
Benchmarking Parallel Chess Search in Stockfish
on Intel Xeon and Intel Xeon Phi Processors?

Pawel Czarnul[0000−0002−4918−9196]

Faculty of Electronics, Telecommunications and Informatics
Gdansk University of Technology, Narutowicza 11/12, 80-233 Poland

pczarnul@eti.pg.edu.pl

Abstract. The paper presents results from benchmarking the parallel
multithreaded Stockfish chess engine on selected multi- and many-core
processors. It is shown how the strength of play for an n-thread version
compares to 1-thread version on both Intel Xeon and latest Intel Xeon
Phi x200 processors. Results such as the number of wins, losses and draws
are presented and how these change for growing numbers of threads.
Impact of using particular cores on Intel Xeon Phi is shown. Finally,
strengths of play for the tested computing devices are compared.

Keywords: parallel chess engine, Stockfish, Intel Xeon, Intel Xeon Phi

1 Introduction

For the past several years, growth in performance of computing devices has
been possible mainly through increasing the number of cores, apart from other
improvements such as cache organization and size, much less through increase
in processor clock speed. This is especially visible in top HPC systems on the
TOP500 list [14]. The top system is based on Sunway manycore processors, the
second is a hybrid multicore Intel Xeon + Intel Xeon Phi coprocessor based
system and the third a hybrid multicore Intel Xeon + NVIDIA P100 GPUs.

It is becoming very important to assess which computing devices perform
best for particular classes of applications, especially when gains from increasing
the number of threads are not obvious. We investigate performance of parallel
chess game playing in the strong Stockfish engine [13], especially on the latest
Intel Xeon Phi x200 processor which features upgraded internal mesh based
architecture, MCDRAM memory and out of order execution. This is compared
to both scalability and playing strength on server type Intel Xeon CPUs.

2 Related work

Performance of chess players, both human and engines, that play against each
other is typically assessed using the Elo rating system [6, 11]. Some approaches

? partially supported by the Polish Ministry of Science and Higher Education, part
of tests performed at Academic Computer Center, Gdansk, Poland, part of tests
performed on hardware donated by Intel Technology Poland

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

2 Pawel Czarnul

have been proposed such as the Markovian interpretation for assessment of play
by various players from various eras to be able to compare strengths of play [1].

The typical algorithm for tree search in chess has been alpha-beta search.
Several algorithms and approaches1 regarding parallelization of chess playing
have been proposed. In Young Brothers Wait Concept [7] the algorithm first
searches the oldest brother in a search tree to obtain cutoff values and search
other branches in parallel. In Lazy SMP many threads or processes search the
same tree but with various depths and move orderings. It is used in many engines
today such as Stockfish. Asynchronous Parallel Hierarchical Iterative Deepen-
ing (APHID) is an algorithm that is asynchronous and divides the search tree
among the master (top level) which makes passes over its part of the tree and
slaves which search deeper parts of the tree. Paper [3] presents speed-ups from
14.35 up to around 37.44 on 64 processors for various programs including Chi-
nook, TheTurk, Crafty and Keyano. Monte-Carlo Tree Search, while successful
for Go, suffers from issues such as difficulty to identify search traps in chess [2].
Despite optimizations, the testbed implementation could not match the strength
of alpha-beta search. On the other hand, the very recent paper [12] presents Alp-
haZero – a program that defeated Stockfish using alpha-beta search. AlphaZero
uses MCTS combined with incorporation of a non-linear function approxima-
tion based on a deep neural network. It searches fewer positions focusing on
selected variations. In paper [16] the authors proposed a method called P-GPP
that aimed at improving the Game Position Parallelization (GPP) that allows
parallel analysis of game subtrees by various workers. P-GPP extends GPP with
assignment of workers to nodes using realization probability. Implementation
was tested using Stockfish for workers with communication between the master
and workers using TCP sockets for up to 64 cores using two computers. The
authors have demonstrated increased playing strength up to sixty workers at
the win rate of 0.646.

