
RADIC based Fault Tolerance System with
Dynamic Resource Controller?

Jorge Villamayor1[0000−0002−1729−037X], Dolores Rexachs1[0000−0001−5500−850X],
and Emilio Luque1[0000−0002−2884−3232]

CAOS - Computer Architecture and Operating Systems
Universidad Autónoma de Barcelona

Barcelona, Spain
{jorgeluis.villamayor,dolores.rexachs,emilio.luque}@uab.cat

Abstract. The continuously growing High-Performance Computing re-
quirements increments the number of components and at the same time
failure probabilities. Long-running parallel applications are directly af-
fected by this phenomena, disrupting its executions on failure occur-
rences. MPI, a well-known standard for parallel applications follows a
fail-stop semantic, requiring the application owners restart the whole ex-
ecution when hard failures appear losing time and computation data.
Fault Tolerance (FT) techniques approach this issue by providing high
availability to the users’ applications execution, though adding signifi-
cant resource and time costs. In this paper, we present a Fault Toler-
ance Manager (FTM) framework based on RADIC architecture, which
provides FT protection to parallel applications implemented with MPI,
in order to successfully complete executions despite failures. The solu-
tion is implemented in the application-layer following the uncoordinated
and semi-coordinated rollback recovery protocols. It uses a sender-based
message logger to store exchanged messages between the application pro-
cesses; and checkpoints only the processes data required to restart them
in case of failures. The solution uses the concepts of ULFM for failure
detection and recovery. Furthermore, a dynamic resource controller is
added to the proposal, which monitors the message logger buffers and
performs actions to maintain an acceptable level of protection. Experi-
mental validation verifies the FTM functionality using two private clus-
ters infrastructures.

Keywords: High-Performance Computing · Fault Tolerance · Applica-
tion Layer FT · Sender-Based Message Logging.

1 Introduction

The constantly increasing scale of High Performance Computing (HPC) plat-
forms increments the frequency of failures in clusters and cloud environments

? This research has been supported by the MICINN/MINECO Spain under contracts
TIN2014-53172-P and TIN2017-84875-P.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


2 J. Villamayor et al.

[1]. In contemporary HPC systems the Mean Time Between Failures (MTBF) is
in range of hours, depending on the maturity and age of installation [4]. Users em-
ploying this kind of systems to run their parallel and distributed applications are
directly affected. Usually, parallel and distributed applications are implemented
using a Message Passing Interface (MPI), which by default follows fail-stop se-
mantics and lacks failure mitigation, meaning the loss of user’s computation time
and data when failure occurs.

Fault Tolerance (FT) solutions are necessary to ensure high availability to
parallel applications execution and minimize the failure impact [3]. Rollback-
Recovery protocols are widely used within FT to protect application executions.
The methods consist of snapshots created from the parallel execution and stored
as checkpoints. In case of failures an application can recover using the last taken
checkpoint, though most of the time the recovery process is not automatic, and
may require human intervention. A well-known issue is that most FT solutions
comes with added overhead during failure-free executions, and also with high
resource consumption.

Coordinated, semi-coordinated and uncoordinated are some of the most used
rollback-recovery protocols [2]. The coordinated protocol synchronizes the appli-
cation processes to create a consistent state. For applications with large amount
of processes, the coordination may present a source of overhead. Furthermore,
when failures appear, all application processes must rollback to the last check-
point causing waste of computation work [2]. In order to avoid this problem,
the semi-coordinated and uncoordinated protocols make use of a message logger
facility that allows the recovery of only affected processes when failures appear.
However, the logger have to store each interchanged message during the appli-
cation execution, meaning a significant source of resource usage.

