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Abstract. The Probabilistic Capacitated Vehicle Routing Problem (PCVRP)
is a generalization of the classical Capacitated Vehicle Routing Problem
(CVRP). The main difference is the stochastic presence of the customers,
that is, the number of them to be visited each time is a random variable,
where each customer associates with a given probability of presence.
We consider a special case of the PCVRP, in which a fleet of identical
vehicles must serve customers, each with a given demand consisting in
a set of rectangular items. The vehicles have a two-dimensional loading
surface and a maximum capacity.
The resolution of problem consists in finding an a priori route visiting
all customers which minimizes the expected length over all possibilities.
We propose a hybrid heuristic, based on a branch-and-bound algorithm,
for the resolution of the problem. The effectiveness of the approach is
shown by means of computational results.

Keywords: vehicle routing · bin packing · probability · hybrid heuristic · exact
algorithms

1 Introduction

In the last decades, several variants of Vehicle Routing Problem (VRP) have
been studied since the initial work of Dantzig and Ramser [9]. In its classical
form, the VRP consists in building routes starting and ending at a depot, to
satisfy the demand of a given set of customers, with a fleet of identical vehicles.
In particular, the capacitated Vehicle Routing Problem (CVRP) is a well known
variation of the VRP [25], defined as follows : we are given a complete undirected
graph G = (V,E) in which V is the set of n + 1 vertexes corresponding to
the depot and the n customers. For each vertex vi is associated a demand di.
The demand of each customer is generally expressed by a positive integer that
represents the weight of the demand. A set of K identical vehicles is available at
the depot. Each vehicle has a capacity Q. The CVRP calls for the determination
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of vehicles routes with minimal total cost.
Recently, mixed vehicle routing and packing problems have been studied [16, 15,
8]. This problem is called CVRP with two-dimensional loading constraints (2L-
CVRP). In 2L-CVRP, two-dimensional packing problems are considered where
all vehicles have a single rectangular loading surface whose width and height
are equal to W and H, respectively. Each customer is associated with a set of
rectangular items whose total weight is equal to di. Solving 2L-CVRP consists
in determining the optimal set of vehicles routes of minimal cost to satisfy the
demand of the set of customers and without overlapping the loading surface. It
is clear that 2L-CVRP is strongly NP-Hard since it generalizes the CVRP.

Fig. 1. Example of solution of 2L-CVRP

The 2L-CVRP has an important applications in the fields of logistics or
goods distribution. However, in almost all-real world applications, randomness
is an inherent characteristic of the problems. For example, in practice whenever
a company, in a given day, is faced with only deliveries to a random subset of
its usual set of customers, it will not be able to redesign the routes every day
since it is not sufficiently important to justify the required effort and cost. Be-
sides, the system’s operator may not have the resources for doing so. Even more
importantly the operator may have other priorities.
In both cases, the problem of designing routes can very well modeled by introduc-
ing a new variant of 2L-CVRP with the above described constraints, denoted as
2L-PCVRP. Among several motivations, 2L-PCVRP is introduced to formulate
and analyze models which are more appropriate for real world problems. 2L-
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PCVRP is characterized by the stochastic presence of the customers. It means
that the number of customers to be visited each time is a random variable,
where the probability that a certain customer requires a visit is given. This class
of problems differs from the Stochastic Vehicle Routing Problem (SVRP) in the
sense that here we are concerned only with routing costs without the introduc-
tion of additional parameters ([5, 3, 22, 23]).
2L-PCVRP has not been previously studied in the literature. The only closely
related work we are aware of is the deterministic version 2L-CVRP [16] and
Probabilistic Vehicle Routing Problem (PVRP) [4].
In fact, compared with the number of studies available on classical CVRP, rel-
atively few papers have been published on optimizing both routing of vehicles
and loading constraints. For deterministic 2L-CVRP, Iori et al. [16] presented
an exact algorithm for the solution of the problem. The algorithm is making use
of both classical valid inequalities from CVRP literature and specific inequali-
ties associated with infeasible loading constraints. The algorithm was evaluated
on benchmark instances from the CVRP literature, showing a satisfactory be-
havior for small-size instances. In order to deal with more larger sized instances,
heuristic algorithms have been proposed. Gendereau et al. [13] developed a Tabu
search for the 2L-CVRP. The resolution of the routing aspect is handled through
the use of Taburoute, a Tabu search heuristic developed by Gendreau et al. [12]
for the CVRP. Some improvements were proposed to the above Tabu search,
Fuellerer et al. [10] have proposed an Ant Colony Optimization algorithm, as a
generalization of savings algorithm by Clarke and Wright [7] through the addi-
tion of loading constraints.
Our aim is to develop a hybrid heuristic for the 2L-PCVRP, to solve the pertur-
bation of the initial problem 2L-CVRP, through a combination of sweep heuris-
tic [14] and a branch and bound algorithm[1].
This paper is organized as follows : section 2 exhibits a detailed description of
the problem. Section 3 presents the proposed algorithm for the solution of the
2L-PCVRP. In section 4, computational results are discussed and section 5 draws
some conclusions.