Benchmarking performance and speed-ups was performed in several works
and for engines and algorithms playing various games as well as for various com-
puting devices – CPUs, GPUs, coprocessors such as Intel Xeon Phi. For instance,
in [9] Monte Carlo Tree Search (MCTS) was benchmarked on Intel Xeon Phi and
Intel Xeon processors. Speed-ups up to around 47 were achieved for Intel Xeon
Phi and up to around 18 for Intel Xeon across all tested implementations in-
cluding C++ 11, Cilk Plus, TBB and TPFIFO with a queue implementing work
sharing through a thread pool. Furthermore, paper [10] contains data and com-
parison of performance of Intel Xeon CPU to Intel Xeon Phi for the MCTS algo-
rithm useful in games such as Hex and Go. The same authors tested performance
and speed-ups on both 2x Intel Xeon E5-2596v2 for a total of 24 physical cores
and 48 logical processor as well as Intel Xeon Phi 7120P with 61 cores and 244
logical processors. The authors, having benchmarked n-thread versions against
n/2-thread versions, have determined that almost perfect speed-ups could be
observed up to 16 and 64 cores for the two platforms respectively. Furthermore,
they determined that the Intel Xeon Phi coprocessor offered visibly worse total

1 https://chessprogramming.wikispaces.com/Parallel+Search

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

Benchmarking Parallel Chess Search . . . 3

performance than CPUs due to relatively higher communication/compute ratio.
In paper [8] the authors proposed a general parallel game tree search algorithm
on a GPU and benchmarked its performance compared to a CPU-based plat-
form for two games: Connect6 and chess. The speed-up compared to the latter
platform with pruning turned out to be 10.58x and 7.26x for the aforementioned
games respectively. In terms of large scale parallelization on a cluster, paper
[15] presents results obtained on a cluster for for Shogi chess. The authors have
investigated effects of dynamic updates in parallel searching of the alpha-beta
tree which proved to offer significant improvements in performance. Speed-ups
up to around 250 for branching factor 5 and depth 24 on 1536 cores of a cluster
with dynamic updates and without sharing transposition tables were measured.
The authors have shown that using Negascout in the master and proper win-
dows in workers decreases the number of nodes visited and generates speed-up of
up to 346 for the aforementioned configuration. Several benchmarks have been
conducted for Stockfish that demonstrate visible speed-up versus the number of
threads on multi-core CPUs2 3.

The contribution of this work is as follows:

1. benchmarking the reference Stockfish chess engine on the state-of-the-art
Intel Xeon Phi x200 manycore processor,

2. testing on how selection of cores (thread affinity) affects performance,
3. comparison of Intel Xeon and Intel Xeon Phi performance for Stockfish.

3 Methodology and experiments

Similarly to the tests already performed on multicore CPUs2 3, in this work we
benchmark the Stockfish engine running with a particular number of threads
against its 1 thread version. Gains allow to assess how much better a multi-
threaded version is and to what number of threads (and cores on which the
threads run) it scales. This is especially interesting in view of the recent Intel
Xeon x200 processors with up to 72 physical cores and 288 logical processors.

For the experiments performed in this work the following computing devices
were used: 2 Intel Xeon E5-2680 v2 at 2.80GHz CPUs with a total of 20 physical
cores and 40 logical processors as multi-core processors and 1 Intel Xeon Phi CPU
7210 at 1.30GHz with a total of 64 physical cores and 256 logical processors.

Each configuration included 1000 games played by an n thread version against
the 1 thread version. Games were played with white and black pieces by the ver-
sions with switching colors of the pieces after every game. For the 256 thread
configuration, the Stockfish code was slightly updated to allow such a configu-
ration (the standard version allowed up to 128 threads). Time controls were 60
seconds for first 40 moves.

As a reference, Figure 1 presents how the results changed for a configuration
of an n-thread Stockfish against the 1 thread version over successive games played

2 http://www.fastgm.de/schach/SMP-scaling.pdf
3 http://www.fastgm.de/schach/SMP-scaling-SF8-C10.pdf

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

4 Pawel Czarnul

on the Intel Xeon Phi. The score is computed as follows from the point of view
of the n-thread version:

s =
1 · nwins + 1

2 · ndraws

nwins + ndraws + nlosses
(1)

where: nwins – number of wins, ndraws – number of draws, nlosses – number of
losses for the n-thread version.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 100 200 300 400 500 600 700 800 900 1000

S
co

re
 o

f n
-th

re
ad

 S
to

ck
fis

h
 a

ga
in

st
 1

 th
re

ad
 S

to
ck

fis
h

game number

score of 128-thread Stockfish against 1 thread Stockfish - 1st from top
score of 16-thread Stockfish against 1 thread Stockfish - 2nd from top

score of 8-thread Stockfish against 1 thread Stockfish - 3rd from top
score of 4-thread Stockfish against 1 thread Stockfish - 4th from top
score of 2-thread Stockfish against 1 thread Stockfish - 5th from top

