
Application of Algorithmic Differentiation for
Exact Jacobians to the Universal Laminar Flame

Solver

Alexander Hück1(�), Sebastian Kreutzer1, Danny Messig2, Arne Scholtissek2,
Christian Bischof1, and Christian Hasse2

1 Institute of Scientific Computing,
Technische Universität Darmstadt, Darmstadt, Germany,
{alexander.hueck@sc., sebastian.kreutzer@stud.,

christian.bischof@sc.}tu-darmstadt.de
2 Institute of Simulation of reactive Thermo-Fluid Systems,
Technische Universität Darmstadt, Darmstadt, Germany,
{messig, scholtissek, hasse}@stfs.tu-darmstadt.de

Abstract. We introduce algorithmic differentiation (AD) to the C++
Universal Laminar Flame (ULF) solver code. ULF is used for solving
generic laminar flame configurations in the field of combustion engineer-
ing. We describe in detail the required code changes based on the oper-
ator overloading-based AD tool CoDiPack. In particular, we introduce a
global alias for the scalar type in ULF and generic data structure using
templates. To interface with external solvers, template-based functions
which handle data conversion and type casts through specialization for
the AD type are introduced. The differentiated ULF code is numerically
verified and performance is measured by solving two canonical models in
the field of chemically reacting flows, a homogeneous reactor and a freely
propagating flame. The models stiff set of equations is solved with New-
tons method. The required Jacobians, calculated with AD, are compared
with the existing finite differences (FD) implementation. We observe im-
provements of AD over FD. The resulting code is more modular, can
easily be adapted to new chemistry and transport models, and enables
future sensitivity studies for arbitrary model parameters.

Keywords: combustion engineering · flamelet simulation · algorithmic
differentiation · exact Jacobians · Newton method · C++

1 Introduction

The simulation of realistic combustion phenomena quickly becomes computa-
tionally expensive due to, e.g., inherent multi-scale characteristics, complex fluid
flow, or detailed chemistry with many chemical species and reactions. Simulation
codes for chemically reacting flows (e.g., turbulent flames) solve stiff systems of
partial differential equations (PDE) on large grids, making the use of efficient
computational strategies necessary. Here, algorithmic differentiation (AD, [3])

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

II A. Hück et al.

can help to resolve some of the computational challenges associated with chem-
ically reacting flows. AD enables, for instance, sensitivity studies [1], or efficient
optimization algorithms for key parameters [11] of these mechanisms.

In this work, we apply AD to the Universal Laminar Flame (ULF) solver
[13], a C++ framework for solving generic laminar flame configurations. The
code computes and tabulates the thermochemical state of these generic flames
which is then parametrized by few control variables, i.e., the mixture fraction and
reaction progress variable. The look-up tables obtained with ULF are used in 3D
CFD simulations of chemically reacting flows, together with common chemical
reduction techniques such as the flamelet concept [10]. The code is also used in
other scenarios, e.g., for detailed flame structure analyses or model development,
and is a key tool for studying the characteristics of chemically reacting flows.

The objective of this study is to introduce AD to ULF by using operator
overloading. We focus on the technical details of this modification and how it
impacts overall code performance. As an exemplary application, AD is used
to compute exact Jacobians which are required by the numerical solver. The
derivatives generated by AD are accurate up to machine precision, often at a
lower computational cost w.r.t. finite differentiation (FD).

2 Two Canonical Models from the ULF framework

We study the impact of AD using two canonical problems in the field of chemi-
cally reacting flows, i.e., a constant-pressure, homogeneous reactor (HR) and a
freely-propagating premixed flame (FPF). The FPF is a 1D, stationary flame
which burns towards a premixed stream of fresh reactants (e.g., a methane-
air mixture), such that the fluid flow velocity and the burning velocity of the
flame compensate each other. This yields a two-point boundary value problem
described by a differential-algebraic equation (DAE) set, cf. [7]. We obtain the
HR problem if all terms except the transient and the chemical source terms are
omitted, resulting in an ordinary differential equation (ODE) set.

