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Abstract. In this work, we introduce an efficient scheme using an adap-
tive time-splitting method to simulate nanoparticles transport associ-
ated with a two-phase flow in heterogeneous porous media. The capil-
lary pressure is linearized in terms of saturation to couple the pressure
and saturation equations. The governing equations are solved using an
IMplicit Pressure Explicit Saturation-IMplicit Concentration (IMPES-
IMC) scheme. The spatial discretization has been done using the cell-
centered finite difference (CCFD) method. The interval of time has been
divided into three levels, the pressure level, the saturation level, and
the concentrations level, which can reduce the computational cost. The
time step-sizes at different levels are adaptive iteratively by satisfying the
Courant-Friedrichs-Lewy (CFL<1) condition. The results illustrates the
efficiency of the numerical scheme. A numerical example of a highly het-
erogeneous porous medium has been introduced. Moreover, the adaptive
time step-sizes are shown in graphs.

Keywords: Time-splitting · IMPES · Two-phase flow · Porous media ·
CFL.

1 Introduction

The scheme of IMplicit Pressure Explicit Saturation (IMPES) is a conditionally
stable which is usually used to solve the two-phase flow in porous media. In the
IMPES scheme, the pressure equation is treated implicitly while the saturation
is updated explicitly. Hence it takes a very small time step size, in particular
with heterogeneous porous media. The IMPES scheme has been improved in
several versions (e.g. [1–3]). The temporal discretization scheme is considered
an important factor that affects the efficiency of numerical reservoir simulators.
The application of traditional single-scale temporal scheme is restricted by the
rapid changes of the pressure and saturation with capillarity and concentrations
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if applicable. Applying time splitting strategies has a significant improvement
compare to the traditional schemes. Time splitting method has been considered
in a number of publications such as [4]-[10]. For example, in Refs. [9], an explicit
sub-timing scheme is provided. On the other hand, an implicit time-stepping
scheme have been proposed by Bhallamudi et al. [7] and Park et al. [8].

In the recent years, nanoparticles have been used in many engineering branches
including petroleum applications such as enhanced oil recovery. A model of
nanoparticles transport in porous media have been established by Ju et al. [13]
based on particle migration in porous media model [14]. El-Amin et al. [15–17]
have investigated the problem of nanoparticles transport in porous media. In
Ref. [17], they presented an extended model to include mixed relative perme-
abilities and a negative capillary pressure. Dimensional analysis of the problem of
nanoparticles transport in porous media have been presented by El-Amin et al.
[18]. The nanoparticles transport in anisotropic porous media have been studied
numerically using the multipoint flux approximation by Salama et al. [19]. Also,
a numerical simulation of drag reduction effects by hydrophobic nanoparticles
adsorption method in water flooding processes has been presented by Chen et al.
[20]. The problem of dynamic update of an anisotropic permeability field with
nanoparticles transport in porous media has been considering by Chen et al. [21].
In Ref. [22], the authors presented a nonlinear iterative IMPES-IMC scheme to
solve the governing system of the nanoparticles transport in subsurface.

In this paper, we propose a time-stepping IMPES-IMC scheme to solve the
governing equations of the nanoparticles transport associated with two-phase
flow in subsurface. The CCFD method has employed for the spatial discretiza-
tion. The time-splitting scheme has applied together with the CFL condition to
adaptive the time-steps sizes. Finally, some numerical experiments are provided.

2 Modeling and Mathematical Formulation

The mathematical model of the problem under consideration consists of wa-
ter saturation, Darcy’s law, nanoparticles concentration, deposited nanoparti-
cles concentration on the pore-wall, and entrapped nanoparticles concentration
in the pore-throat. Moreover, the variations in both porosity and permeability
due to the nanoparticles deposition/entrapment on/in the pores have been taken
into consideration. In the following we introduce the governing equations briefly,
(for details see Refs. [15–19, 21, 22]:
Momentum Conservation (Darcy’s Law):

uα = − kα
µα
∇Φα, α = w, n, (1)

where
kα = krαK, Φα = pα + ραg∇z, α = w, n,

Mass Conservation (Saturation Equations):