Fig. 1. Score of n-thread Stockfish against 1 thread Stockfish on Intel Xeon Phi x200

Tests were performed using tool cutechess-cli [4]. Firstly, tests were per-
formed on the Intel Xeon Phi on how using particular cores affects performance.
In one version, the application was instructed to use physical cores first. This
was achieved with command taskset according to placement and identification
of cores provided in file /proc/cpuinfo. In the other version, threads could use
all available logical processors, no taskset command was used. Comparison of
results for the Intel Xeon Phi and the two versions is shown in Figure 2.

Following tests were performed with using physical cores first on the Intel
Xeon Phi x200. Figure 3 presents numbers of games with a given result: win, loss
or draw out of 1000 games played by each n thread version against the 1 thread
version and the final scores for each version computed using Equation 1. It can
be seen that gain is visible up to and including 128 threads with a slight drop for
256 threads. The Stockfish code was modified (changed limits) to allow running
on 256 threads as the original version limited the number to 128 threads.

Furthermore, analogous tests were performed for a workstation with 2 Intel
Xeon E5-2680 v2 2.80GHz CPUs with a total of 20 physical cores and 40 logical
processors, available to the author. Numbers of particular results and final scores
are shown in Figure 4. For this configuration, best results were obtained for 16
threads with a slight drop for 40 threads.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

Benchmarking Parallel Chess Search . . . 5

 0.8
 0.81
 0.82
 0.83
 0.84
 0.85
 0.86
 0.87
 0.88
 0.89
 0.9

 32 64 128

A
ve

ra
ge

 s
co

re
 o

f n
-th

re
ad

 S
to

ck
fis

h
 a

ga
in

st
 1

 th
re

ad
 S

to
ck

fis
h

number of threads used by Stockfish

score of n-thread Stockfish against 1 thread Stockfish, taskset used
score of n-thread Stockfish against 1 thread Stockfish, no taskset used

Fig. 2. How using taskset affects performance on Intel Xeon Phi x200

Apparently, better scalability for the Intel Xeon Phi stems from relatively
lower performance of a single core and consequently better potential for improve-
ment of the playing strength. This can be observed also for parallel computation
of similarity measures between large vectors for which better speed-up compared
to 1 core was observed for an Intel Xeon Phi coprocessor but final performance
appeared to be similar for Intel Xeon Phi and two Intel Xeon CPUs [5].

Additionally, Stockfish was benchmarked for nodes/second processed for vari-
ous numbers of threads involved. Results are shown in Figure 5. The performance
of a single Intel Xeon Phi core is lower than that of a single Intel Xeon proces-
sor core. For the maximum number of threads equal to the number of logical
processors on both platforms, the theoretical performance of the Intel Xeon Phi
is slightly larger. It should be noted though that this is more of a theoretical
benchmark for performance of processing of this particular code.
Finally, the best version on the Intel Xeon E5 CPUs using 16 threads was tested
against the best version on the Intel Xeon Phi processor using 128 threads. Out
of 1050 games, 38 were won on Intel Xeon Phi, 37 were lost and 975 draws were
observed for a final score of 0.500047619 computed using Equation 1.

4 Summary and future work

In the paper we have investigated speed-up potential of the Stockfish multi-
threaded chess engine on both multi- and many-core processors such as Intel
Xeon and latest Intel Xeon Phi x200 processors. It was shown that using taskset

to select cores on an Intel Xeon Phi improved performance. Performance of two
tested Intel Xeon processors appeared to be practically the same as one tested
Intel Xeon Phi processor for the chess engine. We plan to test more computing
devices including latest Intel Xeon CPUs as well as to conduct tests for a wider
range of time controls, especially larger ones that might turn out to be more
beneficial for processors with more cores.