2 Problem Description

2L-PCVRP is a NP-Hard since it generalizes two NP-Hard problems that have
been treated separately 2L-CVRP and PVRP [4]. In fact, 2L-PCVRP belongs to
the class of Probabilistic Combinatorial Optimization Problems (PCOP) which
was introduced by Jaillet [17] and studied in ([4, 6, 1]).
So, 2L-PCVRP is formulated as follows. We consider a complete undirected
graph G = (V,E), in which V defines the set of n + 1 vertex corresponding to
the depot v0 and the n customers (v1, ..., vn). Each customer vi is associated
with a set of mi rectangular items, whose total weight is equal to his demand
di, and each having specific width and height equal to wil and hil, (l = 1, ..,mi).
A fleet of identical vehicles is available. Each vehicle has a capacity Q and a
rectangular loading surface S, for loading operations, whose width and height
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are respectively equal to W and H.
Let P be the probability distribution defined on the subset of V : P(V ), τ be a
given an a priori route through V . Let Lτ be a real random variable defined on,
P(V ), which in an a priori route τ and for each S of P(V ), associates the length
of the route through S. For each subset S ⊆ V , we consider U a modification
method, it consists in erasing from τ the absent vertices by remanning in the
same order. The solution of the problem consists on finding an a priori route
visiting all points that minimizes the expected length E of a route τ [17, 4].

E(Lτ,U ) =
∑
S⊆V

p(S)Lτ,U (S) (1)

(a) A priori route (b) The resulting route when customers
3 and 1 are absent

Fig. 2. Example of a priori route for PVRP

In our approach, the priori route is built satisfying the next conditions :

1. Each route starts and ends at the depot.

2. The total customers demands on one route does not exceed vehicle routing
capacity Q.

3. All the items of a given customer must be loaded on the same vehicle (each
customer is visited once).

4. Items don’t have a fixed orientation (a rotation of 90◦ is allowed).

5. The items delivered on each route must fit within the loading surface S of
the vehicle, their total weight should not exceed capacity Q.

6. The loading and unloading surface side of the vehicle is placed at height H.
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An alternative approach to define 2L-PCVRP is as a combination of the prob-
abilistic travelling salesman problem(PTSP), with a loading constraints which
are closely related to the classical and extensively studied 2BPP ([20, 21]). The
PTSP is the probabilistic version of the well-known problem Travelling salesman
problem (TSP), which was introduced by Jaillet ([17, 18, 6]). PTSP calls for the
determination of priori route of minimal expected total length and 2BPP occurs
in determination of packing the given set of rectangular items into the loading
surface of the vehicle.

3 Hybrid Heuristic for 2L-PCVRP

Few papers have proposed methods of resolution for PCOPs ([4, 24, 1]), in this
section we present a hybrid heuristic for the solution of 2L-PCVRP based on a
branch and bound algorithm for PTSP which proved to be a successful technique.
The hybrid heuristic proceed in two stages :

1. Sweep Algorithm [14] : we determine clusters (groups of customers) satisfying
the six conditions cited above.

2. Each obtained cluster is considered an instance of PTSP, we solve it with
the branch and bound algorithm [1].

3.1 Sweep Algorithm

The customers are swept in a clockwise direction around a center gravity which
is the depot and assigned to groups. Specifically, the sweep algorithm is the
following :
Step 1 : Calculate for each customer, his polar coordinate θi in relation to the
depot. Renumber the customers according to polar coordinates so that :

θi < θi+1, 1 ≤ i ≤ n (2)

