A Parallel Quicksort Algorithm on Manycore
Processors in Sunway TaihuLight

Siyuan Ren, Shizhen Xu, and Guangwen Yang

Tsinghua University, China

Abstract. In this paper we present a highly efficient parallel quicksort
algorithm on SW26010, a heterogeneous manycore processor that makes
Sunway TaihuLight the Top-One supercomputer in the world. Motivated
by the software-cache and on-chip communication design of SW26010,
we propose a two-phase quicksort algorithm, with the first counting ele-
ments and the second moving elements. To make the best of such many-
core architecture, we design a decentralized workflow, further optimize
the memory access and balance the workload. Experiments show that
our algorithm scales efficiently to 64 cores of SW26010, achieving more
than 32X speedup for int32 elements on all kinds of data distributions.
The result outperforms the strong scaling one of Intel TBB (Threading
Building Blocks) version of quicksort on x86-64 architecture.

1 Introduction

This paper presents our design of parallel quicksort algorithm on SW26010, the
heterogeneous manycore processor making the Sunway TaihuLight supercom-
puter currently Top-One in the world [4]. SW26010 features a cache-less design
with two methods of memory access: DMA (transfer between scratchpad memory
(SPM) and main memory) and Gload (transfer between register and main mem-
ory). The aggressive design of SW26010 results in an impressive performance
of 3.06 TFlops, while also complicating programming design and performance
optimizations.

Sorting has always been a extensively studied topic [6]. On heterogeneous
architectures, prior works focus on GPGPUs. For instance, Satish et al. [9] com-
pared several sorting algorithms on NVIDIA GPUs, including radix sort, nor-
mal quicksort, sample sort, bitonic sort and merge sort. GPU-quicksort [2] and
its improvement CUDA-quicksort [8] used a double pass algorithm for parallel
partition to minimize the need for communication. Leischner et al. [7] ported
samplesort (a version of parallel quicksort) to GPUs, claiming significant speed
improvement over GPU quicksort.

Prior works give us insights on parallel sorting algorithm, but cannot directly
satisfy our need for two reasons. First, the Gload overhead is extremely high so
that all the accessed memory have to be prefetched to SPM via DMA. At the
same time, the capacity of SPM is highly limited (64KiB). Second, SW26010
provides a customized on-chip communication mechanism, which opens new op-
portunities for optimization.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

Based on these observations, we design and implement a new quicksort algo-
rithm for SW26010. It alternates between parallel partitioning phase and parallel
sorting phase. During first phase, the cores participate in a double-pass algorithm
for parallel partitioning, where in the first pass cores count elements, and in the
second cores move elements. During the second phase, the cores sort its assigned
pieces in parallel.

To make the best of SW26010, we dispense with a central manager common
in parallel algorithms. Instead we duplicate the metadata on SPM of all worker
cores and employ a decentralized design. The tiny size of the SPM warrants
special measures to maximize its utilization. Furthermore, we take advantage
of the architecture by replacing memory access of value counts with register
communication, and improving load balance with a simple counting scheme.

Experiments show that our algorithm performs best with int32 values, achiev-
ing more than 32 speedup (50% parallel efficiency) for sufficient array sizes and
all kinds of data distributions. For double values, the lowest speedup is 20 (31%
efficiency). We also compare against Intel TBB’s parallel quicksort on x86-64
machines, and find that our algorithm on Sunway scales far better.

2 Architecture of SW26010

SW26010 [4] is composed of four core-groups (CGs). Each CG has one manage-
ment processing element (MPE) (also referred as manager core), 64 computing
processing elements (CPEs) (also referred as worker cores). The MPE is a com-
plete 64-bit RISC core, which can run in both user and kernel modes. The CPE
is also a tailored 64-bit RISC core, but it can only run in user mode. The CPE
cluster is organized as an 8x8 mesh on-chip network. CPEs in one row and one
column can directly communicate via register, at most 128 bit at a time. In
addition, each CPE has a user-controlled scratch pad memory (SPM), of which
the size is 64KiB.

