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Abstract. Feature selection plays an important role in various machine learning 

tasks such as classification. In this paper, we focus on both discriminative and 

representative abilities of the features, and propose a novel feature selection 

method with joint exploration on both labeled and unlabeled data. In particular, 

we implement discriminative feature selection to extract the features that can best 

reveal the underlying classification labels, and develop representative feature se-

lection to obtain the features with optimal self-expressive performance. Both 

methods are formulated as joint ℓ2,1-norm minimization problems. An effective 

alternate minimization algorithm is also introduced with analytic solutions in a 

column-by-column manner. Extensive experiments on various classification 

tasks demonstrate the advantage of the proposed method over several state-of-

the-art methods. 

Keywords: Feature Selection, Discriminative Feature, Representative Feature, 

Matrix Optimization, Model Learning. 

1 Introduction 

In machine learning, high dimensional raw data are mathematically and computation-

ally inconvenient to handle due to the curse of dimensionality [1]-[5]. In order to build 

robust learning models, feature selection is a typical and critical process, which selects 

a subset of relevant and informative features meanwhile removes the irrelevant and 

redundant ones from the input high-dimensional feature space [6][7]. Feature selection 

improves both effectiveness and efficiency of the learning model in that it can enhance 

the generalization capability and speed up the learning process [8][9]. The main chal-

lenge with feature selection is to select the smallest possible feature subset to achieve 

the highest possible learning performance.  

Classic feature selection methods fall into various categories according to the in-

volvement of classifiers in the selection procedure [10]-[12]. Although various feature 

selection methods have been proposed, the major emphases are placed on the discrim-

inative ability of the features. That is to say, the features that achieve the highest clas-

sification performance are inclined to be selected. Since the classification labels are 
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involved in feature selection, this type of feature selection methods can be severely 

biased to labeled data. As we know, in practical classification applications, the dataset 

consists of both labeled and unlabeled data. It is usually the case that there are much 

more unlabeled data than labeled ones. To leverage both labeled and unlabeled data for 

feature selection, semi-supervised feature selection methods have been studied 

[13][14]. Although the information underneath unlabeled data is explored, these meth-

ods are still confined to the discriminative aspect of the features. However, a compre-

hensive feature selection method should further take into account the representative 

ability with respect to the entire dataset.  

Toward this end, this paper presents a novel feature selection method to explore both 

discriminative and representative abilities of the features. Motivated by the previous 

research, discriminative feature selection is implemented on labeled data via alternate 

optimization. Representative feature selection is further proposed to extract the most 

relevant features that can best recover the entire feature set, which is formulated as a 

self-expressive problem in the form of ℓ2,1-norm minimization. Finally, we integrate 

the discriminative and representative feature selection methods into a unified process. 

Experimental results demonstrate that the proposed feature selection method outper-

forms other state-of-the-art methods in various classification tasks.  

2 Discriminative Feature Selection 

In this paper, we follow the conventional notations, i.e. matrices are written as boldface 

uppercase letters and vectors are written as boldface lowercase letters. Given a matrix 

𝐌 = [𝑚𝑖𝑗], its 𝑖-th row and 𝑗-th column are denoted by 𝐦𝑖 and 𝐦𝑗 respectively. Given 

the labeled dataset in the form of data matrix 𝐗 = [𝐱1, … , 𝐱𝑛] ∈ ℝ𝑑×𝑛 and the associ-

ated label matrix 𝐘 = [𝐲1, … , 𝐲𝑛]
𝑇 ∈ ℝ𝑛×𝑐, where 𝑑, 𝑛 and 𝑐 are the numbers of fea-

tures, instances (or data) and classes respectively, discriminative feature selection aims 

at extracting the smallest possible subset of features that can accurately reveal the un-

derlying classification labels. This can be formulated as an optimization problem which 

searches for the optimal projection from the feature space to the label space with only 

a limited number of features involved. Denoting the projection matrix as 𝐀 ∈ ℝ𝑑×𝑐, the 

objective is as follows. 

 min
𝐀

∑ ‖𝐀𝑇𝐱𝑖 − 𝐲𝑖‖2 + 𝛼‖𝐀‖2,1
𝑛
𝑖=1  (1) 

The first term in (1) is the loss of projection, and the second term is the ℓ2,1-norm 

regularization with parameter 𝛼 to enforce several rows of 𝐀 to be all zero. Equation 

(1) can be written into the matrix format: 

 min
𝐀

ℒD(𝐀) = ‖𝐗𝑇𝐀 − 𝐘‖2,1 + 𝛼‖𝐀‖2,1 (2) 