In this work, a Fault Tolerance Manager (FTM) for HPC application users
is presented. FTM offers automatic and transparent mechanisms to recover ap-
plications in case of failures, meaning users do not need to perform any ac-
tion when failures appear. The solution uses semi-coordinated and uncoordi-
nated rollback-recovery protocols following RADIC architecture. FTM combines
application-layer checkpoints with a sender-based message logger using the con-
cepts of ULFM for detection and recovery purposes. Furthermore, a Dynamic
Resource Controller is added, it performs the monitoring of main memory us-
age for the logger facility, allowing to detect when its usage is reaching a limit.
With this information, it invokes automatic checkpoints, in an optimistic man-
ner, which allows freeing memory buffers used for the message logger avoiding
the slowdown or stall of the application execution.

The content of this paper is organized as follows: Section 2 presents the de-
sign of FTM in the application-layer with the dynamic resource controller. In
Section 3, experimental evaluation is shown, which contains the FTM function-
ality validation and the dynamic resource controller verification with the NAS
CG benchmark application. Finally the conclusions and future work are stated
in Section 5.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


RADIC based Fault Tolerance System with Dynamic Resource Controller 3

2 FTM with Dynamic Resources Controller

This section describes the design of the Fault Tolerance Manager (FTM) to
provide high availability to user’s applications. The traditional stack for HPC
execution environment is composed of several failure prompt layers. FTM archi-
tecture isolates the user’s application layer from failures. It suits the execution
environment with a handler controller, which deals with failures recovering the
user’s application execution when failures appear. The architecture components
are depicted in Fig. 1.

Fig. 1. FTM architecture.

The Fault Tolerance Manager uses application-layer checkpoints combined
with a sender-based message logger, following the uncoordinated and semi-
coordinated rollback-recovery protocols, to protect the application during failure-
free executions. In order to monitor and manage the FTM resource usage for FT
protection, a dynamic resource controller is also added.

Checkpointing operation is initiated by the application, hence modifications
in the application’s source are needed, although the application algorithm re-
mains intact. The checkpoint operations are inserted during natural synchro-
nization of the application processes. The checkpoints store structures contain-
ing only necessary information to restore execution in case of failures, avoiding
the need to store SO particular information. The checkpoint files are used when
the application is recovered from a failure.

Exchanged application’s messages are stored into the message logger facility,
in order to replay them to the processes affected by failures. After the processes
are restarted, they directly consume messages from the logger. For the uncoor-
dinated approach, all exchanged messages between the application processes are
stored. The semi-coordinated approach stores only exchanged messages between
the application processes that are in distinct nodes, as shown in Fig. 2.

When failures appear, a mechanism of detection is needed to start the recov-
ery procedure. In this work, ULFM is used to detect failures. FTM implements
an error handler, which is invoked by the ULFM detection mechanism to recov-
ery the application execution.

The failure detection, reconfiguration and recovery procedures are imple-
mented as a handler in FTM. To illustrate the procedures, one process per node

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


4 J. Villamayor et al.

m(2,3,1)

m(2,1,3)

m(3,2,2)

m(2,1,4)

P1

m(2,1,1)

m(1,3,1) m(2,1,2)

m(3,2,1)

m(3,0,1)

m(2,3,2)

P2

P3

P0

m(0,2,1)

m(0,1,1) m(1,0,1)

m(1,2,1)

m(0,1,2) m(1,0,2) m(0,1,3)

Nj

Ni

Stored Messages

(a) Semi-coordinated stored messages (red arrows).

0

2

1

P2

m(2,1,1) m(2,1,2) m(2,1,3)

m(2,0,1)

Vdest

3

m(2,1,4)

Memory Cleanup

(b) Messages storage structure.

Fig. 2. Sender-Based Message Logger.

is used, with the uncoordinated protocol and a pessimistic sender-based mes-
sage logger, shown in Fig. 3. It depicts that P3 fails, and P2 is the first process
which detects the failure, causing the revocation of the global communicator
using MPI Comm revoke. After the revocation, all remaining processes are no-
tified and they shrink the global communicator, taking out the failed processes
using the MPI Comm shrink call. Finally, the remaining processes spawn the
communicator using dynamically launched processes of the application.