Step 2 : Start from the non clustered customer j with smallest angle θj construct
a new cluster by sweeping consecutive customers j+1, j+2 . . . until the capacity
and the bounding of loading surface constraints will not allow the next customer
to be added. This means that each cluster must lead to a feasible packing (items
of cluster customers are packed without overlapping the loading surface).
It is clear that it is complex to take into account the 2BPP with the loading
of the items into the vehicles, with the additional side constraint that all the
items of any given customer must be loaded into the same bin. Concerning
the complexity, note that the 2BPP is an NP-hard combinatorial optimization
problem (see [11]). To this end, simple packing heuristic Bottom-Left [2] is used
to solve 2BPP instances. Bottom-Left consists in packing the current item in
the lowest possible position, left justified of open bin; if no bin can allocate it, a
new one is initialized. The algorithm has O(n2) time complexity.
Step 3 : Continue Step 2 until all customers are included in a cluster.
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Step 4 : Solving each cluster, is tantamount solving an instance of PTSP, where
each customer has a probability of presence pi. The solution consists in finding
a priori route visiting the cluster customers which minimizes the expected total
length of the route τ .

3.2 Probabilistic Branch & Bound Algorithm

The overall aim is to perform a depth-first traversal of a binary tree by assigning
to each branch a probabilistic evaluation. We consider M the distance matrix
between the customers. This exact algorithm for solution of the PTSP, is based

Table 1. Matrix example

M=

A B C D

A ∞ dAB dAC dAD

B dBA ∞ dBC dBD

C dCA dCB ∞ dCD

D dDA dDB dDC ∞

on the expected length of a route introduced by Jaillet [17]. Let d(i, j) be a
distance between the customers i =ABCD· · · = v1v2v3 . . . , j =ABCD· · · =
v1v2v3 . . . , and p = P (k) ∀k ∈ τ , q = 1 − p where p is the probability of
presence, the expected length of a route τ is shown by (3).

E(Lτ ) = p2
n−2∑
r=0

qr
n∑
i=1

d(i, T r(i)) (3)

Where T r(i) is the successor number r of i in the route τ .
This design takes the form of ”Branch and Bound of Little et al. [19]” but in the
probabilistic framework, by deriving the equations of the evaluations, in order
to direct the search space towards the promising sub-spaces (i.e., the possibility
of finding the optimal solution is very likely).
In the same manner of Littel’s algorithm for the TSP, we reduce the matrix.
The lower bound for the TSP equals EvTSP , which will help us to calculate the
initial evaluation for the PTSP.

EvTSP (n) =

n∑
i=1

minRi +

n∑
j=1

minCj (4)

Where Ri is the ith row and Ci is the jth column.
Let G = (V,E,M) be a graph such as |V | = n, V is the set of vertices, E the
set of edges and M is distance matrix. The probabilistic evaluation P.EPTSP :
which is defined as follows is considered as a lower evaluation for the PTSP.

P.EΩ = P.EvPTSP (n) = EvTSP (n)(p2
n−2∑
r=0

qr) = EvTSP (n)p(1− qn−1) (5)
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This first evaluation associated with the root Ω of the tree shown in Fig. 3.
Then, for the next two nodes of the tree, the next two transitional probabilistic
evaluations are given due to choice of an arc, according to its effect on the
construction of the optimal route. For the arc AB (the same for other arcs) :

1. Choose AB: increase the expected length of the route at least by

P.EvAB = P.EvΩ + p2
n−2∑
r=1

qr[min
(r)
X 6=Ad(A,X)] + p2EvTSPNext

(6)

Where EvTSPNext
is the evaluation of resulting matrix for the TSP where

row A and column B are removed.

2. Not choose AB : increase the expected length of the route at least by

P.EvAB = P.EvΩ + p2[min
(1)
K 6=Bd(A,K) + min

(1)
K 6=A(d(K,B))] (7)

+ p2
n−2∑
r=2

qr[min
(r)
X 6=Kd(A,X) + min

(r)
X 6=Bd(K,X)]

P.EvAB represents the probabilistic penalty cost for the arcAB,min(i)d(A,X)
is the ith minimum of row A, n is the size of the initial matrix. These formulas
are valid for all iterations.

The construction starts from the root of the tree, which equals P.EΩ . The prob-
lem is divided into two sub-problems with the approach (depth-first, breadth-
first) according to the probabilistic penalties cost. After the penalty calculation,
it is easily to get the biggest probabilistic penalty cost. So, we separate according
to this arc. First remove the row, column and replace the chosen arc by ∞ to
prohibiting the parasitic circuits.