References

1. Alliot, J.M.: Who is the master? ICGA Journal 39(1), 3–43 (May 2017)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

6 Pawel Czarnul

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32 64 128 256 512
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r o

f g
am

es
 w

ith
 a

 g
iv

en
 re

su
lt

A
ve

ra
ge

 s
co

re
 o

f n
-th

re
ad

 S
to

ck
fis

h
 a

ga
in

st
 1

 th
re

ad
 S

to
ck

fis
h

number of threads used by Stockfish

losses (left axis)
wins (left axis)

draws (left axis)
 score of n-thread Stockfish against

 1 thread Stockfish (right axis)

Fig. 3. n thread Stockfish against 1 thread Stockfish on Intel Xeon Phi x200

 0

 200

 400

 600

 800

 1000

 1 2 4 8 16 32 64
 0

 0.2

 0.4

 0.6

 0.8

 1

N
um

be
r o

f g
am

es
 w

ith
 a

 g
iv

en
 re

su
lt

A
ve

ra
ge

 s
co

re
 o

f n
-th

re
ad

 S
to

ck
fis

h
 a

ga
in

st
 1

 th
re

ad
 S

to
ck

fis
h

number of threads used by Stockfish

losses (left axis)
wins (left axis)

draws (left axis)
 score of n-thread Stockfish against

 1 thread Stockfish (right axis)

Fig. 4. n thread Stockfish against 1 thread Stockfish on 2 x Intel Xeon E5-2680 v2

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

Benchmarking Parallel Chess Search . . . 7

 0

 5x106

 1x107

 1.5x107

 2x107

 2.5x107

 3x107

 3.5x107

 4x107

 50 100 150 200 250

N
od

es
/s

ec
on

d

number of threads used by Stockfish

Intel Xeon Phi CPU 7210
2 x Intel Xeon E5-2680 v2

Fig. 5. Nodes/second processed on the testbed platforms

2. Arenz, O.: Monte carlo chess (April 2012), bachelor Thesis, Technische Universitat
Darmstadt

3. Brockington, M.G., Schaeffer, J.: Aphid: Asynchronous parallel game-tree search.
J. Parallel Distrib. Comput. 60, 247–273 (2000)

4. Cute Chess Website: (2017), https://github.com/cutechess/cutechess
5. Czarnul, P.: Benchmarking performance of a hybrid intel xeon/xeon phi system for

parallel computation of similarity measures between large vectors. International
Journal of Parallel Programming 45(5), 1091–1107 (Oct 2017)

6. Elo, A.: The Rating of Chess Players, Past and Present. Ishi Press (2008)
7. Feldmann, R., Monien, B., Mysliwietz, P., Vornberger, O.: Distributed Game Tree

Search, pp. 66–101. Springer New York, New York, NY (1990)
8. Li, L., Liu, H., Wang, H., Liu, T., Li, W.: A parallel algorithm for game tree search

using gpgpu. IEEE Trans. on Parall. & Distr. Systems 26(8), 2114–2127 (2015)
9. Mirsoleimani, S.A., Plaat, A., Herik, J.V.D., Vermaseren, J.: Scaling monte carlo

tree search on intel xeon phi. 2015 IEEE 21st International Conference on Parallel
and Distributed Systems (ICPADS) 00, 666–673 (2016)

10. Mirsoleimani, S.A., Plaat, A., van den Herik, H.J., Vermaseren, J.: Parallel monte
carlo tree search from multi-core to many-core processors. In: TrustCom/ Big-
DataSE/ISPA, Helsinki, Finland, Aug. 20-22, Vol. 3. pp. 77–83. IEEE (2015)

11. Rydzewski, A., Czarnul, P.: A distributed system for conducting chess games in
parallel. In: 6th International Young Scientists Conference in HPC and Simulation.
Procedia Computer Science, Kotka, Finland (November 2017)

12. Silver, D., Hubert, T., Schrittwieser, J., Antonoglou, I., Lai, M., Guez, A., Lanctot,
M., Sifre, L., Kumaran, D., Graepel, T., Lillicrap, T., Simonyan, K., Hassabis, D.:
Mastering Chess and Shogi by Self-Play with a General Reinforcement Learning
Algorithm. ArXiv e-prints (Dec 2017)

13. Stockfish: (2017), https://stockfishchess.org/
14. Strohmaier, E., Dongarra, J., Simon, H., Meuer, M.: Top500, www.top500.org/
15. Ura, A., Tsuruoka, Y., Chikayama, T.: Dynamic prediction of minimal trees in

large-scale parallel game tree search. J. of Inform. Processing 23(1), 9–19 (2015)
16. Yokoyama, S., Kaneko, T., Tanaka, T.: Parameter-Free Tree Style Pipeline in Asyn-

chronous Parallel Game-Tree Search, pp. 210–222. Springer International Publish-
ing, Cham (2015)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_40

https://dx.doi.org/10.1007/978-3-319-93713-7_40

