
An OpenMP implementation of the
TVD–Hopmoc method based on a

synchronization mechanism using locks between
adjacent threads on Xeon PhiTM accelerators

Frederico L. Cabral1, Carla Osthoff1, Gabriel P. Costa1, Sanderson L. Gonzaga
de Oliveira2, Diego Brandão3, and Mauricio Kischinhevsky4

1 Laboratório Nacional de Computação Cient́ıfica - LNCC
{fcabral,osthoff,gcosta}@lncc.br

2 Universidade Federal de Lavras - UFLA
sanderson@edcc.ufla.br

3 Centro Federal de Educação Tecnológica Celso Suckow da Fonseca - CEFET-RJ
diego.brandao@eic.cefet-rj.br

4 Universidade Federal Fluminense - UFF
kisch@ic.uff.br

Abstract. This work focuses on the study of the 1–D TVD–Hopmoc
method executed in shared memory manycore environments. In par-
ticular, this paper studies barrier costs on IntelR© Xeon PhiTM (KNC
and KNL) accelerators when using the OpenMP standard. This pa-
per employs an explicit synchronization mechanism to reduce spin and
thread scheduling times in an OpenMP implementation of the 1–D TVD–
Hopmoc method. Basically, we define an array that represents threads
and the new scheme consists of synchronizing only adjacent threads.
Moreover, the new approach reduces the OpenMP scheduling time by
employing an explicit work-sharing strategy. In the beginning of the
process, the array that represents the computational mesh of the nu-
merical method is partitioned among threads, instead of permitting the
OpenMP API to perform this task. Thereby, the new scheme diminishes
the OpenMP spin time by avoiding OpenMP barriers using an explicit
synchronization mechanism where a thread only waits for its two adja-
cent threads. The results of the new approach is compared with a basic
parallel implementation of the 1–D TVD–Hopmoc method. Specifically,
numerical simulations shows that the new approach achieves promis-
ing performance gains in shared memory manycore environments for an
OpenMP implementation of the 1–D TVD–Hopmoc method.

1 Introduction

Over the last decades, since both the demand for faster computation and shared
memory multicore and manycore architectures became available in large scale,
an important issue has emerged: how can one obtain a speedup proportional
to the number of physical cores available in a parallel architecture? Specific

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


programming languages, libraries, and programming models has been proposed
to assist programmers and researches to surmount this challenge. Among them,
the OpenMP library [2] is one of the best-known standards nowadays.

Since new machines with faster clock speed are facing a certain limit because
overheat and electromagnetic interference, technologies have been proposed with
the objective of improving the processing capacity in computations. Multithread-
ing, distributed processing, manycore architectures (e.g. General Purpose Graph-
ical Processing Units (GPGPUs)), and Many Integrated Core (MIC) accelerators
(such as Intel R© Xeon PhiTM) are examples of technologies employed to boost a
computer performance. Even with these recent technologies, it is still a challenge
to obtain a speedup proportional to the number of available cores in a parallel im-
plementation due to the hardware complexity in such systems. To overcome this
particular issue, the OpenMP standard offers a simple manner to convert a serial
code to a parallel implementation for shared memory multicore and manycore
architectures. Although a parallel implementation with the support of this API
is easily reached, a basic (or naive) OpenMP implementation in general does not
attain straightforwardly the expected speedup in an application. Furthermore,
despite being easily implemented, the most common resources available in the
OpenMP standard may generate high scheduling and synchronization running
times.

High Performance Computing (HPC) is a practice widely used in compu-
tational simulations of several real-world phenomena. Numerical methods have
been designed to maximize the computational capacity provided by a HPC en-
vironment. In particular, the Hopmoc method (see [3] and references therein)
is a spatially decoupled alternating direction procedure for solving convection–
diffusion equations. It was designed to be executed in parallel architectures (see
[1] and references therein). To provide more specific detail, the unknowns are
spatially decoupled, permitting message-passing minimization among threads.
Specifically, the set of unknowns is decoupled into two subsets. These two sub-
sets are calculated alternately by explicit and implicit approaches. In particular,
the use of two explicit and implicit semi-steps avoids the use of a linear sys-
tem solver. Moreover, this method employs a strategy based on tracking values
along characteristic lines during time stepping. The two semi-steps are performed
along characteristic lines by a Semi-Lagrangian scheme following concepts of the
Modified Method of Characteristics. The time derivative and the advection term
are combined as a direction derivative. Thus, time steps are performed in the
flow direction along characteristics of the velocity field of the fluid. The Hopmoc
method is a direct method in the sense that the cost per time step is previ-
ously known. To determine the value in the foot of the characteristic line, the
original method uses an interpolation technique, that introduces inherent nu-
merical errors. To overcome this limitation, the Hopmoc method was combined
with a Total Variation Diminishing (TVD) scheme. This new approach, called
TVD–Hopmoc, employs a flux limiter to determine the value in the foot of the
characteristic line based on the Lax-Wendroff scheme [1].