According to the general half-quadratic framework [15] for regularized robust learn-

ing, an augmented cost function 𝒥D(𝐀, 𝐩, 𝐪) can be introduced for the minimization of 

function ℒD(𝐀) in (2). 
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 𝒥D(𝐀, 𝐩, 𝐪) = Tr[(𝐗𝑇𝐀 − 𝐘)𝑇𝐏(𝐗𝑇𝐀 − 𝐘)] + 𝛼Tr(𝐀𝑇𝐐𝐀) (3) 

where 𝐩 and 𝐪 are auxiliary vectors, while 𝐏 and 𝐐 are diagonal matrices defined as 

𝐏 = diag(𝐩) and 𝐐 = diag(𝐪) respectively. The operator diag(∙) places a vector on 

the main diagonal of a square matrix. The 𝑖-th diagonal element of 𝐏 and 𝐐 are: 

 𝑝𝑖𝑖 =
1

2‖(𝐗𝑇𝐀−𝐘)
𝑖
‖
2

=
1

2‖𝐀𝑇𝐱𝑖−𝐲𝑖‖2
 (4) 

 𝑞𝑖𝑖 =
1

2‖𝐚𝑖‖
2

 (5) 

With the vectors 𝐩 and 𝐪 given, we take the derivative of 𝒥D(𝐀, 𝐩, 𝐪) with respect 

to 𝐀, and setting the derivative to zero, and arrive at: 

 𝐀∗ = (𝐗𝐏𝐗𝑇 + 𝛼𝐐)−1𝐗𝐏𝐘 (6) 

Note that both 𝐏 and 𝐐 are dependent on 𝐀, and thus they are also unknown varia-

bles. Based on the half-quadratic optimization, the global optimal solution can be 

achieved iteratively in an alternate minimization way. In each iteration, 𝐏 and 𝐐 are 

calculated with the current 𝐀 according to (4) and (5) respectively, and then 𝐀 is up-

dated with the latest 𝐏 and 𝐐 according to (6). The alternate optimization procedure is 

iterated until convergence. After obtaining the optimal 𝐀, discriminative features can 

be selected accordingly. We first calculate the absolute value of the elements of 𝐀 by 

abs(𝐀), and then sort the rows of 𝐀 by the sums along the row dimension of abs(𝐀). 
Feature selection can subsequently be performed by retaining the 𝑘  features corre-

sponding to the top 𝑘 rows of sorted 𝐀. 

3 Representative Feature Selection 

As for unlabeled data, only the data matrix 𝐗 = [𝐱1, … , 𝐱𝑛] ∈ ℝ𝑑×𝑛  is available, 

whereas the corresponding class labels are unrevealed. In this scenario, representative, 

rather than discriminative, feature selection is implemented to extract a limited number 

of informative features that are highly relevant to the rest features. The corresponding 

optimization problem is a self-expressive problem, which selects a relatively small sub-

set of features that can best recover the entire feature set with linear representation. For 

convenience, we denote the transpose of data matrix as the feature matrix 𝐅 = 𝐗𝑇 =
[𝐟1, … , 𝐟𝑑] ∈ ℝ𝑛×𝑑, whose column vectors can be regarded as 𝑛-dimensional points in 

the feature space. The objective is formulated as follows to obtain the representation 

matrix 𝐁 ∈ ℝ𝑑×𝑑. 

 min
𝐁

∑ ‖𝐅𝐛𝑖 − 𝐟𝑖‖2 + 𝛽‖𝐁‖2,1
𝑑
𝑖=1  (7) 

Similar to (1), the first term in (7) is the loss of representation, and the second term 

is the ℓ2,1-norm regularization to ensure row sparsity of 𝐁 for representative feature 

selection. Equation (7) is equivalent to 
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 min
𝐁

ℒR(𝐁) = ‖(𝐅𝐁 − 𝐅)𝑇‖2,1 + 𝛽‖𝐁‖2,1 (8) 

By introducing auxiliary vectors 𝐩 and 𝐪, we arrive at augmented cost function:  

 𝒥R(𝐁, 𝐩, 𝐪) = Tr[(𝐅𝐁 − 𝐅)𝐏(𝐅𝐁 − 𝐅)𝑇] + 𝛽Tr(𝐁𝑇𝐐𝐁) (9) 

where 𝐏 = diag(𝐩) and 𝐐 = diag(𝐪), with the 𝑖-th diagonal element defined as 

 𝑝𝑖𝑖 =
1

2‖(𝐅𝐁−𝐅)𝑖‖2
=

1

2‖𝐅𝐛𝑖−𝐟𝑖‖2
 (10) 

 𝑞𝑖𝑖 =
1

2‖𝐛𝑖‖
2

 (11) 

With the vectors 𝐩 and 𝐪 fixed, we set the derivative of 𝒥R(𝐁, 𝐩, 𝐪) to zero. Differ-

ent from DFS, the analytic solution is not directly available. However, for each 𝑖 (1 ≤
𝑖 ≤ 𝑑), the optimal representation matrix 𝐁 can be calculated column by column with 

the following close form solution: 

 𝐛𝑖
∗ = 𝑝𝑖𝑖(𝑝𝑖𝑖𝐅

𝑇𝐅 + 𝛽𝐐)−1𝐅𝑇𝐟𝑖 (12) 

To achieve the global optimal solution for representative feature selection, the alter-

nate optimization according to (10), (11) and (12) is also implemented. Similarly, rep-

resentative features can be selected according to the sorted 𝐁 with respect to the row 

sums of abs(𝐁). 

