
Deep Streaming Graph Representations

Minglong Lei1, Yong Shi2,3,4,5, Peijia Li1, and Lingfeng Niu2,3,4,∗

1 School of Computer and Control Engineering, University of Chinese Academy of
Sciences, Beijing, 100049, China

2 School of Economics and Management, University of Chinese Academy of Sciences,
Beijing, 100190, China

3 Key Laboratory of Big Data Mining and Knowledge Management, Chinese
Academy of Sciences, Beijing 100190, China

4 Research Center on Fictitious Economy & Data Science, Chinese Academy of
Sciences, Beijing 100190, China

5 College of Information Science and Technology, University of Nebraska at Omaha,
NE 68182, USA

leiminglong16@mails.ucas.ac.cn, yshi@ucas.ac.cn,
lipeijia13@mails.ucas.ac.cn, niulf@ucas.ac.cn

Abstract. Learning graph representations generally indicate mapping
the vertices of a graph into a low-dimension space, in which the prox-
imity of the original data can be preserved in the latent space. How-
ever, traditional methods that based on adjacent matrix suffered from
high computational cost when encountering large graphs. In this paper,
we propose a deep autoencoder driven streaming methods to learn low-
dimensional representations for graphs. The proposed method process
the graph as a data stream fulfilled by sampling strategy to avoid s-
traight computation over the large adjacent matrix. Moreover, a graph
regularized deep autoencoder is employed in the model to keep different
aspects of proximity information. The regularized framework is able to
improve the representation power of learned features during the learn-
ing process. We evaluate our method in clustering task by the features
learned from our model. Experiments show that the proposed method
achieves competitive results comparing with methods that directly apply
deep models over the complete graphs.

Keywords: Streaming Methods · Representation Learning · Deep Au-
toencoder · Graph Regularization

1 Introduction

Graph representation or graph embedding[17] aims at mapping the vertices into
a low-dimensional space while keeping the structural information and revealing
the proximity of instances[17]. The compact representations for graph vertices
is then useful for further tasks such as classification[10] and clustering[15, 8].

The most intuitive and simple idea to handle graph is only using the con-
nection information and then representing the graph as a deterministic adjacent

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


2 Minglong Lei, Yong Shi, Peijia Li, and Lingfeng Niu

matrix. Dimension reduction techniques[12] that directly applied in the adjacent
matrix can achieve superior performance in many cases.

Directly launch dimension reduction under the complete graph are efficient
in many scenarios, they also have obvious disadvantages. Generally speaking, the
limitations of direct matrix models are threefold. First, the direct matrix mod-
els are easily suffered from high computation complexity in large scale graphs.
Since the adjacent matrix is deterministic and fixed, such methods are not flex-
ible enough when the dataset is large. Second, the direct matrix models have
not consider enough information in the model. They only provide a global view
of the graph structure. However, the local information which depicts the neigh-
borhood information should also be considered in the learned features. Finally,
the success of the direct matrix models highly depend on the representation
power of dimension reduction models. Methods such as spectral learning[12] and
Non-negative Matrix Factorization[9] have limited representation power.

In order to solve those challenges, we propose a new deep graph represen-
tation method that based on streaming algorithm[1, 19]. The proposed method
keeps the advantages of deterministic matrix methods and also introduces several
new ideas to handle the limitations.

First, we introduce a streaming motivated stochastic idea into the model.
Streaming methods are methods that process data streams. Specially, the input
of a streaming model is organized as a sequence of data blocks. The main target
of data streams is to solve memory issues. In this paper, we sample a small
portion of vertices once and formulate a graph stream. With the accumulation
of vertices along with the flow of data stream, more and more information will
be automatically contained in the model rather in the data. Since we choose
fixed small number of vertices for each time, the dimension of the input will be
reduced significantly. Consequently, the streaming strategy is helpful in handling
computation complexity issues.

Second, in order to combine more information in the model, we adopt a
regularization framework in the proposed method. The direct matrix models only
consider visible edges between vertices. The highlight point of the regularization
framework is that the graph regularization term includes the vertex similarities
in the model in addition to visible connections. Vertices that are similar in the
original space should have similar representations in the latent low-dimensional
space.