2

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


We studied a basic OpenMP implementation of the TVD–Hopmoc method
under the Intel R© Parallel Studio XE software for Intel’s Haswell/Broadwell archi-
tectures. This product showed us that the main problem in the performance of a
simple OpenMP–based TVD–Hopmoc method was the use of the basic OpenMP
scheduling and synchronization mechanisms. Thus, this paper employs alterna-
tive strategies to these basic OpenMP strategies. Specifically, this work uses an
explicit work-sharing (EWS) strategy. The array that denotes the computational
mesh of the 1–D TVD–Hopmoc method is explicitly partitioned among threads.
In addition, to avoid implicit barrier costs imposed by the OpenMP standard,
this paper employs an explicit synchronization mechanism to guarantee that
only threads with real data dependencies participate in the synchronization.
Additionally, we compare our approach along with three thread binding policies
(balanced, compact, and scatter).

This paper is organized as follows. Section 2 outlines the TVD–Hopmoc
method and shows how the experiments were conducted in this work. Section 3
presents the EWS strategy employed here along with our strategy to synchro-
nize adjacent threads. Section 4 shows the experimental results that compares
the new approach with a naive OpenMP–based TVD–Hopmoc method. Finally,
section 5 addresses the conclusions and discusses the next steps in this investi-
gation.

2 The TVD–Hopmoc method and description of the tests

Consider the advection–diffusion equation in the form

ut + vux = duxx, (1)

with adequate initial and boundary conditions, where v is a constant pos-
itive velocity, d is the constant positive diffusivity, 0 ≤ x ≤ 1 and 0 ≤
t ≤ T , for T time steps. Applying the Hopmoc method to equation (1)

yields u
t+ 1

2
i = u

t
i + δt

[
θtiLh

(
u
t
i

)
+ θt+1

i Lh

(
u
t+ 1

2
i

)]
and ut+1

i = u
t+ 1

2
i +

δt
[
θtiLh

(
u
t+ 1

2
i

)
+ θt+1

i Lh
(
ut+1
i

)]
, where θti is 1 (0) if t + i is even (odd),

Lh (uti) = d
ut
i−1−2ut

i+u
t
i+1

∆x2 is a finite-difference operator, u
t+ 1

2
i and ut+1

i are con-

secutive time semi-steps, and the value of the concentration in u
t
i is obtained by

a TVD scheme to determine u
t
i+1 = uti− c

(
uti − uti−1

) [
1 − (1−c)φi−1

2 + (1−c)φi

2r

]
,

where r =
ut
i−u

t
i−1

ut
i+1−ut

i
[1]. The Van Leer flux limiter [4] was employed in the numer-

ical simulations performed in this present work. This scheme delivered better
results when compared with other techniques [1]. Our numerical simulations
were carried out for a Gaussian pulse with amplitude 1.0, whose initial center
location is 0.2, with velocity v = 1 and diffusion coefficient d = 2

Re = 10−3

(where Re stands for Reynolds number), ∆x = 10−5 and ∆x = 10−6 (i.e. 105

and 106 stencil points, respectively), and T is established as 104, 105, and 106.

3

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


3 EWS and synchronization strategies combined with an
explicit lock mechanism

The main idea of our OpenMP–based TVD–Hopmoc method is to avoid the extra
time caused by scheduling threads and the implicit barriers after a load sharing
construct employed in the OpenMP standard. We deal with thread imbalance by
partitioning explicitly the array into the team of threads. Our implementation of
the TVD–Hopmoc method defines a static array that represents the unknowns.
Thus, a permanent partition of this array is established for each thread in the
beginning of the code, i.e. no changes are made to this partition during the
execution of the process. Since the mesh is static, thread scheduling is performed
only at the beginning of the execution. In addition, since each thread in the team
has its required data, we do not need to use the OpenMP parallel for directive
in our code. Thus, our OpenMP implementation of the TVD–Hopmoc method
was designed to minimize synchronization in a way that a particular thread
needs information only from its adjacent threads so that an implicit barrier is
unnecessary. Thereby, the mechanism applied here involves a synchronization of
adjacent threads, i.e. each thread waits only for two adjacent threads to reach
the same synchronization point.

