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Abstract. Learning with very limited training data is a challenging but typical 

scenario in machine learning applications. In order to achieve a robust learning 

model, on one hand, the instructive labeled instances should be fully leveraged; 

on the other hand, extra data source need to be further explored. This paper aims 

to develop an effective learning framework for robust modeling, by naturally 

combining two promising advanced techniques, i.e. generative adversarial net-

works and self-paced learning. To be specific, we present a novel augmented self-

paced learning with generative adversarial networks (ASPL-GANs), which con-

sists of three component modules, i.e. a generator G, a discriminator D, and a 

self-paced learner S. Via competition between G and D, realistic synthetic in-

stances with specific class labels are generated. Receiving both real and synthetic 

instances as training data, classifier S simulates the learning process of humans 

in a self-paced fashion and gradually proceeds from easy to complex instances in 

training. The three components are maintained in a unified framework and opti-

mized jointly via alternating iteration. Experimental results validate the effective-

ness of the proposed algorithm in classification tasks. 

Keywords: Self-paced Learning, Generative Adversarial Networks, Joint Opti-

mization, Dynamic Curriculum. 

1 Introduction 

With the evolution of devices and techniques for information creation, acquisition and 

distribution, all sorts of digital data emerge remarkably and have been enriching peo-

ple’s everyday life. In order to manipulate the large scale data effectively and effi-

ciently, machine learning models need to be developed for automatic content analysis 

and understanding [1][2]. The learning performance of a data-driven model is largely 

dependent on two key factors [3][4], i.e. the number and quality of the training data, 

and the modeling strategy designed to explore the training data. On one hand, the ac-

quisition of labeled instances requires intensive human effort from manual labeling. As 
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a result, the accessible training data are usually very limited, which inevitably jeopard-

ize the learning performance. On the other hand, the inference of projection function 

from the training data is a process that mimics human perception of the world. To bridge 

the gap between low-level features and high-level concepts, the sophisticated mecha-

nism behind the learning process of humans should be formulated into the model [5]-

[7].  

The idea of automatically generating extra instances as extension of the limited train-

ing data is rather attractive, because it is relatively a much more cost-effective way to 

collect a large number of instances. As a deep learning [8]-[10] method for estimating 

generative models based on game theory, generative adversarial networks (GANs) [11] 

have aroused widespread academic concern. The main idea behind GANs is a minimax 

two-player game, in which a generator and a discriminator are trained simultaneously 

via an adversarial process with conflicting objectives. After convergence, the GANs 

model is capable of generating realistic synthetic instances, which have great potential 

as augmentation to the existing training data. As for the imitation of learning process 

of humans, self-paced learning (SPL) [12][13] is a recently rising technique following 

the learning principle of humans, which starts by learning easier aspects of the learning 

task, and then gradually takes more complex instances into training. The easiness of an 

instances is highly related to the loss between ground truth and estimation, based on 

which the curriculum is dynamically constructed and the training data are progressively 

and effectively explored.  

In this paper, we propose a novel augmented self-paced learning with generative 

adversarial networks (ASPL-GANs) algorithm to cope with the issues of training data 

and learning scheme, by absorbing the powers of two promising advanced techniques, 

i.e. GANs and SPL. In brief, our framework consists of three component modules: a 

generator G, a discriminator D, and a self-paced learner S. To extend the limited train-

ing data, realistic synthetic instances with predefined labels are generated via G vs. D 

rivalry. To fully explore the augmented training data, S dynamically maintains a cur-

riculum and progressively refines the model in a self-paced fashion. The three modules 

are jointly optimized in a unified process, and a robust model is achieve with satisfac-

tory experimental results. 