φ
∂sα
∂t

+∇ · uα = qα, α = w, n, (2)
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where sw + sn = 1, φ is the porosity, g is the gravitational acceleration, z is the
depth. uα is the velocity, Φα is the the pressure potential, pα is the pressure, µα is
the viscosity, ρα is the density, krα is the relative permeability, qα is the external
mass flow rate, sα is the saturation; all of the phase α. K is the permeability
tensor. w stands for the wetting phase (water), and n stands for the non-wetting
phase (oil).
Providing the following definitions:

The capillary pressure: pc (sw) = pn − pw.
The total velocity: ut = uw + un.
The flow fraction: fw = λw/λt.
The phase mobility: λα = krα/µα.
The total mobility: λt.
The capillary pressure potential: Φc = pc + (ρn − ρw) g∇z.
The total source mass transfer: qt = qw + qn.

After some mathematical manipulations and referring to Refs. [11], the pressure
equation can be rewritten as,

∇ · ut = −∇ · λtK∇Φw −∇ · λnK∇Φc = qt. (3)

Because this equation contents the capillary pressure which is a function of
saturation, it will be coupled with the following saturation equation to calculate
the pressure,

φ
∂sw
∂t
− qw = −∇ · λwK∇Φw. (4)

However, the saturation is updated using the following form,

φ
∂sw
∂t
− qw = −∇ · (fwua). (5)

where uw = fwua and ua = −λtK∇Φw .
Nanoparticles Transport Model:
Assuming that the nanoparticles exist only in the water phase of one size interval.
So, The transport equation of the nanoparticles in the water phase is given as
([12, 14, 13, 15–19, 21, 22]),

φ
∂ (swc)

∂t
+∇ · (uwc−D∇c) = R+Qc, (6)

Nanoparticles Surface Deposition:
The surface deposition is expressed by,

∂cs1
∂t

=

 γd|uw|c, uw ≤ ur

γd|uw|c− γe|uw − ur|cs1, uw > ur

(7)

Nanoparticles Throat Entrapment:
The rate of entrapment of the nanoparticles is,

∂cs2
∂t

= γpt|uw|c, (8)
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where c is the nanoparticles concentrations. cs1 and cs2 are, respectively, the
deposited nanoparticles concentration on the pore surface, and the entrapped
nanoparticles concentration in pore throats. τ is the tortuosity parameter. Qc
is the rate of change of particle volume belonging to a source/sink term. γd
is the rate coefficients for surface retention of the nanoparticles. γe is the rate
coefficients for entrainment of the nanoparticles. ur is the critical velocity of
the water phase. where γpt is the pore throat blocking constants. The diffusion-
dispersion tensor is defined by,

D = φswτDt, Dt = DBr +Ddisp (9)

where DBr is the Brownian diffusion and Ddisp is the dispersion coefficient which
is defined by [1],

φswτD
disp = dt,w|uw|I + (dl,w − dt,w)

uwu
T
w

|uw|
(10)

Thus,

D = (φswτD
Br + dt,w|uw|)I + (dl,w − dt,w)

uwu
T
w

|uw|
(11)

where dl,w and dt,w are the longitudinal and transverse dispersion coefficients,
respectively. R is the net rate of loss of nanoparticles which is defined by,

R =
∂cs1
∂t

+
∂cs2
∂t

(12)

Initial and Boundary Conditions:

The initial conditions are,

sw = s0w, c = cs1 = cs2 = 0 in Ω at t = 0, (13)

The boundary conditions are given as,

pw (or pn) = pD on ΓD, (14)

ut · n = qN , sw = SN , c = c0, cs1 = cs2 = 0 on ΓN . (15)

where n is the outward unit normal vector to ∂Ω, pD is the pressure on ΓD and
qN the imposed inflow rate on ΓN , respectively. Ω is the computational domain
such that the boundary ∂Ω is Dirichlet ΓD and/or Neumann ΓN boundaries,
i.e. ∂Ω = ΓD ∪ ΓN and ΓD ∩ ΓN = Ø.