The strategy employed here is based on a simple lock mechanism. Using an
array of booleans, a thread sets (releases) an entry in this array and, hence,
informs its adjacent threads that the data cannot (can) be used by them. We
will refer this approach as EWS-adSync implementation.

4 Experimental results

This section shows the results of the new and basic approaches aforementioned in
executions performed on a machine containing an Intel R© Xeon PhiTM Knights-
Corner (KNC) accelerator 5110P, 8GB DDR5, 1.053 GHz, 60 cores, 4 threads
per core (in Section 4.1), and on a machine containing an Intel R© Xeon PhiTM

CPU 7250 @ 1.40GHz, 68 cores, 4 threads per core (in Section 4.2). We evaluate
the EWS-adSync implementation of the TVD–Hopmoc method along with three
thread binding policies: balanced, compact, and scatter policies.

4.1 Experiments performed on a Xeon PhiTM (Knight’s Corner)
accelerator

This section shows experiments performed on an Intel R© Xeon PhiTM (KNC)
accelerator composed of 240 threads. Figure 1 shows that our OpenMP–based
TVD–Hopmoc method using the EWS strategy in conjunction with synchroniz-
ing adjacent threads along with compact (comp.) thread binding policy (pol.)
yielded a speedup of approximately 140x (using 240 threads) in a simulation
with ∆x = 10−6 (i.e. a mesh composed of 106 stencil points) and T = 105. This
implementation used in conjunction with the scatter (sct.) policy delivered a
speedup of 136x (using 238 threads) in a simulation with the same settings.

4

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


Fig. 1. Speedups obtained by two OpenMP implementations of the TVD–
Hopmoc method applied to the advection–diffusion equation (1) for a Gaus-
sian pulse with amplitude 1.0 in executions performed on a Xeon PhiTM (KNC)
accelerator. A basic (ou naive) implementation was employed in a simulation
with T = 105 and ∆x = 10−5 (i.e. the mesh is composed of 105 stencil points).
Our OpenMP–based TVD–Hopmoc method (EWS-adSync implementation) was
employed with three different thread binding policies (balanced, compact, and
scatter policies) in simulations with ∆x set as 10−5 and 106 (i.e. meshes com-
posed of 105 and 106 stencil points, resp.) and T specified as 105, 104, and 103.

The EWS-adSync implementation alongside scatter, balanced (bal.), and
compact scatter policies respectively achieved speedups of 134.2x, 133.8x, and
133.5x in simulations with ∆x = 10−6 and T = 104. These implementations
dominated the basic OpenMP–based TVD-Hopmoc method, which obtained a
speedup of 28x.

The EWS-adSync implementation alongside the compact policy (with
speedup of 121x) achieved better results than the scatter policy (with speedup
of 111x) in a simulation with ∆x = 10−5 and T = 105. Both implementations
dominated the basic OpenMP–based TVD-Hopmoc method, which obtained a
speedup of 95x. The EWS-adSync implementation alongside the compact pol-
icy (with speedup of 90x) reached slightly better results than the scatter policy
(with speedup of 88x) in a simulation with ∆x = 10−5 and T = 104. On the
other hand, the EWS-adSync implementation in conjunction with the scatter
policy (with speedup of 38x) yielded better results than the compact policy
(with speedup of 27x) in a simulation with ∆x = 10−5 and T = 103. Figure 1
shows that in general the OpenMP–based TVD–Hopmoc method obtains better
speedups when setting a larger number of iterations T since it takes advantage
of a higher cache hit rate.

4.2 Experiments performed on a Xeon PhiTM (Knights Landing)
accelerator

This section shows experiments performed on an Intel R© Xeon PhiTM (KNL)
accelerator composed of 272 threads. Figure 2 shows that our OpenMP–based

5

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


TVD–Hopmoc method using the EWS strategy in conjunction with synchroniz-
ing adjacent threads along with scatter thread binding policy yielded a speedup
of approximately 91x (using 135 threads) in a simulation with ∆x = 10−5 (i.e.
a mesh composed of 105 stencil points) and T = 106. This implementation used
in conjunction with scatter and compact policies delivered respectively speedups
of 85x and 77x (using 135 and 271 threads, respectively) with the same settings.
Similarly, the EWS-adSync implementation alongside balanced policy achieved
better results (with speedup of 84x) than in conjunction with both scatter (with
speedup of 80x) and compact (with speedup of 69x) policies in simulations with
∆x = 10−5 and T = 105.