Finally, after the graph streams are obtained, we fed the data stream into
a deep autoencoder[6] to learn the representations of graph vertices. The learn-
ing power of deep autoencoder assures that the learned features keep sufficient
information from the original graph.

2 Related Work

Graph representation, also known as graph embedding, is a sub topic of repre-
sentation learning. What representation learning[4] attempts to do is to decode

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


Deep Streaming Graph Representations 3

data in the original space into a vector space in an unsupervised fashion so that
the leaned features can be used in further tasks.

Early methods such as Laplacian Eigenmaps(LE)[3], Local Linear Embed-
ding(LLE)[14] and are deterministic. Among those methods, the graph is de-
noted as an adjacent matrix and methods under the matrix is generally related
to dimension reduction techniques[18]. Specially, the intuitive idea is to solve
the eigenvectors of the affinity matrix. They exploit spectral properties of affin-
ity matrices and are known as laplace methods. More recently, deep learning
models are also used as dimension reduction tools for their superior ability in
representaion[8, 15].

More recent works on graph embedding are stochastic in which the graph
is no longer represented as a fixed matrix[13, 5]. Methods such as Deepwalk[13]
and node2vec[5] regard the graph as a vertex vocabulary where a collection
node sequences are sampled from. Subsequently, language models such as skip-
gram[11] can be used to obtain the ultimate representations.

The deterministic methods are not flexible[2] and the disadvantages of s-
tochastic models are also obvious. Since stochastic models only consider local
information that describes the nearest neighbors of vertices, they fail in provid-
ing a global picture under the whole graph view. The loss of global information
influences the performance of such models when the graph structure is irregular.

3 Network Embedding Problem

3.1 Notations

In this paper, we denote vectors as lowercase letters with bold form and matrixes
as uppercase letters in boldface. The elements of a matrix and a vector are
denoted as Xij and xi respectively. Given a graph G(V,E), V is the vertices set
denoted as {v1, ..., vn} and E is the edges set denoted as {vij}ni,j=1.

We then define the graph embedding as:

Definition 1. (Graph Embedding) Given a N -vertex graph G(V,E), the goal
of graph embedding is to learn a mapping vi 7−→ yi, yi ∈ Rd. The learned
representations in the latent low-dimensional space should be capable to keep the
structural information of the original graph.

3.2 Streaming Strategy

In this subsection, we illustrate how to formulate the data stream from a given
graph G(V,E). Let K be the number of data chunks in a data stream. Denote
Sk as the kth data chunk in the data stream where k ∈ 1, 2, · · · ,K. The K can
be extremely large since the substantial numbers of samplings is conducive to
visiting the graph completely.

Let the number of vertices that selected in one time to be D(D � N).
Obviously, the D is also the input of the embedding model since D is fixed as a
constant number. In the training phase, in an arbitrary step k, we select D nodes

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


4 Minglong Lei, Yong Shi, Peijia Li, and Lingfeng Niu

S1 S2

S1

S2
Sn

Sn···

Fig. 1. The streaming strategy. Each time we choose a fixed number of vertices. The
data chunks are constructed by the selected vertices.

from the vertex collection {v1, ..., vn} uniformly. A subgraph is then constructed
by the selected nodes. The Sk is the adjacent matrix of the subgraph. In Fig. 1
we present the sampling process to formulate a data stream. A data stream S is
denoted as S = Sk; k ∈ 1, · · · ,K.

In the embedding phase, the goal is mapping each vertex to its representations
by the trained model. However, the dimension of the original data N is much
higher than the input dimension of the model D. Consequently, we run a simple
Principal Component Analysis(PCA) in X to get XD with a dimension D. Then
the XD is served as input to obtain the compact representations for each vertex.

3.3 Graph Autoendoer

Autoencoders[16] is powerful in representation task. After getting the data stream,
we use a deep graph autoencoder to get the low-dimension vectors.

Deep Autoencoder: Autoencoder paradigm attempts to copy its input to
its output, which results in a code layer that may capture useful properties of
the input.

