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Abstract. We present a novel adversarial framework to solve the arbi-
trarily sized image random inpainting problem, where a pair of convo-
lution generator and discriminator is trained jointly to fill the relatively
large but random “holes”. The generator is a symmetric encoder-decoder
just like an hourglass but with added skip connections. The skip connec-
tions act like information shortcut to transfer some necessary details that
discarded by the “bottleneck” layer. Our discriminator is trained to dis-
tinguish whether an image is natural or not and find out the hidden holes
from a reconstructed image. A combination of a standard pixel-wise 1.2
loss and an adversarial loss is used to guided the generator to preserve
the known part of the origin image and fills the missing part with plau-
sible result. Our experiment is conducted on over 1.24M images with
uniformly random 25% missing part. We found the generator is good at
capturing structure context and performs well in arbitrary size images
without complex texture.
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1 Introduction

Image inpainting, or “hole filling” problem, aims to reconstruct the missing or
damaged part of an input image. Classical inpainting algorithms in computer
vision mainly fall into three categories: information diffusion and examplar-based
filling.

Partial differential equation (PDE) is the foundation of the diffusion algo-
rithms [3] [2][14] [12]. They are also referred as variational methods. Through
iterations, the information outside a hole is continuously propagated into the
hole, while preserving the continuity of the isophote. They can tackle cracks and
small holes well, but produce blur artifacts when faced with large and textured
region.

The exemplar-based algorithm, on the other hand, is able to reconstruct
large region and remove large unwanted objects by patch matching and filling.
The straight forward exemplar approach applies a carefully designed prioritizing
filling [5][4] or a coherence optimization strategy [15][1]. The limitations are also
obvious. It has difficulty in handling curved structures. When proper similar
patches do not exist, it will not produce reasonable result.
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Recently, convolution network and adversarial training are also introduced
into inpainting problem. Compared with the classical algorithms above, the net-
work based algorithms are born to understand high-level semantic context, which
brings it capability to tackle harder problems, like semantics required prediction.
The context-encoder[13], for example, consisting of an encoder and a decoder,
can predict the large squared missing center of an image.

In this paper, we aim to solve a more challenging semantic inpainting prob-
lem, the arbitrarily sized image with random holes. We adopt the adversarial
training to suppress the multi-modal problem and get sharper result. Instead
of predicting a single likelihood to evaluate whether an image is fake like most
of other GAN works do, the discriminator provides a pixel-wise evaluation by
outputting a single channel image. If the generator does not work well, the dis-
criminator is supposed to point out the origin missing region. The output is
visually explainable, as one can clearly figure out the contour of the hole mask
if the inpainted image is unsatisfactory and vice versa.

In our experiment, we found the generator is good at capturing structure
context and performs well in arbitrary size images without complex texture.
As for the failed cases, mainly the complex texture with tiny variations in the
intensity, the generator will produce reasonable but blur result.

2 Method

2.1 Aderversarial framework

The adversarial framework in this paper is based on Deep Convolutional Gen-
erative Adversarial Networks (DCGAN). A generator G and a discriminator D
are trained jointly to for two opposite goals. When the training is stopped, the
G is supposed to reconstruct a damaged image in high quality.

Generator The generator G is an hourglass encoder-decoder consisting of basic
convolution blocks (Conv/FullConv-BatchNorm-LeakyReLU/ ReLU), but with
shortcut connections to propagate detail information in the encoder directly to
the corresponding the symmetric layer of the decoder (Figure 1).

Endoder The encoder performs down sampling using 4x4 convolution filters with
stride of 2 and padding of 1. The encoder drops out what it considered useless for
reconstruction and squeezes the image information liquid into a “concept”. When
it passes the bottleneck layer of the encoder, the feature map size is reduced to
1% 1. The number of the filters in this the bottle layer (m), decides the channel
capacity (mx*1x%1) of the whole encoder-decoder pipeline. The activation function
for the encoder is LeakyReLLU with negative slope of 0.2.

Dedoder The structure of the decoder is completely symmetric toward the en-
coder except the output layer. There are 3 added shortcut connection directly
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Fig. 1. Generator Architecture: an hourglass encoder-decoder with 3 added shortcut
connections. The damaged image and the selected mask is passed through the en-
coder. The decoder then reconstructs the image without holes. k(kernel size), s(stride),
p(padding) are parameters of spatial convolution / deconvolution layer.

join the 3 decoder layers closest to the bottleneck layer with their correspond-
ing symmetric encoder layers. The final layer is supposed to output the desired
reconstructed RGB image without holes. The activation function are Tanh for
the final layer and ReLU for the rest layers.