Table 2. Probabilistic penalties

M=Mreduced=

A B C D

A ∞ (P.EvAB)0(P.EvAB) - -
B - ∞ - -
C - - ∞ -
D - - - ∞

According to this probabilistic penalty calculation, we construct the first
branching of the tree, which is shown in Fig. 3.
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Fig. 3. Branching of the tree for the PTSP

The search continues until all branches that have been visited are either
eliminated or the end of the process is reached. That is, the present evaluation
is less than the all evaluations, which are defined by the expected length of each
final branch by profiting that the expected length can be calculated in O(n2)
time Jaillet [17].

4 Computational Results

In this section, we first compare our method over the benchmark proposed by
Iori et al. [16] for the deterministic 2L-CVRP ( we suppose that all customers are
present). Next, we exhibit the new instances for 2L-PCVRP, before analyzing
the performance of the proposed heuristic on those instances. The final results
are reported at the end. The algorithm was coded in Java and all tests were
performed on a typical PC with i5-5200U CPU (2.2GHz) under Windows 8
system.

4.1 Comparison on the 2L-CVRP

By assuming that all customers have a probability of occurrence (p = 1), deter-
ministic instances of 2L-CVRP are obtained. In this case, our algorithm is only
compared to the approach proposed by Iori et al. [16]. The algorithm of Iori was
coded in C and was run on a PC with CPU 3GHz. Because Gendreau et al. [13]
and Fuellerer et al. [10] do not solve the problem under the same constraints as
we do, direct comparisons with their algorithms can not be made.
To test their algorithm, Iori et al. proposed a benchmark of five classes, for a
total of 180 instances. The benchmark presents the coordinates (xi, yi), the de-
mand di and the items mi of each customer.
Five classes are considered, which differ in number of customers, number of
items, generated items and vehicle capacity. In the first class of instances, each
customer has only one item of width and height equal to 1. However, we ob-
served that packing was not constraining so the instances are reduced to the
classical CVRP. For the other classes, each customer has 1 to r items in type r
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(1 ≤ r ≤ 5). The number of items and items dimensions were randomly gener-
ated. For all five classes the loading surface of vehicles was fixed to W = 20 and
H = 40. The largest instance have up to 255 customers, 786 items and a fleet of
51 vehicles. Table 3 summarizes the different benchmark classes.

Table 3. Classes Used for the generation of items

Class mi wil hil

1 1 1 1

2 [1,2] [W
10

, 2W
10

], [ 2W
10

, 5W
10

], [ 4W
10

, 9W
10

] [ 4H
10

, 9H
10

], [ 2H
10

, 5H
10

], [ H
10
, 2H

10
]

3 [1,3] [W
10
, 2W

10
], [ 2W

10
, 4W

10
], [ 3W

10
, 8W

10
] [ 3H

10
, 8H

10
], [ 2H

10
, 4H

10
], [ H

10
, 2H

10
]

4 [1,4] [W
10
, 2W

10
], [W

10
, 4W

10
], [ 2W

10
, 7W

10
] [ 2H

10
, 7H

10
], [ H

10
, 4H

10
], [ H

10
, 2H

10
]

5 [1,5] [W
10
, 2W

10
], [W

10
, 3W

10
], [W

10
, 6W

10
] [ H

10
, 6H

10
], [ H

10
, 3H

10
], [ H

10
, 2H

10
]

Table 4 presents the comparison of the two approaches. Since the unloading
constrains are not considered in our approach, we only compared the total time
spent by routing procedures. In each case, we indicate the number of solved
instances by both algorithms as well as the average of routing CPU time in
seconds for solving those instances.

Table 4. Comparison of two algorithms for deterministic 2L-CVRP

Type Solved instances
Iori et al. Our Hybrid heuristic
TRout TRout

1 10 38.33 9.49
2 11 620.77 7.30
3 11 1804.50 8.17
4 10 436.91 8.35
5 11 134.38 11.57

Average 624.99 8.79

Overall, our algorithm was able to solve instances with up to 255 customers
and 786 items while the algorithm of Iori et al. was limited to maximum of 35
customers and 114 items. For the 53 instances solved by both algorithms, our
hybrid heuristic took only few seconds compared to hundreds and thousands
for the algorithm of Iori et al. This is a very considerable gain, if we take also
into account the different performances of the machines used to run the two
algorithms.