Let X = {xi : xi ∈ Rm×1}ni=1 and Z = {zi : zi ∈ Rm×1}ni=1 be the input
matrix and reconstruction matrix. Y = {yi : yi ∈ Rd×1}ni=1 is the code matrix
where the dimension of yi is usually much lower than the dimension of the
original data xi. A layer wise interpretation of the encoder and decoder can be
represented as:

Y = fθ(X) = δ(WencoderX + bencoder) (1)

Z = gθ(Y) = δ(WdecoderY + bdecoder) (2)

For convenience, we summarize the encoder parameters as θencoder, and the
decoder parameters as θdecoder. Then the loss function can be defined as:

L = ‖X− Z‖2F =

n∑
i=1

‖xi − zi‖22 (3)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


Deep Streaming Graph Representations 5

Since a deep autoencoder can be thought of as a special case of feedforward
networks, the parameters are optimized by backpropagate gradients through
chain-rules.

Graph regularization: In order to preserve the local structure of the data,
we employ a graph regularization term derived from Laplacian Eigenmaps[3].
Suppose A is the indicator matrix where Aij indicate if node i and node j are
connected, the laplacian loss is then defined as:

Laplacian =

n∑
i

n∑
j

Aij‖yi − yj‖22 (4)

The laplacian loss can be further written as:

Laplacian =

n∑
i

n∑
j

Aij‖yi − yj‖22 = 2tr(YTLY) (5)

where tr(∗) denotes the trace and L is the laplace matrix calculated by matrix
A : L = D−A. D is a diagonal matrix where D =

∑n
i Aij =

∑n
i Aij .

Combining the graph information, the optimization problem is:

L = ‖X− Z‖2F + α′ · 2tr(YTLY) + β′ · 1

2
‖W‖2F (6)

Merge the constant numbers into parameters α and β, the loss function is
updated as:

L = ‖X− Z‖2F + αtr(YTLY) + β‖W‖2F (7)

where α and β are the hyperparameters that control the model complexity.
Recall that each time we have a data chunk Sk, let X = A = Sk and then

run the graph regularized autoencoder under X and A. Similar to most deep
neural networks, we choose gradient decent to optimize the deep autoencoder.
The objective function is L = ε(f, g) + λΩ(f). The first term ε(f, g) is the
reconstruction error and the second term Ω(f) is the regularization term. The
partial derivatives of θdecoder only depend on the first term and the partial
derivatives of θencoder depend on both terms. By using chain rules, parameters
at each layer can be calculated sequentially.

4 Experiments

In this section, we conduct experiments in clustering tasks to testify the effec-
tiveness of our method.

We use two datasets, COIL20 and ORL, to testify the our efficiency. COIL20
contains 1440 instances that belongs to 20 categories and ORL contains 400
samples that belongs to 40 classes. The KNN-graph is constructed by computing
the k-nearest neighbors of each sample.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


6 Minglong Lei, Yong Shi, Peijia Li, and Lingfeng Niu

We compare our approach with several deep models to evaluate the per-
formance of our method. Specially, we employ deep autoencoder(DAE)[7] and
stacked autoencoder(SAE)[16] as baseline models.

We evaluate the learned features in clustering task. Following the general
settings in most clustering procedure, we employ purity and NMI to evaluate
the results.

In our experiment, we set the D to be 500 for COIL20 and 200 for ORL. The
layers of deep graph autoencoders for COIL20 and ORL are 5 and 3 respectively.
For COIL20, we set the dimensions as 500 − 200 − 100 − 200 − 500. For ORL,
we set the dimensions as 200− 100− 200.

The clustering results of COIL20 and ORL are presented in Table 1. The
results show that the streaming method has competitive representation power
comparing with baseline models that utilize the complete matrices. The results
also indicate that when encountering large graphs, the streaming method is
relieved from computation issues and is still able to achieve superior performance.

Table 1. Results in Clustering Task

COIL20 ORL

Methods NMI Purity NMI Purity

Deep Streaming + Kmeans 0.7887 0.7124 0.8425 0.7325
DAE + Kmeans 0.8034 0.7241 0.8672 0.7416
SAE + Kmeans 0.7604 0.6925 0.8390 0.7175
Kmeans 0.7301 0.6535 0.8247 0.7024

5 Conclusion

We proposed a streaming motivated embedding method to learn the low dimen-
sional representations of the graph. The streaming strategy is used to reduce
the effect of computation complexity. The deep autoencoder and graph regu-
larization idea make sure the learned features include enough information. Ex-
periments in clustering task verify the effectiveness of our methods. Our model
achieve results as good as models that directly apply dimension reduction in the
original matrix. The results can be generalized to large graphs where directly
matrix models are inapplicable.