After the reconfiguration, the affected processes load the checkpoint and
jump to the correct execution line in order to continue the application execution.
The messages are consumed from the message logger to finish the re-execution.
Meanwhile, non-failed processes continue their execution.

2.1 Dynamic Resources Controller

As previously seen, the FT protection requires resources and it comes with over-
head for the user’s applications. The protection of the application execution
stores both, checkpoints and messages of the application processes. The uncoor-
dinated and semi-coordinated protocols avoid the restart of all the application
processes when a failure occurs. Although, they require a logger facility to replay

m(2,3,1)

m(2,0,1)

m(2,3,3)

m(1,2,2)

P1

m(2,1,1)

m(1,3,1)

m(3,2,1)

m(1,3,2)
m(2,3,2)

P2

P3

P0

m(0,2,1)

m(0,1,1)

m(1,2,1)

m(0,1,2) m(0,1,3)

Checkpoint

Failure Detection
Revoke
Shrink

Spawn

Checkpoint Reload

Fig. 3. Failure detection, reconfiguration and recovery procedures.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


RADIC based Fault Tolerance System with Dynamic Resource Controller 5

(a) Process schema.

P1

P2

P3

P0

Default CheckpointDetection of Buffer Full

Automatic Checkpoint

(b) Functionality example.

Fig. 4. Dynamic Resources Controller

messages to restored processes. To reduce failure-free overhead, the logger uses
main memory to store processes messages. The main memory often provides
high speed access compared to local hard disk or a centralized storage. However,
the main memory is a limited resource, which is shared between the applica-
tion processes and the FT components. The usage of FT resources is application
dependent, meaning different communication pattern, size and quantity of mes-
sages, directly impacts on FT resource usage. The free available memory can
rapidly ran out due to FT protection tasks. The impact of running out of main
memory can result in the application execution stall.

In order to avoid the free memory ran out due to FTM protection task, the
dynamic resources controller is introduced with FTM. It works on each node
of the application execution. This controller constantly monitors the memory
buffers usage for message logging and detects when they are reaching the limit
available, triggering automatically a checkpoint invocation, storing the state of
the application and freeing the memory buffers used for logging purposes, pro-
viding the application FT protection without interfering its memory usage (Fig.
4(a)). The functionality is shown in Fig. 4(b). By default the application has
checkpoint moments, which are chose by the application users, though the mem-
ory may ran out meaning the lost in terms of performance. The controller detects
it and automatically invokes a checkpoint creation, allowing to free the memory
usage by the logging facility, therefore avoiding the application execution stall
due to the lack of main memory.

3 Experimental Results

This section presents experimental results obtained applying FTM to provide
Fault Tolerance in the application-layer. The results show its automatic func-
tionality and validate the dynamic resources controller in real execution envi-
ronments and injecting failures.

The application used for the experiments is the NAS CG Benchmark. It
is an implementation of the Conjugate Gradient method included in the NAS
benchmark suite. The experiments are performed using Class C and D which
have 150000 and 1500000 rows respectively. Two clusters were used: AOCLSB-
FT, built with 2 quad-core Intel 2.66GHz and 16GB RAM; and AOCLSB-L

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


6 J. Villamayor et al.

N
or

m
al

iz
ed

 E
xe

cu
tio

n 
Ti

m
e

0.90

1.00

1.10

1.20

1.30

1.40

1.50

CG-Class C 16 CG-Class C 32 CG-Class C 64

No-FT FTM
Reference Time FTM w/Failure

Fig. 5. CG-Class C with FTM in a failure injection scenario in AOCLSB-FT cluster.

suited with 8 AMD Opteron (x8) and 252GB RAM, both clusters with 30GB
HDD of local disk, and a NFS shared volume of 715GB.

The performance of FTM is tested applying it to the CG application. Dur-
ing the experiments a failure is injected to one node of the cluster at 75% of
the application execution. To analyze the benefits of applying the solution, a
Reference Time is calculated, which represents the scenario where a failure is
injected at 75% of the application execution. As the application checkpoints at
50% of its execution, 25% of the execution is lost. This means a total execution
time of around 125% in case of failures and without applying FTM. This time
compared to the measured time of executing the application with FTM protec-
tion experimenting a failure (FTM w/Failure). FTM protection is setup to take
checkpoints at 50% of the application execution.