2 Augmented Self-paced Learning with GANs 

In the text that follows, we let 𝒙 denote an instance, and a 𝐶-dimensional vector 𝒚 =
[𝑦1 , … , 𝑦𝐶]

𝑇 ∈ {0,1}𝐶 denote the corresponding class label, where 𝐶 is the number of 

classes. The 𝑖th element 𝑦𝑖  is a class label indicator, i.e. 𝑦𝑖 = 1 if instance 𝒙 falls into 

class 𝑖, and 𝑦𝑖 = 0 otherwise. 𝐷(𝒙) is a scalar indicating the probability that 𝒙 comes 

from real data. 𝑆(𝒙) is a 𝐶-dimensional vector whose elements indicate the probabili-

ties that 𝒙 falls into the corresponding classes.  
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2.1 Overview 

The framework and architecture of ASPL-GANs is illustrated in Fig. 1, which consists 

of three components, i.e. a generator G, a discriminator D and a self-paced learner S. 

The generator G produces synthetic instances that fall into different classes. The dis-

criminator D and the self-paced learner S are both classifiers: the former is a binary 

classifier that distinguishes the synthetic instances from the real ones, and the latter is 

a multi-class classifier that categorizes the instances into various classes. By competing 

with each other, G generates more and more realist synthetic instances, and meanwhile 

D’s discriminative capacity is constantly improved. As a self-paced learner, S embraces 

the idea behind the learning process of humans that gradually incorporates easy to more 

complex instances into training and achieves robust learning model. Moreover, the syn-

thetic instances generated by G are leveraged to further augment the classification per-

formance. The three components are jointly optimized in a unified framework. 

 

Fig. 1. The framework (left) and architecture (right) of ASPL-GANs. 

2.2 Formulation 

Firstly, based on the two classifiers in ASPL-GANs, i.e. D and S, we formulate two 

classification losses on an instance 𝒙, i.e. ℓ𝑑 and ℓ𝑠, as follows. 

 

ℓ𝑑(𝒙) = −𝐼(𝒙 ∈ 𝒳) log(𝑃(source(𝒙) = 𝑟𝑒𝑎𝑙|𝒙))

−𝐼(𝒙 ∈ 𝒳𝑠𝑦𝑛) log(𝑃(source(𝒙) = 𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐|𝒙))

= −𝐼(𝒙 ∈ 𝒳) log(𝐷(𝒙)) − 𝐼(𝒙 ∈ 𝒳𝑠𝑦𝑛) log(1 − 𝐷(𝒙))

 (1) 

  
ℓ𝑠(𝒙) = −∑ 𝐼(𝑦𝑖 = 1) log(𝑃(𝑦𝑖 = 1|𝒙))𝐶

𝑖=1

= −𝒚𝑇 log(𝑆(𝒙))
  (2) 

where 𝒳 and 𝒳𝑠𝑦𝑛 denote the collection of real and synthetic instances, respectively. 

Note that 𝒳 is divided into labeled and unlabeled subsets according to whether or not 

the instances’ labels are revealed, i.e. 𝒳 = 𝒳𝐿⋃𝒳𝑈, whereas 𝒳𝑠𝑦𝑛 can be regarded as 
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“labeled” because in the framework the class label is already predefined before a syn-

thetic instance is generated. The indicator function is defined as: 

 𝐼(𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛) = {
1, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑡𝑟𝑢𝑒
0, 𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑓𝑎𝑙𝑠𝑒

 (3) 

ℓ𝑑 depicts the consistency between the real source and the predicted source of an in-

stance, whereas ℓ𝑠 measures the consistency between the real class label and the pre-

dicted label of an instance. Based on (1) and (2), the three component modules of 

ASPL-GANs, i.e. G, D and S, can be formulated according to their corresponding ob-

jectives, respectively. 