Discriminator The discriminator D is a 5-layer stack of convolution blocks
(Conv-BatchNorm-LeakyReLU). All the convolution layers have the same num-
ber of 3*3 filters with stride of 1 and padding of 1. The shape of the information
fluid is the same as the shape of input throughout the network. The activation
layers are Sigmoid for the final layer and LeakyReLU with negative slope of 0.2
for the rest layers.

As the final step of the inpainting is to fusion the output with the origin
damaged image, we specify a high-level goal, to make the “hole” indistinguish-
able. Instead of predicting a single likelihood to evaluate whether an image is
fake like most of other GAN works do, the discriminator here is trained to find
the flaw of the output of G or the hidden holes.

The discriminator is supposed to output all ones when faced with natural
images and output the given hole masks (ones/white for known regions and
zeroes/black for the holes) otherwise. Compared to a single number, this single
channel image output is visually explainable. And it can provide more targeted
guidance for each input pixel and comprehensive judgment.
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2.2 Objective

The generator is trained to regress the ground truth content of the input image.
It is well known that the L2 loss (Equation 1) - and L1, prefers a blurry solution
to a clear texture[10]. It is an effective way to capture and rebuild the low
frequency information.

Ly(G) = [lz = G(")II3 (1)

The adversarial loss is introduced to get a sharper result. The objective of a
GAN can be expressed as Equation 2. 2’ is the damaged input image and z is
the corresponding ground truth. M is the hole mask. The holes are filled with
zeroes, and the known regions are filled with ones. The all 1s mask means no
holes at all. The G is trained to minimize this objective, while the D is trained
to maximize it.

Laan(G, D) = E;||M — D(G(2'))|[3 + Ew||1 - D(x)|[3 (2)

The total loss function is a weighted average of a reconstruction loss and an
adversarial loss (Equation 3). We assign a quite large weight (A = 0.999) upon
the reconstruction loss.

L(G,D) = AL3(G) + (1 = ) Lgan (G, D) (3)

2.3 Masks for training

As our framework is supposed to support damaged region with arbitrary shape
or position, we need to train the networks with numerous random mask. For the
efficiency, the inputs within a mini-batch share the same mask and all the masks
are sampled from a global pattern pool.

The global is generated as follows: 1) create a fix-sized uniform random distri-
bution (range from 0 to 1) matrix; 2) scale it to a given large size(10000 * 10000);
3) mark the region with value less than a threshold as “holes” (ones/white) and
the rest as “known region” (zeroes/black). The scaling ratio and the loss thresh-
old are two important hyper parameters for the global pattern pool. The scaling
ratio controls the continuity of the holes. Larger scaling ratio generates scatter
result.

3 Experiment

3.1 Training details

This work is implemented in Torch and trained using Intel(R) Xeon(R) CPU E5-
2699 v4 @ 2.20GHz with TITAN X (Pascal). We train the G and the D jointly
for 500 epochs, using stochastic gradient solver, ADAM, for optimization. The
learning rate is 0.0002.

The training dataset is 100 classes of ILSVRC2010 training dataset (over
1.24M natural images). The natural images are scaled down at the same propor-
tion so that the maximum of the width and the height is no more than 350px.
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Then, 64 random crops of 128128 from different images consist of a mini-batch.
These crops share the same mask. During the training process, we assume the
hole area of mask should be in between 20% - 30%.

The G receive input with size of 128 % 128 *x 4, where the first three chan-
nels are the RGB data and the last channel is a binary mask. The ones in the
binary mask indicate the holes while the zeros indicate the known region. The
missing region of RGB data specified by the mask will be filled with a constant
mean value (R:117, G:104, B:123). We also experimented the gray value (R:127,
G:127, B:127) and found no significant difference between them in improving
the performance of the generator. The G consists of 10 convolution layers and
the bottleneck size is 4000.

3.2 Evaluation

G output

D output i : - 'Ia ne
. ;. . b -

Fig. 2. The comparison of the G output and the D output. The output is visually
explainable, because the blur or unnatural parts is darker than the normal parts.

In prior works in GAN, the D outputs a single probability indicating whether
the input is a natural image. In this random inpainting problem, we find it
requires elaborate design of weight assign among the hole regions and the known
regions when updating the parameters of both D and G. What’s more, the output
of D may be not consistent with human intuition.

Our method, on the contrary, trains D to find the pixel-wise flaw of G output.
It turns out that the output of D is visual explanatory and the optimization is
easier. One can clearly figure out the contour of the hole mask if the inpainted
image is unsatisfying and vice versa (Figure 2).