4 Joint Discriminative and Representative Feature Selection 

As we know, the cost associated with manually labeling often renders a fully labeled 

dataset infeasible, whereas acquisition of unlabeled data is relatively inexpensive. As a 

result, the available dataset typically consists of a very limited number of labeled data 

and relatively much more abundant unlabeled data. In order to fully explore and exploit 

both labeled and unlabeled data, the feature selection algorithms discussed above 

should be further integrated. In this section, we introduce the Joint Discriminative and 

Representative Feature Selection (JDRFS) algorithm, which implements DFS and RFS 

successively. 

We denote labeled data as {𝐗𝐿 ∈ ℝ𝑑×𝑛𝐿 , 𝐘𝐿 ∈ ℝ𝑛𝐿×𝑐} and unlabeled data as 𝐗𝑈 ∈
ℝ𝑑×𝑛𝑈, where 𝑛𝐿 and 𝑛𝑈 stand for the numbers of labeled and unlabeled data respec-

tively. The number of features to be selected, denoted as 𝑑DR (𝑑DR < 𝑑), is specified 

by the user beforehand. Firstly, the DFS algorithm is carried out on labeled data 

{𝐗𝐿 , 𝐘𝐿}. Based on the optimal projection matrix 𝐀, the least discriminative features can 

be preliminarily filtered out from the original 𝑑 features. In this way, the candidate fea-

tures are effectively narrowed down. Secondly, the RFS algorithm is performed for 

further selection. Instead of merely confining to unlabeled data 𝐗𝑈, the entire dataset 

𝐗 = [𝐗𝐿 , 𝐗𝑈] ∈ ℝ𝑑×𝑛 (𝑛 = 𝑛𝐿 + 𝑛𝑈) is involved. Assuming there are 𝑑D (𝑑DR < 𝑑D <
𝑑) features selected after DFS, we can trim 𝐗 by eliminating the irrelevant features and 

arrive at 𝐗′ ∈ ℝ𝑑D×𝑛, whose rows corresponds to the retained 𝑑D features. After that, 
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RFS is implemented on 𝐗′ to obtain optimal representation matrix 𝐁 ∈ ℝ𝑑D×𝑑D . Con-

sequently, the most representative 𝑑DR features are selected out of the 𝑑D features.  

5 Experiments 

In order to validate the performance of the JDRFS method, several experiments on var-

ious applications are carried out. Three classic feature extraction methods (i.e. PCA, 

ICA, and LDA), two sparse regularized feature selection methods (i.e. RoFS [10] and 

CRFS [11]), and the state-of-the-art semi-supervised feature selection method (i.e. 

SSFS [13]) are compared. The regularized softmax regression is used as classifier.  

We evaluate different feature selection methods based on the classification perfor-

mance of malwares [9], images [5], and patent documents [5]. 

For the classification applications, we implement two sets of experiments. In the first 

experiment, we employ a fixed number of training data and examine the classification 

performance with different numbers of features selected. In the second experiment, the 

number of features selected is fixed and we evaluate the classification performance with 

gradually increasing numbers of training data. 

 

Fig. 1. The classification accuracy with fixed number of training data and different number of 

features selected. 

 

Fig. 2. The classification accuracy with fixed number of features selected and different number 

of training data. 

Fig. 1 and Fig. 2 show the classification results corresponding to the two settings 

respectively. In general, JDRFS and SSFS outperform the rest methods, because they 

take full advantage of the information from both labeled and unlabeled data. With joint 

exploration on both discriminative and representative abilities of the features in an ex-
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plicit way, JDRFS outperforms all the competitors and receives the highest classifica-

tion accuracy. We can also see that the sparse regularized feature selection methods 

(CRFS, and RoFS) perform better than the classic feature extraction methods (PCA, 

ICA, and LDA), especially in malware and image classification. This is due to the ex-

plicit incorporation of classification labels in the feature selection objective. It also ex-

plains the higher accuracy achieved by LDA, which focuses on difference between 

classes of data, than PCA and ICA. As for patent classification, the advantages of CRFS 

and RoFS over PCA, ICA, and LDA become less significant. The most probable reason 

is that patent, compared with malware and image, classification is highly dependent on 

sophisticated domain knowledge. As a result, the classification labels offer less clue for 

informative feature selection. For the same reason, LDA degrades severely in patent 

classification. 