Generator G. In ASPL-GANs, by jointly taking a random noise vector 𝒛~𝑝𝑛𝑜𝑖𝑠𝑒  and 

a class label vector 𝒚𝑔 ∈ {0,1}𝐶 as input, G aims to generate a synthetic instance 𝑥𝑔 =

𝐺(𝑧, 𝒚𝑔) that is hardly discernable from the real instances and meanwhile consistent 

with the given class label. The loss function for G is formulated as:  

 

ℒ𝐺 = ∑ (−ℓ𝑑(𝒙𝑔) + 𝛼ℓ𝑠(𝒙𝑔))𝒙𝑔∈𝒳𝑠𝑦𝑛

= ∑ (log (1 − 𝐷 (𝐺(𝑧, 𝒚𝑔))) − 𝛼𝒚𝑔
𝑇 log (𝑆 (𝐺(𝑧, 𝒚𝑔))))𝒛~𝑝𝑛𝑜𝑖𝑠𝑒

 (4) 

The first term in the summation encourages the synthetic instances that are inclined to 

be mistakenly identified with low discriminative probabilities from D. The second term, 

however, is in favor of the synthetic instances that fall into the correct categories with 

their given class labels on generation. 𝛼 is the parameter to balance the two items. 

Discriminator D. Similar to the classic GANs, D receives both real and synthetic in-

stances as input and tries to correctly distinguish the synthetic instances from the real 

ones. The loss function for D is formulated as: 

 

ℒ𝐷 = ∑ ℓ𝑑(𝒙)𝒙∈𝒳⋃𝒳𝑠𝑦𝑛

= −∑ log(𝐷(𝒙))𝒙∈𝒳 − ∑ log (1 − 𝐷 (𝐺(𝑧, 𝒚𝑔)))𝒛~𝑝𝑛𝑜𝑖𝑠𝑒

 (5) 

D aims to maximize the log-likelihood that it assigns input to the correct source. For 

the real instances, both labeled and unlabeled one are leveraged in modeling D, because 

their specific class labels are irrelevant to the fact that they are real.  

Self-paced Learner S. Different from the traditional self-paced learning model, S re-

ceives both real and synthetic instances as training data. In other words, S is trained on 

dataset 𝒳𝐿⋃𝒳𝑠𝑦𝑛, and aims to correctly classify . The training data are organized adap-

tively w.r.t their easiness, and the model learns gradually from the easy instances to the 

complex ones in a self-paced way. The loss function for S is formulated as: 

 ℒ𝑆 = ∑ (𝑣(𝒙)𝑢(𝒙)ℓ𝑑(𝒙) + 𝑓(𝑣(𝒙), 𝜆))𝒙∈𝒳𝐿⋃𝒳𝑠𝑦𝑛
 (6) 
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where  

 𝑢(𝒙) = {
1, 𝒙 ∈ 𝒳𝐿

𝛾𝐷(𝒙), 𝒙 ∈ 𝒳𝑠𝑦𝑛
 (7) 

is a weight to penalize the fake training data, and 𝑣(𝒙) is the weight reflecting the in-

stance’s importance in the objective. Based on (6) and (7), the loss function can be re-

whitened as: 

 

ℒ𝑆 = ∑ (𝑣(𝒙)ℓ𝑑(𝒙) + 𝑓(𝑣(𝒙), 𝜆))𝒙∈𝒳𝐿

+∑ (𝛾𝑣(𝒙𝑔)𝐷(𝒙𝑔)ℓ𝑑(𝒙𝑔) + 𝑓(𝑣(𝒙𝑔), 𝜆))𝒙𝑔∈𝒳𝑠𝑦𝑛

= ∑ (−𝑣(𝒙)𝒚𝑇 log(𝑆(𝒙)) + 𝑓(𝑣(𝒙), 𝜆))𝒙∈𝒳𝐿

+∑ (
−𝛾𝑣 (𝐺(𝑧, 𝒚𝑔))𝐷 (𝐺(𝑧, 𝒚𝑔)) 𝒚

𝑇 log (𝑆 (𝐺(𝑧, 𝒚𝑔)))

