coordinate descent method [15], a new input x ∈ Rn is assigned to

class i (i = +1,−1) by Class i = arg min
k=1,2

|wT
k x+bk|
‖wk‖ .

3.2 Kernel PNSVM

Kernel PNSVM searches the following two kernel-generated surfaces instead of
hyperplanes K(xT ,CT )w1 + b1 = 0 and K(xT ,CT )w2 + b2 = 0, where CT =
[A B]T ∈ Rn×`. The optimization problems are

min
w1,b1,p,ρ,q1

1
2p

Tp+ 1
2c1(‖w1‖2 + b21) + c2e

T
2 q1 + c3ρ1

s.t. K(A,CT )w1 + e1b1 = p, (11)

ρ1e2 ≥ −(k(B,CT )w1 + e2b1) + q1 ≥ e2, q1 ≥ 0, ρ1 ≥ 1,

and

min
w2,b2,q,ρ2,q2

1
2q

Tq + 1
2c4(‖w2‖2 + (b2)2) + c5e

T
1 q2 + c6ρ2

s.t. K(B,CT )w2 + e2b2 = q, (12)

ρ2e1 ≥ (K(A,CT )w2 + e1b2) + q2 ≥ e1, q2 ≥ 0, ρ2 ≥ 1.

where ci, i = 1, · · · , 6 are parameters.

4 Experimental results

In this section, the UCI data sets are chosen to demonstrate the performance of
our PNSVM compared with SVC, TWSVM and WLTSVM [13]. The methods
are implemented by Matlab 9.0 running on a PC with an Intel(R) Core Duo
i7(2.70GHZ) with 32 GB RAM. Our PNSVM is solved by the dual coordinate
descend algorithm and SVC and TWSVM are solved by the optimization toolbox
QP in Matlab. The classification accuracy is measured by the standard 10-fold
cross-validation.

The classification accuracy, computation time, and optimal values of c1(=
c2), c4 = (c5) and c3 and c6 in our PNSVM are listed in Table 1. The pa-
rameters from PNSVM, TWSVM, SVC and WLTSVM are searched in the
range {22i|i = −8, · · · , 8}, and the parameters c3 and c6 of PNSVM are se-
lected from the set {0.01, 0.1, 1, 10, 100}. Table 1 shows the comparison results
of all four methods. It can be seen from Table 1 that the accuracy of the pro-
posed linear PNSVM is significantly better than that of the linear TWSVM on
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Table 1. The comparison results of linear classifiers.

Datasets PNSVM TWSVM SVC WLTSVM
accuracy% time(s) accuracy% time(s) accuracy% time(s) accuracy% time(s)
c1=c2/c4=c5 c3/c6

Hepatitis 84.93±0.03 0.0005 82.89±6.30 0.281 84.13±5.58 1.170 84.39±1.35 0.0062
(155×19) 214/212 0.1/0.1
BUPA liver 70.98±0.01 0.0346 66.40±7.74 0.840 67.78±5.51 3.540 68.08±1.32 0.0076
(345×6) 210/22 10/100
Heart-Stat 84.41±0.05 0.0012 84.44±6.80 0.454 83.12±5.41 1.584 84.96±0.58 0.0051
-log(270×14) 2−6/216 10/10
Heart-c 86.57±0.07 0.0026 84.86±6.27 0.516 83.33±5.64 2.193 92.05±0.39 0.0063
(303×14) 20/2−8 0.1/100
Votes 96.43±0.05 0.0043 95.85±2.75 1.851 95.80±2.65 3.192 95.93±0.21 0.0049
(435×16) 2−6/2−2 10/0.01
WPBC 84.72±0.06 0.0253 83.68±5.73 0.560 83.30±4.53 2.094 79.18±1.73 0.0778
(198×34) 2−14/2−14 0.01/100
Sonar 76.19±0.15 2.4545 77.00±6.10 0.375 80.13±5.43 0.941 78.07±1.41 0.0172
(208×60) 22/2−12 100/100
lonosphere 88.89±0.08 0.04 88.48±5.74 0.969 88.20±4.51 4.120 87.31±0.64 0.0097
(351±34) 216/2−2 0.01/100

(a) Hepatitis (b) BUPA (c) Heart-Statlog (d) Heart-c

(e) Votes (f) WPBC (g) Sonar (h) Ionosphere

Fig. 1. The influence on Accuracy(AC) of parameters c3 and c6 of linear PNSVM.
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most of data sets. And our PNSVM is the fastest on most of data sets. Fig. 1
exhibits the influence on Accuracy of parameters c3 and c6 for linear PNSVM.
It can be observed that the choice of c3 and c6 affects the results dramatically,
which implies that adjusting the parameters c3 and c6 is practical selection in
real applications. Table 2 is concerned with our kernel PNSVM, TWSVM ans
SVC and WLTSVM. The Gaussian kernel K(x,x′) = e−µ‖x−x

′‖2 is used. The
kernel parameter µ is also searched from the sets {2i|i = −8, · · · , 8}. The classi-
fication accuracy and computation times for all three methods are also listed in
Table 2.

Table 2. The comparison results of kernel classifiers.

Datasets PNSVM TWSVM SVC WLTSVM
accuracy% time(s) accuracy% time(s) accuracy% time(s) accuracy% time(s)
c1=c2/c4=c5 c3/c6/µ

Hepatitis 84.29±0.07 0.0051 83.39±7.31 0.797 84.13±6.25 1.300 84.28±0.47 0.0057
(155×19) 2−2/2−14 0.01/0.01/22

BUPA liver 69.72±0.01 0.0135 67.83±6.49 2.700 68.32±7.20 5.248 73.18±0.59 0.0046
(345×6) 2−14/28 100/0.01/2−5

Heart-Stat 86.68±0.06 0.1703 82.96±4.67 1.130 83.33±9.11 6.100 85.12±0.86 0.0154
-log(270×14) 2−10/2−10 10/1 /21

Heart-c 89.28±0.05 0.0111 83.83±5.78 2.141 83.68±5.67 3.800 85.98±0.62 0.0059
(303×14) 2−12/24 1/100/2−3

Votes 96.53±0.03 0.0181 94.91±4.37 3.540 95.64±7.23 7.783 96.39±0.14 0.0475
(435×16) 2−8/20 0.1/0.01/2−2

WPBC 84.39±0.06 0.0096 81.28±5.92 1.305 80.18±6.90 4.141 79.85±0.43 0.0085
(198×34) 2−10/212 10/10/20

Sonar 90.01±0.06 0.0077 89.64±6.11 2.630 88.93±10.43 5.302 88.73±1.27 0.0237
(208×60) 2−8/2−6 1/10/2−2

lonosphere 91.81±0.03 0.0608 87.46±3.40 5.576 90.20±4.51 15.71 90.45±0.47 0.0039
(351±34) 20/22 10/100/2−3

5 Conclusions

For binary classification problem, a novel large margin proximal non-parallel
twin support vector machine was proposed in this paper. The main contribution
are that the structural risk minimization principle is implemented by introduc-
ing a regularization term in the primal problems of our PNSVM and the dual
formulation of PNSVM avoids the computation of inverse matrices and speeds
up the training efficiency. Experimental results of our PNSVM and SVC and
TWSVM and WLTSVM, have been made on several data sets, implying that
the proposed method is not only faster but also exhibits better generalization.
It should be pointed out that there are six parameters in our PNSVM, so the
parameter selection and more efficient algorithm [17] is a practical problem and
should be addressed in the future.
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