Acknowledgements

This work was supported by the National Natural Science Foundation of Chi-
na(Grant No. 91546201, No. 71331005, No. 71110107026, No. 11671379, No.
11331012), UCAS Grant(No. Y55202LY00).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46


Deep Streaming Graph Representations 7

References

1. Aggarwal, C.C.: Data streams: models and algorithms, vol. 31. Springer Science &
Business Media (2007)

2. Ahmed, A., Shervashidze, N., Narayanamurthy, S., Josifovski, V., Smola, A.J.:
Distributed large-scale natural graph factorization. In: Proceedings of the 22nd
international conference on World Wide Web. pp. 37–48. ACM (2013)

3. Belkin, M., Niyogi, P.: Laplacian eigenmaps and spectral techniques for embedding
and clustering. In: NIPS. vol. 14, pp. 585–591 (2001)

4. Bengio, Y., Courville, A., Vincent, P.: Representation learning: A review and
new perspectives. IEEE transactions on pattern analysis and machine intelligence
35(8), 1798–1828 (2013)

5. Grover, A., Leskovec, J.: node2vec: Scalable feature learning for networks. In: Pro-
ceedings of the 22nd ACM SIGKDD international conference on Knowledge dis-
covery and data mining. pp. 855–864. ACM (2016)

6. Hinton, G.E., Osindero, S., Teh, Y.W.: A fast learning algorithm for deep belief
nets. Neural computation 18(7), 1527–1554 (2006)

7. Hinton, G.E., Salakhutdinov, R.R.: Reducing the dimensionality of data with neu-
ral networks. science 313(5786), 504–507 (2006)

8. Huang, P., Huang, Y., Wang, W., Wang, L.: Deep embedding network for cluster-
ing. In: Pattern Recognition (ICPR), 2014 22nd International Conference on. pp.
1532–1537. IEEE (2014)

9. Lee, D.D., Seung, H.S.: Learning the parts of objects by non-negative matrix fac-
torization. Nature 401(6755), 788 (1999)

10. Lu, Q., Getoor, L.: Link-based classification. In: Proceedings of the 20th Interna-
tional Conference on Machine Learning (ICML-03). pp. 496–503 (2003)

11. Mikolov, T., Chen, K., Corrado, G., Dean, J.: Efficient estimation of word repre-
sentations in vector space. arXiv preprint arXiv:1301.3781 (2013)

12. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: Analysis and an algo-
rithm. In: Advances in neural information processing systems. pp. 849–856 (2002)

13. Perozzi, B., Al-Rfou, R., Skiena, S.: Deepwalk: Online learning of social represen-
tations. In: Proceedings of the 20th ACM SIGKDD international conference on
Knowledge discovery and data mining. pp. 701–710. ACM (2014)

14. Roweis, S.T., Saul, L.K.: Nonlinear dimensionality reduction by locally linear em-
bedding. science 290(5500), 2323–2326 (2000)

15. Tian, F., Gao, B., Cui, Q., Chen, E., Liu, T.Y.: Learning deep representations for
graph clustering. In: AAAI. pp. 1293–1299 (2014)

16. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denois-
ing autoencoders: Learning useful representations in a deep network with a local
denoising criterion. Journal of Machine Learning Research 11(Dec), 3371–3408
(2010)

17. Wang, D., Cui, P., Zhu, W.: Structural deep network embedding. In: Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and
data mining. pp. 1225–1234. ACM (2016)

18. Yan, S., Xu, D., Zhang, B., Zhang, H.J., Yang, Q., Lin, S.: Graph embedding and
extensions: A general framework for dimensionality reduction. IEEE transactions
on pattern analysis and machine intelligence 29(1), 40–51 (2007)

19. Zhang, P., Zhu, X., Guo, L.: Mining data streams with labeled and unlabeled
training examples. In: Data Mining, 2009. ICDM’09. Ninth IEEE International
Conference on. pp. 627–636. IEEE (2009)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_46

https://dx.doi.org/10.1007/978-3-319-93713-7_46