6 Conclusion 

In this paper, we have explored both labeled and unlabeled data and proposed the joint 

discriminative and representative feature selection method. Main contributions of this 

work are three-fold. Firstly, both discriminative and representative abilities of the fea-

tures are taken into account in a unified process, which brings about adaptive and robust 

performance. Secondly, representative feature selection is proposed to extract the most 

relevant features that can best recover the entire feature set, which is formulated as a 

ℓ2,1-norm self-expressive problem. Thirdly, an alternate minimization algorithm is in-

troduced with analytic solutions in a column-by-column manner. Extensive experi-

ments have validated the effectiveness of the proposed feature selection method and 

demonstrated its advantage over other state-of-the-art methods. 

7 Acknowledgement 

This work was supported by National Natural Science Foundation of China (Grant 

61501457, 61602517), Open Project Program of National Laboratory of Pattern Recog-

nition (Grant 201800018), Open Project Program of the State Key Laboratory of Math-

ematical Engineering and Advanced Computing (Grant 2017A05), and National Key 

Research and Development Program of China (Grant 2016YFB0801305). 

Xiao-Yu Zhang and Shupeng Wang contribute equally to this paper, and are Joint 

First Authors.  

References 

1. Zhang, X., Xu, C., Cheng, J., Lu, H. and Ma, S., 2009. Effective annotation and search for 

video blogs with integration of context and content analysis. IEEE Transactions on Multi-

media, 11(2), pp.272-285. 

2. Liu, H. and Motoda, H., 2012. Feature Selection for Knowledge Discovery and Data Mining. 

Springer Science & Business Media. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_59

https://dx.doi.org/10.1007/978-3-319-93713-7_59


7 

3. Saeys, Y., Inza, I. and Larrañaga, P., 2007. A review of feature selection techniques in bio-

informatics. Bioinformatics, 23(19), 2507-2517. 

4. Zhang, X., 2014. Interactive patent classification based on multi-classifier fusion and active 

learning. Neurocomputing, 127, pp.200-205. 

5. Zhang, X.Y., Wang, S. and Yun, X., 2015. Bidirectional active learning: a two-way explo-

ration into unlabeled and labeled data set. IEEE Transactions on Neural Networks and 

Learning Systems, 26(12), pp.3034-3044. 

6. Liu, Y., Zhang, X., Zhu, X., Guan, Q. and Zhao, X., 2017. Listnet-based object proposals 

ranking. Neurocomputing, 267, pp.182-194. 

7. Zhang, K., Yun, X., Zhang, X.Y., Zhu, X., Li, C. and Wang, S., 2016. Weighted hierarchical 

geographic information description model for social relation estimation. Neurocomputing, 

216, pp.554-560. 

8. Zhang, X.Y., 2016. Simultaneous optimization for robust correlation estimation in partially 

observed social network. Neurocomputing, 205, pp.455-462. 

9. Zhang, X.Y., Wang, S., Zhu, X., Yun, X., Wu, G. and Wang, Y., 2015. Update vs. upgrade: 

Modeling with indeterminate multi-class active learning. Neurocomputing, 162, pp.163-170. 

10. Nie, F., Huang, H., Cai, X. and Ding, C.H., 2010. Efficient and robust feature selection via 

joint ℓ2,1-norms minimization. In Advances in Neural Information Processing Systems, 

1813-1821. 

11. He, R., Tan, T., Wang, L. and Zheng, W.S., 2012. l2, 1 regularized correntropy for robust 

feature selection. In IEEE Conference on Computer Vision and Pattern Recognition 

(CVPR), 2504-2511. 

12. He, R., Zheng, W.S. and Hu, B.G., 2011. Maximum correntropy criterion for robust face 

recognition. IEEE Transactions on PAMI, 33(8), 1561-1576. 

13. Xu, Z., King, I., Lyu, M.R.T. and Jin, R., 2010. Discriminative semi-supervised feature se-

lection via manifold regularization. IEEE Transactions on Neural Networks, 21(7), 1033-

1047. 

14. Chang, X., Nie, F., Yang, Y. and Huang, H., 2014. A convex formulation for semi-super-

vised multi-label feature selection. In AAAI, 1171-1177. 

15. He, R., Zheng, W.S., Tan, T. and Sun, Z., 2014. Half-quadratic-based iterative minimization 

for robust sparse representation. IEEE Transactions on Pattern Analysis and Machine Intel-

ligence, 36(2), 261-275. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_59

https://dx.doi.org/10.1007/978-3-319-93713-7_59