3 Multi-scale Time Splitting Method

The concept of time splitting method is to use different time step size for each
equation has a time derivative. In the above-described method, the pressure is
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coupled with the saturation in each time-step. The time-step size for the pres-
sure can be taken larger than the those of saturation and nanoparticle concen-
trations. So, for the pressure the total time interval [0, T ] is divided into Np,
time-steps as 0 = t0 < t1 < · · · < tNp=T . Thus, the time-step length assigned
for pressure is, ∆tk = tk+1 − tk. Since the saturation varies more rapidly than
the pressure, we use a smaller time-step size for the saturation equation. That
is, each interval, (tk, tk+1], will be divided into Np,s subintervals as (tk, tk+1] =

∪Np,s−1
l=0 (tk,l, tk,l+1]. On the other hand, as the concentration varies more rapidly

than the pressure (and may be saturation), we also use a smaller time-step size
for the concentration equations. Thus, we partition each subinterval (tk,l, tk,l+1]

into Np,s,c subsubintervals as (tk,l, tk,l+1] = ∪Np,s,c−1
m=0 (tk,l,m, tk,l,m+1]. Therefore,

the system of governing equations, (3), (4), (6), (7) and (8), is solved based on
the adaptive time-splitting technique. The backward Euler time discretization
is used for the equations of pressure, saturation, concentration and the two vol-
ume concentration. We linearized the capillary pressure function, Φc, in terms
of saturation using this formula,

Φc (s∗w) ∼= Φc
(
skw
)

+ Φ′c
(
skw
) [
sk+1
w − skw

]
, (16)

where Φ′c is derivative of Φc. The quantity, [sk+1
w − skw], can be calculated from

the saturation equation,

sk+1
w − skw =

∆tk

φ
(
cks1, c

k
s2

) [qk+1
w −∇ · λt

(
skw
)
K
(
cks1, c

k
s2

)
∇Φk+1

w

]
. (17)

In addition to the pressure equation,

−∇ · λt
(
skw
)
K
(
cks1, c

k
s2

)
∇Φk+1

w −∇ · λn
(
skw
)
K
(
cks1, c

k
s2

)
∇Φc (s∗w) = qk+1

t .(18)

Then, the above coupled system (16), (17) and (18) is solved implicitly to obtain
the pressure potential. Therefore, the saturation is updated explicitly with using
the upwind scheme for the convection term as,

φ
(
cks1, c

k
s2

) sk,l+1
w − sk,lw

∆tl
+∇ ·

(
fkwu

k+1
a

)
= qk,l+1

w . (19)

Therefore, the nanoparticles concentration, deposited nanoparticles concentra-
tion on the pore–walls and entrapped nanoparticles concentration in the pore–
throats are computed implicitly as follow,

φ
(
cks1, c

k
s2

) sk+1
w ck,l,m+1 − skwck,l,m

∆tm
+∇ ·

{
uk+1
w ck,l,m+1 −D

(
sk+1
w ,uk+1

w , cks1, c
k
s2

)
−R

(
uk+1
w , cks1

)}
∇ck,l,m+1 = Qk,l,m+1

c , (20)

ck,l,m+1
s1 − ck,l,ms1

∆tm
=

γd|uk+1
w |ck+1, uk+1

w ≤ ur

γd|uk+1
w |ck+1 − γe|uk+1

w − ur|ck,l,m+1
s1 , uk,l,m+1

w > ur

(21)
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and,

ck,l,m+1
s2 − ck,l,ms2

∆tm
= γpt|uk+1

w |ck,l,m+1 (22)

Finally, other parameters such as permeability, porosity, λw,λn,λt and fw are
updated each loop.