SW26010 processors provide two methods of memory access. The first is
DMA, which transfers data between main memory and SPM. The second is
Gload, which transfers data between main memory and register, akin to normal
load/store instructions. The Gload overhead is extremely high, so it should be
avoided as much as possible.

Virtual memory on one CG is usually only mapped to its own physical mem-
ory. In other words, four CGs can be regarded as four independent processors
when we design algorithms. This work focuses on one core group, but we will
also briefly discuss how to extend to more core groups.

3 Algorithm

As in the original quicksort, the basic idea is to recursively partition the sequence
into subsequences separated by a pivot value. Values smaller than the pivot
shall be moved to the left, larger to the right. Our algorithm is divided into two
phases to reduce overhead. The first phase is parallel partitioning with a two

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

pass algorithm. When the pieces are too many or small enough, we enter the
second phase, when each core independently sorts its pieces. Both phases are
carried out by repeated partitioning with slightly different algorithms.

3.1 Parallel Partitioning

Parallel partitioning is the core of our algorithm. We employ a two pass algorithm
similar to [2IIUT0]. in order to avoid concurrent writes. In the first pass, each
core counts the total number of elements strictly smaller than and strictly larger
than the pivot in its assigned subsequence. It does so by loading consecutively
the values from main memory into its SPM and accumulating the count. The
cores then communicate with one another about their counts, with which they
can calculate the position by cumulative sum where they should write to in the
next pass.

In the second pass, each core does their own partitioning again, this time
directly transferring the partitioned result into their own position in the result
array. This step can be done in parallel since all of the reads and writes are
disjoint. After all cores commit their result, the result array is left with a middle
gap to be filled by the pivot values. The cores then fill the gap in parallel with
DMA writes.

The synchronization needed by the two pass algorithm is hence limited to
only these places: a barrier at the end of counting pass, the communication of a
small number of integers, and the barrier after the filling with pivots.

3.2 Communication of Value Counts

Because the value counts needed for calculation of target location are small in
number, exchanging them through main memory among worker cores, either via
DMA or Gload, would result in a great overhead. We instead decide to let the
worker cores exchange the counts via register communication, with which the
worker cores can transfer values at most 128bit at a time. The smaller and larger
counts are both 32-bit, so they can be concatenated into one 64-bit value and
communicated in one go.

Each worker core needs only two combined values: one is the cumulative sum
of counts for cores ordered before it, another is the total sum of all counts. The
information flow is arranged in a zigzag fashion to deal with the restriction that
cores can only communicate with one another in the same row or column.

3.3 Load Balancing

Since Sunway has 64 cores, load imbalance is a serious problem in phase II. If
not all the cores finish their sorting at the same time, those that finish early will
have to sit idle, wasting cycles. To reduce the imbalance, we employ a simple
dynamic scheme based on an atomic counter.

To elaborate, we dedicate a small fraction of each SPM to hold the metadata
of array segments that all of them are going to sort independently in parallel.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

When the storage of metadata is full, each core will enter phase IT and choose one
segment to sort. When any core finishes, it will atomically increment an counter
in the main memory to get the index of next segment, until the counter exceeds
the storage capacity, and the algorithm either returns to phase I or finishes.

3.4 Memory Optimization

As SPM is very small (64KiB), any memory overhead will reduce the number
of elements it can buffer at a time, thereby increasing the rounds of DMAs.
Memory optimization is therefore critical to the overall performance. We employ
the following tricks to further reduce memory overhead of control structures.

For one, we use an explicit stack, and during recursion of partitioning at all
levels, we descend into the smaller subarray first. This bounds the memory usage
of the call stack to O(log, N), however the pivot is chosen [5].

For another, we compress the representation of subarrays by converting 64-
bit pointers to 32-bit offsets, and by reusing the sign bit to denote the base of the
offset (either the original or the auxiliary array). The compression can reduce
the number of bytes needed for each subarray representation from 16 bytes to 8
bytes, a 50% save.