The stiff equation set is solved with an implicit time-stepping procedure based
on backward-differencing formulas (BDF) with internal Newton iterations, i.e.,
the solvers BzzDAE [2] and CVODE [4] are used for the FPF and the HR,
respectively. The discretization for the FPF is done on a 1D grid with n points.
The HR is, on the other hand, solved on a single grid point. Each grid point i
has a state Xi that is dependent on the temperature Ti and mass fractions Yi,j

for species j = 1...k.
The internal Newton iteration of each solver requires a Jacobian. ULF uses

a callback mechanism for user-defined Jacobians and computes them either nu-
merically, or analytically for certain mechanisms. The Jacobian of the equation
set f : RN → RN is typically a block tridiagonal matrix of dimension RN×N

with N = n(k + 1). The main diagonal is the state Xi (Jacobian of the chem-
ical source terms), the lower and upper diagonal describe the influence of the
neighboring grid points, e.g., i−1 and i+1, determined by the transport terms.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

Application of Algorithmic Differentiation to the ULF Solver III

3 Algorithmic Differentiation

AD [3] describes the semantic augmentation of scientific codes in order to com-
pute derivatives. In the context of AD, any code is assumed to be a set of
mathematical operations (e.g., +) and functions (e.g., sin) which have known
analytical derivatives. Thus, the chain rule of differentiation can be applied to
each statement, resulting in the propagation of derivatives through the code.

Two modes exist for AD, the forward mode (FM) and the reverse mode (RM).
The FM applies the chain rule at each computational stage and propagates the
derivatives of intermediate variables w.r.t. input variables along the program
flow. The RM, on the other hand, propagates adjoints - derivatives of the final
result w.r.t. intermediate variables - in reverse order through the program flow.
This requires temporary storage, called tape, but computes gradients efficiently.

The semantic augmentation for AD is either done by a source transformation
or by operator overloading. Due to the inherent complexity of the C++ language,
there is no comprehensive source transformation tool and, thus, operator over-
loading is typically used in complex C++ simulation software. With operator
overloading, the built-in floating point type T is re-declared to a user-defined
AD type T̃ . It stores the original value of T , called primal value, and overloads
all required operations to perform additional derivative computations.

4 Introducing the AD type to ULF

Introducing AD to a code typically requires 1. a type change to the AD type,
2. integration with external software packages, and 3. addition of code to initialize
(seed) the AD type, compute, and extract the derivatives [9]. For brevity, we do
not show the seeding routines. The FM seeding is analogous to the perturbation
required for the existing FD implementation to compute the Jacobian. The RM,
on the other hand, requires taping of the function and seeding of the respective
function output before evaluating the tape to assemble the Jacobian.

We apply the operator overloading AD tool CoDiPack. CoDiPack uses ad-
vanced metaprogramming techniques to minimize the overhead and has been
successfully used for large scale (CFD) simulations [5].

4.1 Fundamentals of Enabling Operator Overloading in ULF

We define the alias ulfScalar in a central header which, in the current design, is
either set to the built-in double type or an AD type at compile time, see Fig. 1.

using ulfScalar = double | codi::RealForward | codi::RealReverse;

Fig. 1. RealForward and RealReverse are the standard CoDiPack AD types for the
FM and RM, respectively. The AD types have an API for accessing the derivatives etc.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

IV A. Hück et al.

The initial design of ULF did not account for user-defined types (e.g., an AD
type). This leads to compile time errors after a type change as built-in and user-
defined types are treated differently [6]. Hence, we refactored several components
in ULF, i.e., eliminating implicit conversions of the AD data types to some other
type, handling of explicit type casts and re-designing the ULF data structures.

Generic Data Structures. The fundamental numeric data structure for com-
putations in ULF is the field class. It stores, e.g., the temperature and con-
centration of the different chemical species. In accordance to [9], we refactored
and templated this class in order to support generic scalar types, specifying two
parameters, 1. the underlying vector representation type, and 2. the correspond-
ing, underlying scalar type, see Fig. 2. We extended this principle to every other
data structure in ULF, having the scalar alias as the basic type dependency.

1 template <typename Vector, typename Scalar>
2 class fieldTmpl : public fieldDataTmpl<Vector, Scalar> { ... };
3 using field = fieldTmpl<ulfVector, ulfScalar>;

Fig. 2. The class fieldTmpl represents the base class for fields and provides all opera-
tions. They are generically defined in the fieldDataTmpl. Finally, the ULF framework
defines field as an alias for the data structure based on the ulfScalar alias.

Special Code Regions: External Libraries and Diagnostics. The external
solver libraries and, more generically, external API calls (e.g., assert and printing
statements) in ULF, do not need to be differentiated. We denote them as special
regions, as they require the built-in double type. ULF, for instance, previously
interfaced with external solvers by copying between the internal data represen-
tation and the different data structures of the solvers. With AD, this requires
an explicit value extraction of the primal value (cf. Sect. 3). To that end, we
introduced a conversion function, using template specialization, see Fig. 3. This
design reduces the undue code maintenance burden of introducing user-defined
types to ULF. If, e.g., a multi-precision type is required, only an additional
specialization of the conversion function in a single header is required.