4 Adaptive Time-Stepping

In our algorithm, we have checked the Courant–Friedrichs–Lewy (CFL) condi-
tion to guarantee its satisfactory (i.e. CFL<1). In order to achieve this idea, we
have to define the following CFLs,

CFLs,x =
ux∆t

k,l

∆x
, CFLs,y =

uy∆t
k,l

∆y
, (23)

for saturation equation, and,

CFLc,x =
ux∆t

k,l,m

∆x
, CFLc,y =

uy∆t
k,l,m

∆y
, (24)

and for concentration equations. It may be noted that the CFL depends on the
ratio ∆t/∆x which can be fixed at larger time-steps and larger mesh-size. Thus,
when we use a lager domain (larger mesh size) then we can use larger time
step size. In the code, the initial time-step for the saturation equation is taken
as the pressure time-step, i.e., ∆tk,0 = ∆tk, and the initial time-step for the
concentration equation is taken as the saturation time-step, i.e., ∆tk,l,0 = ∆tk,l.
Then, we check if CFLs,x > 1 or CFLs,y > 1, the saturation time-step will be
divided by 2 and the CFLs,x and CFLs,y will be recalculated. This procedure
will be repeated until satisfying the condition CFLs,x < 1 and CFLs,y < 1, then
the final adaptive saturation time-step will be obtained. Similarly, we check if
the condition, CFLc,x > 1 or CFLc,y > 1 is satisfied, the concentration time-step
will be divided by 2 and therefore, we recalculate both CFLc,x and CFLc,y. We
repeat this procedure to reach the condition CFLc,x < 1 and CFLc,y < 1, then
we obtain the final adaptive concentration time-step.

5 Numerical Tests

In order to examine the performance of the current scheme, we introduce some
numerical examples in this section. Firstly, we introduce the required physical
parameters used in the computations. Then, we study the performance of the
scheme by introducing some results for the adaptive time steps based on values
of the corresponding Courant–Friedrichs–Lewy (CFL). Then we present some
results for the distributions of water saturation and nanoparticles concentrations.
In this study, given the normalized wetting phase saturation, S = (sw−swr)/(1−
snr − swr), 0 ≤ S ≤ 1, the capillary pressure is defined as, pc = −pe logS, and
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the relative permeabilities are defined as, krw = k0rwS
2, krn = k0rn (1− S)

2
,

k0rw = krw (S = 1), k0rw = krw (S = 1). pe is the capillary pressure parameter,
swr is the irreducible water saturation and snr is the residual oil saturation after
water flooding. The values and units of the physical parameters are inserted in
Table 1.

In Table 2, some error estimates for water saturation, nanoparticles con-
centration, and deposited nanoparticles concentration, are provided for vari-
ous values of the number of time steps k. The reference case (sn+1

w,r = 0.9565,

cn+1
r = 0.0360, and cn+1

s1,r = 1.3233×10−7) is calculated at the point (0.06,0.053)
for non-adaptive dense mesh of 200×150 for 0.6×0.4 m, at 2000 time step. It
can be seen from Table 2 that the error decreases as number of number of time
steps increases. Table 3 shows the real cost time of running the adaptive scheme
for different values of the number of time steps k. One may notice from this
table that the real cost time decreases as the number of time steps k increases.
It seems more time is needed for the adaptation process.

Table 1. Values of the physical parameters.

Parameter Value Units

γd, γpt, γe 16, 1.28, 30 m−1

ur 4.6× 10−6 m/s
c0 0.1 –
Swr, Snr 0.001 –
φ0 0.3 –
kf 0.6 –
γf 0.01 –
µw, µn 1,0.45 cP = 1.0×10−3 Pa.s
krw0, kro0 1 –
Bc 50 bar = 1.0×105 Pa
D 4.6× 10−8 m2/s

Table 2. Error estimates for various values of number of time steps k.

k ‖sn+1,k+1
w − sn+1

w,r ‖ ‖cn+1,k+1 − cn+1
r ‖ ‖cn+1,k+1

s1 − cn+1
s1,r ‖

500 0.0149 0.0065 1.8701E-05
200 0.0151 0.0065 1.8366E-05
100 0.0166 0.0068 9.9085E-05

We use a real permeability map of dimensions 120 × 50, which is extracted
from Ref. [23]. The permeabilities vary in a large scope and are they highly
heterogeneous. We consider a domain of size 40m×16m which is discretized into
120 × 50 uniform rectangles grids. The injection rate was 0.01 Pore-Volume-
Injection (PVI) and continued the calculation until 0.5 PV. In this example, we
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Table 3. Real cost time of running the adaptive scheme for different values of the
number of time steps k.