+𝑓 (𝑣 (𝐺(𝑧, 𝒚𝑔)) , 𝜆)
)𝒛~𝑝𝑛𝑜𝑖𝑠𝑒

 (8) 

where 𝑓(𝑣, 𝜆) is the self-paced regularizer, where 𝜆 is the pace age parameter control-

ling the learning pace. Given 𝜆, the easy instances (with smaller losses) are preferred 

and leveraged for training. By jointly learning the model parameter 𝜽𝑆 and the latent 

weight 𝒗 with gradually increasing 𝜆, more instances (with larger losses) can be auto-

matically included. In this self-paced way, the model learns from easy to complex to 

become a “mature” learner. S effectively simulates the learning process of intelligent 

human learners, by adaptively implementing a learning scheme embodied as weight 

𝑣(𝒙) according to the learning pace. Apart from the real ones, the synthetic instances 

are leveraged as extra training data to further augment the learning performance. Prior 

knowledge is encoded as weight 𝑢(𝒙) imposed on the training instances. Under this 

mechanism, both predetermined heuristics and dynamic learning preferences are incor-

porated into an automatically optimized curriculum for robust learning.  

3 Experiments 

To validate the effectiveness of ASPL-GANs, we apply it to classification of handwrit-

ten digits and real-world images respectively. Detailed description of the datasets can 

be found in [2]. 

The proposed ASPL-GANs is compared with the follow methods:  

 SL: traditional supervised learning based on labeled dataset 𝒳𝐿; 

 SPL: self-paced learning based on labeled dataset 𝒳𝐿; 

 SL-GANs: supervised learning with GANs based on labeled dataset 𝒳𝐿  and syn-

thetic dataset 𝒳𝑠𝑦𝑛. 

Softmax regression, also known as multi-class logistic regression, is adopted to clas-

sify the images. To be fair, all the methods have access to the same number of labeled 

real instances. We use two distributions to determine the numbers per class. One is 

uniform distribution according to which the labeled instances are equally divided be-
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tween classes. The other is Gaussian distribution in which the majority of labeled in-

stances falls into only a few classes. The two settings simulate the balance and imbal-

ance scenario of training data. For methods leveraging augmented training data, syn-

thetic instances falling into the minority classes are inclined to be generated to alleviate 

the data imbalance problem.  

Fig. 2 illustrates the classification results of SL, SPL, SL-GANs and ASPL-GANs 

on both handwritten digit and real-world image datasets. The horizontal axis shows the 

number of initial training data.  

  
(1) (2) 

Fig. 2. The classification accuracies on (1) handwritten digit dataset and (2) real-world image 

dataset. 

Analysis of the experimental results are as follows. 

 Traditional learning method SL is trained on the limited training data, and the 

training data are incorporated all at once indiscriminately. As a result, the learning 

performance is severely hampered. 

 Both SPL and SL-GANs achieved improvement compared with SL. The former 

explores the limited training data in a more effective way, whereas the latter lev-

erages extra training data via GANs. As we can see, SL-GANs is especially help-

ful for simpler dataset such as the handwritten digit dataset, because the generated 

instances can be more reliable. In contrast, the synthetic real-world images is less 

realistic, and thus less helpful in augmenting the learning performance. SPL suc-

cessfully simulates the process of human cognition, and thus achieved consistent 

improvement for both datasets, especially for the balance scenario. The problem 

of data imbalance can be alleviated by generating minority instances.  

 The proposed ASPL-GANs achieved the highest classification accuracy among 

all the methods. By naturally combination of GANs and SPL, the problem of in-

sufficient training data and ineffective modeling are effectively addressed.  

4 Conclusion 

In this paper, we have proposed the augmented self-paced learning with generative ad-

versarial networks (ASPL-GANs) to address the issues w.r.t. limited training data and 

unsophisticated learning scheme. The contributions of this work are three-fold. Firstly, 

we developed a robust learning framework, which consists of three component modules 

formulated with the corresponding objectives and optimized jointly in a unified process 
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to achieve improved learning performance. Secondly, realistic synthetic instance with 

predetermined class labels are generated via competition between the generator and 

discriminator to provide extra training data. Last but not least, both real and synthetic 

are incorporated in a self-paced learning scheme, which integrates prior knowledge and 

dynamically created curriculum to fully explore the augmented training dataset. En-

couraging results are received from experiments on multiple classification tasks. 
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