5 Evaluation

We evaluate the ULF AD implementation based on two reaction mechanisms,
shown in Table 1. For brevity, we focus on the RM.

Timings are the median of a series of multiple runs for each mechanism. The
standard deviation was less than 3 % w.r.t. the median for each benchmark.
All computations were conducted on a compute node of the Lichtenberg high-
performance computer of TU Darmstadt, with two Intel Xeon Processor E5-
2680 v3 at a fixed frequency of 2.5 GHz with 64 GB RAM.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

Application of Algorithmic Differentiation to the ULF Solver V

1 namespace detail {
2 template <typename T>
3 struct ForSpecialization { static auto value(const T& v) { return v; } };
4 } /∗ namespace detail ∗/
5 template <typename T>
6 auto value(const T& v) { return detail::ForSpecialization<T>::value(v); }
7 template <typename To, typename From>
8 auto recast(const From& v) { return static_cast<To>(value<From>(v)); }

Fig. 3. The functions value and recast are used for value extraction and type casting,
respectively. The former makes use of the struct in the detail namespace which is used
to specialize for user-defined types, e.g., the AD type (not shown). If built-in doubles
are used, the value is simply returned (as shown).

Table 1. Mechanisms for the model evaluations.

Mechanism Species Reactions Reference

ch4_USCMech (USCMech) 111 784 [12]
c3_aramco (Aramco) 253 1542 [8]

5.1 Homogeneous Reactor

Fig. 4 shows the absolute timings of the solver phase for FD and the RM, re-
spectively. The substantial speedups observed for the RM mainly result from
the cheap computation of the Jacobian J . One evaluation of J is 20 to 25 times
faster, depending on the mechanism. With FD, each time J is computed, the
HR model function F is executed multiple times. In contrast, with the RM, F is
executed once to generate a trace on the tape. The tape is then evaluated mul-
tiple times to generate J , avoiding costly evaluations of F . Memory overheads
are negligible for the HR as the RM adds about 5 MB to 7 MB memory use.

0.5 1 2 3 4 5 6 7 8 9 10 11 12 13

TF

TJ

TP
Aramco

USCMech

Runtime (s)

Fig. 4. For each mechanism, the top bar shows FD and the bottom bar shows AD
RM measurements. The time of the solve process is divided into three phases: TF and
TJ are the cumulated time for the function and Jacobian evaluations, respectively. TP

is the time spent in CVODE.

5.2 Freely Propagating Flame

The mechanisms are solved on three different mesh resolutions on a 1D do-
main. As shown in Table 2, with AD, a single evaluation of F has a higher cost

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

VI A. Hück et al.

compared to FD. Here, the overhead ratio between FD and AD appears to be ap-
proximately constant for the different mesh configurations of both mechanisms.
The evaluation of J is initially cheaper with AD but with rising mesh sizes the
speedup vanishes. The total execution time with AD is slightly faster on average
as the solver requires fewer steps (i.e., less invocations of F and J) for a solution.

The memory overhead is mostly constant for each mesh configuration as
the tape only stores the adjoints of F to generate the Jacobian. We observe
an additional main memory usage of about 100 MB to 430 MB and 180 MB
to 800 MB memory from the smallest to largest mesh setup for USCMech and
Aramco, respectively. We partly attribute the small variations of memory over-
head to the accuracy of the measurement mechanism and due to the tape of
CoDiPack which stores the data in chunks of a fixed size. Hence, the total tape
memory consumption might be slightly higher than required.

Table 2. Timings for the FPF. F and J are times for a single evaluation, #F and
#J are the number of invocations of each respective routine. MAD/MFD is the memory
ratio. Note: #F includes the evaluations required for computing J .

Mechanism Mesh Mode Total time (s) F (ms) J (s) #F #J
MAD
MFD

USCMech

70 FD 425.009 11.194 3.842 20129 42 -
AD 409.299 18.410 2.735 5329 42 1.64

153 FD 1305.891 21.514 7.108 29704 58 -
AD 1154.853 32.928 6.837 7618 55 1.69

334 FD 2571.581 43.396 15.208 28946 67 -
AD 2365.422 66.525 15.070 5167 65 1.7

Aramco

70 FD 1654.365 21.090 17.276 25169 25 -
AD 1509.730 34.418 12.856 5650 24 1.26

153 FD 5157.127 43.253 34.531 36223 40 -
AD 4618.236 61.365 26.684 3790 40 1.26

334 FD 11357.736 84.402 67.547 39806 47 -
AD 11225.256 126.312 63.163 2822 42 1.27

6 Conclusion and Future Work

We presented the introduction of AD to ULF by using the operator overloading
AD tool CoDiPack. In particular, we first introduced a global alias for the basic
scalar type in ULF, which is set to the AD type at compile time. All other data
structures were rewritten to use templates and are, subsequently, based on this
alias. To interface with external APIs, template-based functions for casting and
value extraction were introduced, and specialized for the AD types.