The EWS-adSync implementation alongside the scatter policy achieved sim-
ilar results to the compact policy (both with speedup of 17x) in a simulation
with ∆x = 10−6 and T = 105. It seems that the simulation with ∆x = 10−6

obtained a higher cache miss rate than the other experiments.

Fig. 2. Speedups of two OpenMP implementations of the TVD–Hopmoc method
applied to the advection–diffusion equation (1) for a Gaussian pulse with ampli-
tude 1.0 in runs performed on a Xeon PhiTM (KNL) accelerator. Our OpenMP–
based TVD–Hopmoc method (EWS-adSync implementation) was employed with
three different thread binding policies (balanced, compact, and scatter policies)
in simulations with ∆x established as 10−5 and 106 (i.e. meshes composed of
105 and 105 stencil points) and T was defined as 106 and 105.

5 Conclusions

Based on an explicit work-sharing strategy along with an explicit synchroniza-
tion mechanism, the approach employed here to implement an OpenMP–based
TVD–Hopmoc method attained reasonable speedups in manycore (Xeon PhiTM

KNC and KNL accelerators) architectures. In particular, the scheduling time
was profoundly reduced by replacing the effort of assigning to threads tasks at
runtime by an explicit work-sharing strategy that determines a priori the range

6

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67


of the array that represents stencil points where each thread will perform its
task. Moreover, using a lock array where an entry denotes a thread, the syn-
chronization time in barriers was substituted by a strategy that only requires
that each thread be synchronized with its two adjacent threads. Employing these
two strategies, the team of threads presented a reasonable load balancing, where
almost the total number of threads available are used simultaneously.

Our OpenMP–based TVD–Hopmoc method along with a compact thread
binding policy yielded a speedup of approximately 140x when applied to a
mesh composed of 106 stencil points in a simulation performed on an Intel R©

Xeon PhiTM (Knight’s Corner) accelerator composed of 240 threads. Moreover,
this parallel TVD–Hopmoc method alongside a balanced thread binding policy
reached a speedup of approximately 91x when applied to a mesh composed of
105 stencil points in a simulation performed on an Intel R© Xeon PhiTM (Knights
Landing) accelerator composed of 135 threads. Furthermore, our OpenMP–based
TVD–Hopmoc method in conjunction both with scatter and compact policies
achieved a speedup of approximately 17x when applied to a mesh composed of
106 stencil points in a simulation performed on the same machine.

It is observed in Figures 1 and 2 that the speedup of our OpenMP–based
TVD–Hopmoc method along with scatter and balanced policies shows four
trends. The speedup increases with the use of up to a number of threads that
is multiple of the number of cores in the machine. We intend to provide further
investigations about this characteristic in future studies.

A next step in this investigation is to implement an OpenMP–based 2–D
TVD–Hopmoc method. Even in the 2–D case, we plan to use an array to rep-
resent the stencil points so that the approach employed in the 1–D case of the
TVD–Hopmoc method is still valid.

Acknowledgments

This work was developed with the support of CNPq, CAPES, and FAPERJ
- Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro. The authors
thank the Núcleo de Computação Cient́ıfica at the UNESP for the use of its
computational resources. These resources were partially funded by Intel R©.

References

1. F. Cabral, C. Osthoff, G. Costa, D. N. Brandão, M. Kischinhevsky, and S. L. Gon-
zaga de Oliveira. Tuning up TVD HOPMOC method on Intel MIC Xeon Phi
architectures with Intel Parallel Studio tools. In Proceedings of the 8th Workshop
on Applications for Multi-Core Architectures, Campinas, SP, Brazil, 2017.

2. L. Dagum and R. Menon. Openmp: An industry standard api for shared-memory
programming. Computational Science & Engineering, IEEE, 5(1):46–55, 1998.

3. S. R. F. Oliveira, S. L. Gonzaga de Oliveira, and M. Kischinhevsky. Convergence
analysis of the Hopmoc method. Int. J. Comput. Math., 86:1375–1393, 2009.

4. B. van Leer. Towards the ultimate conservative difference schemes. Journal of
Computational Physics, 14:361–370, 1974.

7

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_67

https://dx.doi.org/10.1007/978-3-319-93713-7_67