3.5 Multiple Core Groups

To apply our algorithm to multiple core groups, we may combine the single
core group algorithm with a variety of conventional parallel sorting algorithms,
such as samplesort. Samplesort on n processors is composed of three steps [3]:
partition the array with n — 1 splitters into n disjoint buckets, then distribute
them onto n processors so that i-th processors have the i-th bucket, and finally
sort them in parallel. To adapt our algorithm to multiple core groups, we simply
regard each core group as a single processor in the sense of samplesort, and do
the first step with our parallel partitioning algorithm (Sect. with a slight
modification (maintain n counts and do multi-way partitioning).

4 Experiments

To evaluate the performance of our algorithm, we test it on arrays of different
sizes, different distributions, and different element types. We also test the multi-
ple CG version against single CG version. To evaluate how our algorithm scales,
we experiment with different number of worker cores active. Since there is no
previous work on Sunway or similar machines to benchmark against, we instead
compare our results with Intel TBB on x86-64 machines.

Sorting speed is affected by data distributions, especially for quicksort since
its partitioning may be imbalanced. We test our algorithm on five different dis-
tributions of data. See Fig. [I] for the visualizations of the types of distributions.

For x86-64 we test on an AWS dedicated instance with 72 CPUs (Intel Xeon
Platinum 8124M, the latest generation of server CPUs in 2017). The Intel TBB

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

uniform shuffle increment decrement staggered

Ll .

Fig. 1: Visualizations of data distributions. The horizontal axis represents the
index of element in the array, and the vertical axis the value.

library is versioned 2018U1. Both the library and our test source are compiled
with -03 -march=native so that compiler optimizations are fully on.

4.1 Results on Sunway TaihuLight

We compare the running time of our algorithm on Sunway TaihuLight against
single threaded sorting on the MPE with std::sort. The STL sort, as imple-
mented on libstdc++, is a variant of quicksort called introsort.

Fig.[2]shows the runtime results for sorting 32-bit integers. From the graph we
can see that the distribution matters only a little. Fig. |3| shows sorting different
types of elements with the size fixed. The reason for the reduced efficiency with
64-bit types (int64 and double) is evident: the number of elements buffered in
SPM each time is halved, and more round trips between main memory and SPM
are needed. The reason for reduced efficiency of float32 values is unknown. Fig. [4]
shows the timings and speedups of multiple CG algorithm (adapted samplesort).

= —
30 /{ f

—=— decrement
| —— increment

10 —— shuffle
—— staggered

uniform

—— decrement —— decrement
300 —— increment g — increment
250 —— shuffle —— shuffle
—— staggered —— staggered
© 200 uniform / 6 uniform
3
E 150

100
50

o 0 o |
0 2E+08 4E+08 BE+08 8E+08 0 2E+08 4E+08 B6E+08 BE+08 0 2E+08 4E+08 B6E+08 8E+08
Size Size Size

(a) STL (b) Ours (c¢) Speedup

Fig. 2: Results for int32 values

4.2 Comparison against Intel TBB on x86-64

We compare our implementation against Intel TBB on Intel CPU. TBB is a
C++ template library of generic parallel algorithms, developed by Intel, and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

250 - int32  mmm foat 032 . float 032 e float
= G4 W double e int64  mEE double 40 e ints4 WM double

30
20
10

[

uniform  staggered  shuffle  increment decrement uniform  staggered shuffle increment decrement uniform  staggered shuffle increment decrement
Data distribution Data distribution Data distribution

(a) STL (b) Ours (c) Speedup

200

o

0

Timels
Timels
Speedup

100

50

0

Fig. 3: Results for different element types

o .
320 2200
E 8
F1s & 150
1.0 100
; I“I“IIII “ul
0 0
2

3456 7 8 9 1011121314 1516 128 256 384 512 640 768 896 1024 128 256 384 512 640 768 896 1024
Number of Core Groups Total Number of Worker Cores Total Number of Worker Cores

Parallel Efficiency
o o
N w

°

°

(a) Timings (b) Speedups (c) Parallel Efficiency

Fig. 4: Results for different number of core groups

most optimized for their own processors. For a fairer comparison, we choose a
machine with one of the most powerful Intel processors available to date.