The HR model is solved on a single grid point, without transport properties.
We observe substantial speedups due to the cheap computation of Jacobians
with AD compared to FD. For the FPF, the underlying DAE solver typically
requires less steps with AD but the evaluation of the model function is more
expensive by a mostly fixed offset compared to FD.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

Application of Algorithmic Differentiation to the ULF Solver VII

In the future, experimentation with the ODE/DAE solver parameter settings
to exploit the improved precision seems worthwhile. More importantly, the newly
gained ability to calculate arbitrary derivatives up to machine precision in ULF
enables us to conduct sensitivity studies not only limited to the chemical reaction
rates, and model optimization experiments. In particular, advanced combustion
studies such as uncertainty quantification, reconstruction of low-dimensional in-
trinsic manifolds or combustion regime identification become accessible.

References

1. Carmichael, G.R., Sandu, A., et al.: Sensitivity Analysis For Atmospheric Chem-
istry Models Via Automatic Differentiation. Atmospheric Environment 31(3), 475–
489 (1997)

2. Ferraris, G.B., Manca, D.: Bzzode: a new C++ class for the solution of stiff and
non-stiff ordinary differential equation systems. Computers & Chemical Engineer-
ing 22(11), 1595 – 1621 (1998)

3. Griewank, A., Walther, A.: Evaluating Derivatives. Society for Industrial and Ap-
plied Mathematics (SIAM), second edn. (2008)

4. Hindmarsh, A.C., Brown, P.N., Grant, K.E., Lee, S.L., Serban, R., Shumaker,
D.E., Woodward, C.S.: SUNDIALS: Suite of nonlinear and differential/algebraic
equation solvers. ACM Transactions on Mathematical Software (TOMS) 31(3),
363–396 (2005)

5. Hück, A., Bischof, C., Sagebaum, M., Gauger, N.R., Jurgelucks, B., Larour, E.,
Perez, G.: A Usability Case Study of Algorithmic Differentiation Tools on the
ISSM Ice Sheet Model. Optimization Methods and Software pp. 1–24 (2017)

6. Hück, A., Utke, J., Bischof, C.: Source Transformation of C++ Codes for Com-
patibility with Operator Overloading. Procedia Computer Science 80, 1485–1496
(2016)

7. Kee, R.J., Grcar, J.F., Smooke, M.D., Miller, J.A., Meeks, E.: PREMIX: A Fortran
Program for Modeling Steady Laminar One-Dimensional Premixed Flames. Tech.
Rep. SAND85-8249, Sandia National Laboratories (1985)

8. Metcalfe, W.K., Burke, S.M., Ahmed, S.S., Curran, H.J.: A Hierarchical and Com-
parative Kinetic Modeling Study of C1-C2 Hydrocarbon and Oxygenated Fuels.
International Journal of Chemical Kinetics 45(10), 638–675 (2013)

9. Pawlowski, R.P., Phipps, E.T., Salinger, A.G.: Automating Embedded Analysis
Capabilities and Managing Software Complexity in Multiphysics Simulation, Part
I: Template-based Generic Programming. Sci. Program. 20(2), 197–219 (2012)

10. Peters, N.: Laminar flamelet concepts in turbulent combustion. Symp. (Int.) Com-
bust. 21(1), 1231–1250 (1988)

11. Probst, M., Lülfesmann, M., Nicolai, M., Bücker, H., Behr, M., Bischof, C.: Sensi-
tivity of optimal shapes of artificial grafts with respect to flow parameters. Com-
puter Methods in Applied Mechanics and Engineering 199(17-20), 997–1005 (2010)

12. Wang, H., You, X., Joshi, A.V., Davis, S.G., Laskin, A., Egolfopou-
los, F., Law, C.K.: USC Mech Version II. High-Temperature Com-
bustion Reaction Model of H2/CO/C1-C4 Compounds. online (2007),
http://ignis.usc.edu/USC_Mech_II.htm

13. Zschutschke, A., Messig, D., Scholtissek, A., Hasse, C.: Universal Laminar Flame
Solver (ULF) (2017), https://figshare.com/articles/ULF_code_pdf/5119855

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_43

https://dx.doi.org/10.1007/978-3-319-93713-7_43