4.2 Probabilistic Instances

We exploited the 2L-CVRP benchmark described in the previous section to gen-
erate our probabilistic instances. Since packing problems do not occur for the
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class of type 1, when solving all its instances, so we omit it from tests. For
each of the 4 classes, we performed tests on 14 instances that differ in numbers
of customers varying in {15, 20, 25, 30, 35, 45, 50, 75, 100, 120, 134, 150, 200, 255}
(255 the largest number of customers in the benchmark). For the 14 ∗ 4 = 56
instances, we generated 5 different probabilistic instances, for a total of 280, by
varying the probability of presence p ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
The computational results are summarized in Table 5. Each instance is repre-
sented by a four digits number : the first two digits corresponds to the instance
number, while the last two digits identify the instance class. The column denoted
”n” represents the number of customers. The table shows Tclust representing the
CPU time used by the sweep algorithm. Trout gives the CPU time for generating
routes to all clusters using the branch and bound algorithm. Ttot reports the
total CPU time used by the overall heuristic (Ttot = Tclust + Trout). All times
are expressed in seconds.

Table 5: Summary of final results

Class 2 Class 3 Class 4 Class 5
n Q p Inst TclustTrout Ttot Inst TclustTrout Ttot Inst TclustTrout Ttot Inst TclustTrout Ttot

15 90

0.1
0.3
0.5
0.7
0.9

0102

0.41
0.42
0.42
0.46
0.45

0.31
0.30
0.29
0.24
0.23

0.73
0.72
0.72
0.71
0.68

0103

0.39
0.40
0.40
0.40
0.39

0.41
0.39
0.38
0.38
0.34

0.80
0.80
0.79
0.78
0.73

0104

0.50
0.51
0.51
0.51
0.46

0.34
0.27
0.20
0.20
0.19

0.84
0.78
0.72
0.72
0.65

0105

0.56
0.57
0.57
0.65
0.56

0.43
0.42
0.41
0.29
0.27

1.00
0.99
0.98
0.95
0.83

20 85

0.1
0.3
0.5
0.7
0.9

0302

0.59
0.58
0.56
0.41
0.41

0.35
0.28
0.18
0.19
0.06

0.94
0.86
0.75
0.61
0.48

0303

0.46
0.45
0.45
0.46
0.43

0.67
0.60
0.52
0.43
0.49

1.13
1.05
0.97
0.89
0.92

0304

0.51
0.53
0.50
0.46
0.48

0.70
0.67
0.69
0.70
0.635

1.22
1.20
1.19
1.17
1.11

0305

0.54
0.63
0.94
0.81
0.76

1.18
0.90
0.40
0.35
0.32

1.73
1.54
1.35
1.16
1.08

25 48

0.1
0.3
0.5
0.7
0.9

0902

0.47
0.45
0.45
0.45
0.45

0.27
0.25
0.25
0.24
0.23

0.75
0.71
0.70
0.69
0.68

0903

0.48
0.46
0.48
0.45
0.46

0.69
0.61
0.51
0.44
0.40

1.18
1.08
0.99
0.90
0.87

0904

0.51
0.54
0.53
0.54
0.55

0.54
0.48
0.45
0.43
0.39

1.05
1.02
0.98
0.98
0.95

0.90

0.59
0.60
0.95
0.60
0.70

0.70
0.67
0.21
0.54
0.44

1.30
1.28
1.17
1.15
1.14

30 68

0.1
0.3
0.5
0.7
0.9

1202

0.61
0.61
0.60
0.58
0.50

0.37
0.34
0.31
0.29
0.26

0.98
0.95
0.91
0.87
0.76

1203

0.40
0.45
0.43
0.54
0.50

0.95
0.80
0.64
0.37
0.34

1.36
1.25
1.08
0.91
0.84

1204

0.59
0.61
0.58
0.64
0.60

0.59
0.53
0.50
0.40
0.41

1.19
1.14
1.09
1.04
1.02

1205

0.68
0.68
0.67
0.88
0.90

0.98
0.81
0.66
0.29
0.26

1.67
1.50
1.34
1.17
1.16

35 67

0.1
0.3
0.5
0.7
0.9

1602

0.43
0.30
0.18
0.11
0.10

0.41
0.35
0.28
0.16
0.17

0.84
0.65
0.46
0.28
0.28

1603

0.51
0.54
0.51
0.65
0.50

0.68
0.56
0.50
0.27
0.41

1.19
1.10
1.02
0.93
0.91

1604

0.88
0.67
0.66
0.79
0.71

0.47
0.57
0.46
0.21
0.25

1.36
1.24
1.12
1.01
0.96

1605

0.95
0.92
0.98
0.90
0.78

0.61
0.45
0.31
0.30
0.24

1.57
1.37
1.29
1.21
1.02
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45 60