Figure 5, shows the results of the execution time normalized to the execution
without Fault Tolerance (No-FT). The experiments were done using 16, 32 and
64 processes with the CG Class C. It is possible to observe that having FTM
protection save user time approximately 13% compared to the Reference Time
when a failure appears for the 64 processes application.

An evaluation of the dynamic resource controller is also performed, executing
CG Class D application in the AOCLSB-FT cluster, which has less resources
compared to the AOCLSB-L, and configured to take one checkpoint at 50%.
Two scenarios were evaluated, with and without the dynamic controller. Figure
6(a) shows both executions starting with a similar throughput, though when the
execution without the dynamic controller starts using SWAP memory zone of the
system, the throughput drastically drops, making the whole application crash.
Meanwhile, the execution with the dynamic controller, optimistically invoke the
checkpoints, that after their completion, release the memory buffers used for the
logger facility, allowing the continuous execution of the application.

It is important to remark that the dynamic controller does not interfere in
the user-defined checkpoint events, letting users the control of the checkpoint
moments, though it may perform optimistic checkpoints, to free resources for
the application. The solution allows the application to continue the execution,
though it may come with larger overhead, due to the automatic checkpoints
invocation. Figure 6(b) shows how the memory is managed during the application
execution in contrast to the execution without the management.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58


RADIC based Fault Tolerance System with Dynamic Resource Controller 7

(a) Application process throughput. (b) Memory usage monitoring.

Fig. 6. CG-Class D execution in the AOCLSB-FT cluster.

4 Conclusion and Future Work

This work contributes providing a novel Fault Tolerance Manager in the application-
layer, allowing users to define only the necessary protection information for their
applications. Furthermore, the work suits FTM with a dynamic resource con-
troller, which monitor FT resource usage and perform actions when the usage
reach boundaries where it may affect the application execution.

Experiments show the automatic functionality of the FTM applied to the
NAS CG, a well-known benchmark application. Results show up to 13% of execu-
tion time benefits by applying the solution. During the experiments, throughput
measurements of the application processes shows the operation of the dynamic
controller, which performing optimistic checkpoints, allows the application main-
tain its throughput, keeping the FT protection in case of failures. Future work
aims to evaluate the FTM with the dynamic resource controller for real appli-
cations in different execution environments, such as cloud and containers.

References

1. Cappello, F., Geist, A., Gropp, W., Kale, S., Kramer, B., Snir, M.: To-
ward Exascale Resilience: 2014 update. Supercomputing Frontiers and
Innovations 1(1), 5–28 (sep 2014). https://doi.org/10.14529/jsfi140101,
http://superfri.org/superfri/article/view/14

2. Castro-León, M., Meyer, H., Rexachs, D., Luque, E.: Fault tolerance at sys-
tem level based on RADIC architecture. Journal of Parallel and Distributed
Computing 86, 98–111 (8 2015). https://doi.org/10.1016/j.jpdc.2015.08.005,
http://www.sciencedirect.com/science/article/pii/S0743731515001434

3. Egwutuoha, I.P., Levy, D., Selic, B., Chen, S.: A survey of fault tol-
erance mechanisms and checkpoint/restart implementations for high
performance computing systems. The Journal of Supercomputing
65(3), 1302–1326 (2 2013). https://doi.org/10.1007/s11227-013-0884-0,
http://link.springer.com/10.1007/s11227-013-0884-0

4. Wang, C., Vazhkudai, S., Ma, X., Mueller, F.: Transparent Fault
Tolerance for Job Input Data in HPC Environments (2014),
http://optout.csc.ncsu.edu/ mueller/ftp/pub/mueller/papers/springer14.pdf

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_58

https://dx.doi.org/10.1007/978-3-319-93713-7_58