The result is illustrated at Fig. ol We can see that an individual x86-64 core
is about six times as fast as one SW26010 worker core, but our algorithm scales
much better with the number of cores. The performance of TBB’s algorithm
saturates after about 20 cores are in use, whereas our algorithm could probably
scale further from 64 cores, judging from the graph. Even though the comparison
isn’t direct since the architecture is different, it is evident that our algorithm on
top of Sunway TaihuLight is much more efficient than traditional parallel sorting
algorithms implemented on more common architectures.

5 Conclusion

In this paper, we present a customized parallel quicksort on SW26010 with sig-
nificant speedup relatively to single core performance. It is composed of two-pass
parallel partitioning algorithm with the first counting elements and the second
moving elements. This design is able to leverage the on-chip communication
mechanism to reduce synchronization overhead, and fast on-chip SPM to mini-
mize the data movement overhead. Further, we design a cooperative scheduling
scheme, and optimize memory usage as well as load balancing.

Experiments show that for int32 values, our algorithm achieves a speedup
of more than 32 on 64 CPEs and a strong-scaling efficiency 50% for all distri-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{10.1007/978-3-319-93713-7_61 |



https://dx.doi.org/10.1007/978-3-319-93713-7_61

Parallel Efficiency

40 50 60 o 10 20

(a) Sorting time (b) Speedup (c) Parallel Efficiency

Fig.5: Results for different cores on SW26010 (our algorithm) vs on x86-64
(TBB)

butions. Compared with Intel TBB’s implementation of parallel quicksort on
x86-64 architecture, our design scales well even when using all of 64 CPEs while
TBB’s implementation hardly benefit from more than 20 cores.

References

10.

Blelloch, G.E.: Prefix sums and their applications. Tech. rep., Synthesis of Parallel
Algorithms (1990), https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
Cederman, D., Tsigas, P.: GPU-Quicksort: A practical quicksort algorithm for
graphics processors. Journal of Experimental Algorithmics 14, 4 (2009)

Frazer, W.D., McKellar, A.C.: Samplesort: A sampling approach to minimal stor-
age tree sorting. J. ACM 17(3), 496-507 (Jul 1970)

Fu, H., Liao, J., Yang, J., Wang, L., Song, Z., Huang, X., Yang, C., Xue, W.,
Liu, F., Qiao, F., Zhao, W., Yin, X., Hou, C., Zhang, C., Ge, W., Zhang, J.,
Wang, Y., Zhou, C., Yang, G.: The Sunway TaihuLight supercomputer: system
and applications. Science China Information Sciences 59(7), 072001 (Jun 2016)
Hoare, C.A.R.: Quicksort. The Computer Journal 5(1), 10-16 (1962)

Knuth, D.E.: The Art of Computer Programming, Volume 3: (2nd Ed.) Sorting
and Searching. Addison Wesley Longman Publishing Co., Inc., Redwood City, CA,
USA (1998)

Leischner, N., Osipov, V., Sanders, P.: GPU sample sort. In: 2010 IEEE Interna-
tional Symposium on Parallel Distributed Processing. pp. 1-10 (April 2010)

. Manca, E., Manconi, A., Orro, A., Armano, G., Milanesi, L.: CUDA-quicksort: an

improved GPU-based implementation of quicksort. Concurrency and Computation:
Practice and Experience 28(1), 21-43 (2016)

Satish, N., Harris, M., Garland, M.: Designing efficient sorting algorithms for many-
core GPUs. In: 2009 IEEE International Symposium on Parallel Distributed Pro-
cessing. pp. 1-10 (May 2009)

Sengupta, S., Harris, M., Zhang, Y., Owens, J.D.: Scan primitives for GPU com-
puting. In: Proceedings of the 22Nd ACM SIGGRAPH/EUROGRAPHICS Sym-
posium on Graphics Hardware. pp. 97-106. GH ’07, Eurographics Association,
Aijre-la-Ville, Switzerland, Switzerland (2007)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_61 |



https://www.cs.cmu.edu/~guyb/papers/Ble93.pdf
https://dx.doi.org/10.1007/978-3-319-93713-7_61