0.1
0.3
0.5
0.7
0.9

1702

0.63
0.58
0.53
0.48
0.23

0.51
0.43
0.34
0.26
0.12

1.15
1.01
0.88
0.74
0.36

1703

0.52
0.48
0.57
0.50
0.22

0.77
0.63
0.36
0.26
0.18

1.29
1.12
0.94
0.76
0.40

1704

0.75
0.73
0.65
0.65
0.62

0.99
0.79
0.65
0.44
0.38

1.74
1.52
1.31
1.10
1.00

1705

0.82
0.91
0.85
0.88
0.74

0.40
0.26
0.17
0.09
0.14

1.23
1.17
1.02
0.98
0.88

50 160

0.1
0.3
0.5
0.7
0.9

1902

0.58
0.58
0.64
0.65
0.64

0.56
0.55
0.46
0.43
0.35

1.15
1.13
1.11
1.08
0.99

1903

0.62
0.60
0.67
0.70
0.75

0.79
0.78
0.68
0.62
0.54

1.41
1.38
1.35
1.32
1.29

1904

0.96
0.91
0.92
0.89
0.87

0.38
0.40
0.36
0.39
0.38

1.34
1.31
1.29
1.28
1.26

1905

0.96
1.18
9.85
1.01
1.03

1.24
0.89
0.94
0.77
0.71

2.21
2.07
1.92
1.78
1.75

75 100

0.1
0.3
0.5
0.7
0.9

2402

0.70
0.73
0.68
0.69
0.54

0.72
0.53
0.42
0.40
0.39

1.43
1.26
1.10
1.10
0.94

2403

0.73
0.75
0.81
0.76
0.75

0.59
0.57
0.49
0.52
0.50

1.33
1.32
1.30
1.29
1.25

2404

1.22
1.12
1.14
1.01
1.28

0.38
0.44
0.38
0.47
0.19

1.61
1.57
1.53
1.49
1.47

2405

1.29
1.20
1.18
1.19
1.28

0.67
0.72
0.69
0.66
0.51

1.96
1.93
1.89
1.86
1.79

100 112

0.1
0.3
0.5
0.7
0.9

2702

0.88
0.87
0.78
0.79
0.73

0.61
0.54
0.54
0.49
0.35

1.49
1.41
1.33
1.24
1.08

2703

0.87
0.89
0.92
0.89
0.92

1.34
1.08
0.81
0.60
0.47

2.22
1.97
1.73
1.49
1.39

2704

1.56
1.65
1.53
1.43
1.34

0.40
0.24
0.29
0.32
0.30

1.96
1.90
1.83
1.76
1.64

2705

1.71
1.95
1.79
1.73
1.75

0.69
0.90
0.50
0.51
0.38

2.41
2.85
2.30
2.24
2.13

120 200

0.1
0.3
0.5
0.7
0.9

2802

0.89
0.89
0.88
0.95
0.95

0.60
0.55
0.50
0.38
0.36

1.50
1.44
1.39
1.33
1.32

2803

1.00
1.05
0.96
1.01
1.03

1.74
1.25
0.91
0.43
0.31

2.74
2.31
1.88
1.45
1.34

2804

1.80
1.68
1.62
2.13
1.17

1.74
1.64
1.12
0.39
0.55

3.54
3.33
2.74
2.53
1.73

2805

2.19
2.38
2.38
2.39
1.45

1.17
0.70
0.42
0.13
0.52

3.36
3.08
2.80
2.52
1.97

134 2210

0.1
0.3
0.5
0.7
0.9

2902

1.01
0.96
0.90
0.88
0.87

0.50
0.49
0.51
0.53
0.49

1.51
1.46
1.41
1.41
1.36

2903

0.86
0.92
0.90
0.95
0.89

0.81
1.06
1.32
1.51
1.81

1.68
1.98
2.23
2.47
2.71

2904

1.10
1.34
1.34
1.33
1.26

2.38
1.54
0.93
0.33
0.23

3.49
2.88
2.27
1.66
1.50

2905

1.78
1.71
1.89
1.78
1.54

1.55
1.24
0.69
0.41
0.23

3.34
2.96
2.58
2.20
1.78

150 200

0.1
0.3
0.5
0.7
0.9

3002

0.93
0.96
0.87
0.87
0.87

0.64
0.55
0.61
0.61
0.61

1.57
1.52
1.48
1.48
1.49

3003

0.92
0.95
0.96
0.96
0.98

1.35
1.01
0.69
0.71
0.39

2.27
1.96
1.66
1.68
1.38

3004

1.28
1.18
1.25
1.21
1.54

1.72
1.64
1.19
0.82
0.45

3.00
2.83
2.44
2.04
2.00

3005

1.94
2.08
1.97
2.00
2.15

1.39
1.07
1.00
0.97
0.63

3.33
3.15
2.97
2.79
2.79

200 200

0.1
0.3
0.5
0.7
0.9

3302

1.06
1.06
1.23
1.20
1.18

1.53
1.39
1.06
0.94
0.84

2.59
2.45
2.29
2.14
2.03

3303

1.24
1.26
1.21
1.25
1.56

1.31
1.05
1.06
0.97
0.44

2.35
2.31