k 100 300 500 750

Real time [s] 3215 2307 532 424

choose the number of steps of the outer loop to be: (Case 1, k=50, Fig. 1; Case
1, k=100, Fig. 1; Case 1, k=200, Fig. 3). In these figures, the adaptive time-step
sizes, ∆tl and ∆tm are plotted against the number of steps of the outer loop k
and the number of the inner loops l and m. It can be seen from these figures
(Fig. 1 – Fig. 3) that the behavior of adaptive ∆tl and ∆tm are very similar. This
may be because the velocity is large and dominate the CFL. Also, both ∆tl and
∆tm start with large values then they gradually become smaller and smaller as
k increases. On the other hand, for the first two cases when k=50, 100, ∆tl and
∆tm are small when l and m are small, then they increase to reach a peak, then
they are gradually decreasing. However, in the third case when k=200, both ∆tl

and ∆tm start with large values then they gradually become smaller and smaller
as l and m, respectively, increases.

Fig. 1. Adaptive time-step sizes, ∆tl and ∆tm against the number of steps of the outer
loop k and the number of the inner loops l and m: Case 1 (k=50).

Variations of saturation of the heterogenous permeability are shown in Fig.
4. It is noteworthy that the distribution for water saturation is discontinuous
due to the high heterogeneity. Thus, for example, we may note higher water
saturation at higher permeability regions. Similarly, one may observe the discon-
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Fig. 2. Adaptive time-step sizes, ∆tl and ∆tm against the number of steps of the outer
loop k and the number of the inner loops l and m: Case 2 (k=100).

Fig. 3. Adaptive time-step sizes, ∆tl and ∆tm against the number of steps of the outer
loop k and the number of the inner loops l and m: Case 3 (k=200).
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tinuity in the nanoparticles concentration as illustrated in Fig. 5. The contrast
of the nanoparticles concentration distribution arisen from the heterogeneity of
the medium can also be noted here. Moreover, the contours of the deposited
nanoparticles concentration are shown in Fig. 6. The behavior of the entrapped
nanoparticles concentration cs2 is very similar to the behavior of cs1 because of
the similarity in their governing equation.

Fig. 4. Variations of saturation of the real heterogenous permeability case.

6 Conclusions

In this paper, we introduce an efficient time-stepping scheme with adaptive time-
step sizes based on the CFL calculation. Hence, we have calculated the CFLs,x,
CFLs,y, CFLc,x and CFLc,y at each substep and check if the CFL condition
is satisfied (i.e. CFL< 1). We applied this scheme with the IMES-IMC scheme
to simulate the problem of nanoparticles transport in two-phase flow in porous
media. The model consists of five differential equations, namely, pressure, sat-
uration, nanoparticles concentration, deposited nanoparticles concentration on
the pore-walls, and entrapped nanoparticles concentration in pore–throats. The
capillary pressure is linearized and used to couple the pressure and the satu-
ration equations. Then, the saturation equation is solved explicitly to update
the saturation at each step. Therefore, the nanoparticles concentration equation
is treated implicitly. Finally, the deposited nanoparticles concentration on the
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Fig. 5. Variations of nanoparticles concentration of the real heterogenous permeability
case.

pore-walls equation, and entrapped nanoparticles concentration in pore-throats
equation are solved implicitly. The CCFD method was used to discretize the gov-
erning equations spatially. In order to show the efficiency of the proposed scheme,
we presented some numerical experiments. The outer pressure time-step size was
selected then the inner ones, namely, the saturation subtime-step and the con-
centration subtime-step were calculated and adaptive by the CFL condition.
We presented three cases with different values of the outer pressure time-step.
Moreover, distributions of water saturation, nanoparticles concentration, and
deposited nanoparticles concentration on pore-wall are shown in graphs.
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