We evaluate our inpainting framework using images from the ILSVRC2010
validation dataset (the “barn spider” and black and “gold garden spider”). As
the generator only receives 128*%128 images, we split the input into a batch of
128*128 crops if the input image is too large. Afterwards, the result will be tiled
to create the origin-sized image. We found the G generates plausible result when
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faced with linear structure, curved lines and blur scenes. But it is difficult for G
to handle complex texture with tiny variations in the intensity. The background
regions in Figure 3 are inpainted so well that the G successfully fools the D,
while the spider body regions full of low contrast details are handled poorly.

4
L

D output G output

Fig. 3. Uniform random inpainting example from ILSVRC2010. The origin images are
taken apart into 128 x 128 crops and inpainted respectively.

4 Conclusions

In this paper, we aim to provide a unified solution for random image inpainting
problems. Unlike the prior works, the output of D is visually explainable and
the G is modified to adapt the general inpainting tasks. Trained in a completely
unsupervised manner, without carefully designed strategy, the GAN networks
learn basic common sense about natural images. The results suggest that our
method is a promising approach for many inpainting tasks.

References

1. C. Barnes, E. Shechtman, A. Finkelstein, and D. B. Goldman. Patchmatch: a
randomized correspondence algorithm for struc- tural image editing. ACM Trans.
Graphics, vol. 28, no. 3, pages 24:1-24:11, 2009.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{10.1007/978-3-319-93713-7_50 |



https://dx.doi.org/10.1007/978-3-319-93713-7_50

10.

11.

12.

13.

14.

15.

16.

Adversarial Framework for General Image Inpainting 7

. M. Bertalmio, A.L. Bertozzi, and G. Sapiro. Navier-stokes, fluid dynamics, and

image and video inpainting. Proceedings of the 2001 IEEE Computer Society Con-
ference on Computer Vision and Pattern Recognition. CVPR 2001, 1:1-355-1-362,
2001.

Marcelo Bertalmio, Guillermo Sapiro, Vincent Caselles, and Coloma Ballester. Im-
age inpainting. Proceedings of Conference on Computer Graphics and Interactive
Techniques, pages 417-424, 2000.

W. Cheng, C. Hsieh, and S. Lin. Robust algorithm for exemplar-based image
inpainting. IEEE Transactions on Image Processing, 13(9), pages 1200-1212, 2005.
A. Criminisi, P. Prez, and K. Toyama. Region filling and object removal by
exemplar-based image inpainting. IEEE Transactions on Image Processing, 13(9),
pages 1200-1212, 2004.

W. Dong, G. Shi, and X. Li. Nonlocal image restoration with bilateral variance
estimation: A low-rank approach,. IEEE Trans. Image Process., vol. 22, no. 2,
pages 700-711, 2013.

M. Elad, J. L. Starck, P. Querre, and D. L. Donoho. Simultaneous cartoon and
texture image inpainting using morphological component analysis (mca). Appl.
Comput. Harmon. Anal., vol. 19, no. 3, pages 340-358, 2005.

Q. Guo, S. Gao, X. Zhang, Y. Yin, and C. Zhang. Patch-based image inpainting
via two-stage low rank approximation. IEEE Transactions on Visualization and
Computer Graphics, 2626(c), 2017.

L. He and Y. Wang. Iterative support detection-based split bregman method for
wavelet frame-based image inpainting. IEEFE Trans. Image Process. vol. 23, no.
12, pages 5470-5485, 2014.

A. B. L. Larsen, S. K. Snderby, and O. Winther. Autoencoding beyond pixels using
a learned similarity metric. arXivw1512.09300, 2015.

W. Li, L. Zhao, Z. Lin, D. Xu, and D. Lu. Non-local image inpainting using low-
rank matrix completion. Computer Graphics Forum, vol. 34, no. 6, pages 111-122,
2015.

Manuel M Oliveira, Brian Bowen, Richard McKenna, and Yu-Sung Chang. Fast
Digital Image Inpainting. International Conference on Visualization, Imaging and
Image Processing, pages 261-266, 2001.

D. Pathak, P. Krahenbuhl, J. Donahue, T. Darrell, and A. A. Efros. Context
encoders: Feature learning by inpainting. In Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pages 2536-2544, 2016.

Alexandru Telea. An Image Inpainting Technique Based on the Fast Marching
Method. Journal of Graphics Tools, 9(1):23-34, 2004.

Y. Wexler, E. Shechtman, and M. Irani. Space-time completion of video,. [EEE
Trans. Pattern Anal. Mach. Intell., vol. 29, no. 3, pages 463—476, 2007.

M. Zhou, H. Chen, J. Paisley, L. Ren, L. Li, Z. Xing, D. Dunson, G. Sapiro, and
L. Carin. Nonparametric bayesian dictionary learning for analysis of noisy and
incomplete images. IEEE Trans. Image Process., vol. 21, no. 1, pages 5470-5485,
2012.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93713-7_50 |



https://dx.doi.org/10.1007/978-3-319-93713-7_50