2.27
2.23
2.01

3304

1.63
1.45
1.39
1.56
1.96

1.41
1.44
1.34
1.18
0.62

3.05
2.89
2.74
2.74
2.58

3305

2.25
2.06
1.97
1.97
2.48

2.14
1.93
1.63
1.24
0.59

4.39
4.00
3.60
3.21
3.07
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255 1000

0.1
0.3
0.5
0.7
0.9

3602

1.28
1.30
1.31
1.26
1.23

1.65
1.49
1.35
1.27
1.25

2.93
2.80
2.67
2.53
2.49

3603

1.62
1.62
1.39
1.26
1.75

1.21
1.03
1.08
1.04
0.54

2.83
2.66
2.48
2.30
2.29

3604

1.69
1.67
1.59
1.48
1.94

1.55
1.46
1.48
1.52
0.92

3.25
3.14
3.07
3.00
2.87

3605

2.68
2.53
2.46
2.61
2.53

1.93
1.73
1.44
0.95
1.19

4.62
4.26
3.91
3.56
3.72

By observing Table 5, we may see that the proposed heuristic was able to
solve all instances with up to 255 customers within moderate computing time.
We observed that the heuristic is sensitive to the type of items. In fact, Tclust
arise increasingly from class 2 to class 5 and this is explained by the fact that
class 5 is characterized by a large number of items compared to the rest of classes,
if we consider the same instance. This is a typical feature of 2BPP.
As matter of fact, Tclust, including the CPU time for packing customers items,
absorbs a very large part of Ttot.
When addressing larger instances of 2L-PCVRP, the complexity of the problem
increases consistently. This is, however, not surprising because it is well known
that the two problems PTSP and 2BPP are NP-hard. We can observe, for the
same probability of presence, an increase of Ttot going to a factor of 4 (from 1s
to 4s).
Table 5 shows that a higher percentage of stochastic customers (low values of
probability of presence p) increases the complexity of the problem, as indicated
by Ttot. For example, when the probability of presence equals 0.1, Ttot increases
from 166ms to 1.55s through all tested instances.

5 Conclusion and Future Work

This paper has introduced a probabilistic variant of 2L-CVRP, where each cus-
tomer has a probability of presence. 2L-PCVRP combines the well known prob-
abilistic travelling salesman problem and the two-dimensional bin packing prob-
lem.
A hybrid heuristic was presented to deal with the new variant, 2L-PCVRP. The
heuristic, is consisted of two phases, where in the first phase, the sweep algo-
rithm was used to generate clusters of customers. Each cluster is solved using a
branch and bound algorithm.
The proposed heuristic solved successfully all instances derived for 2L-PCVRP,
involving up to 255 customers and 786 items. On the deterministic 2L-CVRP,
the heuristic outperformed another state-of-the-art of an exact algorithm.
Future work will consider different variants where, for example, stochastic cus-
tomers and items are considered.
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