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Abstract. In this paper, we firstly study numerical methods for gas flow simu-

lation in dual-continuum porous media. Typical methods for oil flow simulation 

in dual-continuum porous media cannot be used straightforward to this kind of 

simulation due to the artificial mass loss caused by the compressibility and the 

non-robustness caused by the non-linear source term. To avoid these two prob-

lems, corrected numerical methods are proposed using mass balance equations 

and local linearization of the non-linear source term. The improved numerical 

methods are successful for the computation of gas flow in the double-porosity 

double-permeability porous media. After this improvement, temporal advance-

ment for each time step includes three fractional steps: i) advance matrix pres-

sure and fracture pressure using the typical computation; ii) solve the mass bal-

ance equation system for mean pressures; iii) correct pressures in i) by mean 

pressures in ii). Numerical results show that mass conservation of gas for the 

whole domain is guaranteed while the numerical computation is robust. 

Keywords: Mass conservation; Numerical method; Double-porosity double-

permeability; Fractured porous media; Gas flow. 

1 Introduction 

Fractured reservoirs contain significant proportion of oil and gas reserves all over the 

world. This proportion is estimated to be over 20% for oil reserves [1] and probably 

higher for gas reserves [2]. The large proportion of petroleum in fractured reservoirs 

is a good supplementary to convectional petroleum resource, which cannot solely 

satisfy energy demands all over the world for oil and gas. Fractured reservoirs are 
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attracting petroleum industry and getting more developments. Despite well under-

standings and technological accumulations for conventional oil and gas, technologies 

for explorations in fractured reservoirs are relative immature due to the complicated 

structures and flow behaviors in fractured reservoirs. Therefore, researches driven by 

the increasing needs to develop petroleum in fractured reservoirs have been received 

growing attentions. Efforts on modeling and understanding the flow characteristics in 

fractured reservoirs have been made continuously [3]. Among the commonly used 

conceptual models, the double-porosity double-permeability model is probably widely 

used in petroleum engineering due to its good ability to match many types of labora-

tory or field data and has been utilized in commercial software [4]. 

Some numerical simulations [5] and analytical solutions [6,7] have been proposed 

for oil flow in dual-continuum porous media. However, analytical solutions can only 

be obtained under much idealized assumptions, such that slight compressibility, infi-

nite radial flow, homogenization etc., so that their applications are restricted to simpli-

fied cases of oil flow. For gas flow, slight compressibility assumption is not held any 

more. The governing equations are nonlinear and cannot be analytically solved. Nu-

merical computations for gas flow in dual-continuum porous media might be more 

difficult than oil flow because the strong nonlinearity induced by compressibility of 

gas. Therefore, it is important to study numerical methods for gas flow in fractured 

reservoirs based on the dual-continuum model. We also numerically study the effect 

of the production well on the gas production in a dual-continuum porous medium with 

non-uniform fracture distribution. 

2 Governing equations and numerical methods 

2.1 Physical model and governing equations 

Fig.1 shows the computational domain. The side length of the domain is L. Other sets 

can be found in the figure. 

O
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v=0

production well

 

Fig. 1. Physical model 

Darcy’s law in a dual-continuum system is: 
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where Mu  and Mv  are two components of Darcy velocity of gas flow in matrix, Fu  

and Fv  are two components of Darcy velocity of gas flow in fracture, xxMk  and yyMk  

are two components of matrix permeability, xxFk  and yyFk  are two components of 

fracture permeability, Mp  and Fp  are pressures in matrix and fracture respectively. 

  is the dynamic viscosity. 

Mass conservation equations for gas flow in dual-continuum reservoirs governed 

by Darcy’s law are: 
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Where M  and F  are porosities of matrix and fracture respectively, Mk  is the intrinsic 

permeability of matrix for the matrix-fracture interaction term.   is the shape factor 

of fracture, taking the form proposed by Kazemi et al. [8]: 

2 2
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Where xl  and yl  are the lengths of fracture spacing in the x and y directions respec-

tively. wC  is a factor of the well: 
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Where Fk  is the permeability of fracture at the location of the production well, xh  and 

yh  are side lengths of the grid containing the well, wr  and er  are well radius and 

equivalent radius ( 0.20788er h , x yh h h  and xh x  , yh y  for uniform square 

grid). wC  is 1 for the grid cell containing the well and 0 for other cells. pbh is the bot-

tom hole pressure. 

2.2 Numerical methods 

The above governing equations are similar with those of oil flow in dual-continuum 

porous media so that we directly apply the numerical methods for oil flow to gas flow 

at first. Finite difference method is used on staggered grid. Temporal advancement is 

the semi-implicit scheme to ensure a large time step. Spatial discretization adopts the 

second-order central difference scheme. Based on these methods, Eq.(3) and Eq.(4) 

are discretized to: 
         1 1 1 1 1
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n

Fi j F Fi j Fi j Fi j Fi j Fi jb p swx sex ssy sny     . Other coefficients are not 

shown here due to the limitation of the paper. 

3 Discussions on numerical method 

The discretized equations are solved using parameters in Table 1. Computational 

results show that the well pressure is always negative, which is unphysical, because 

all pressures must be higher than Pbh (2atm). We further find the difference between 

initial total mass and computational total mass is increasing (Fig.2), indicating that 

gas mass is lost in the computation. This phenomenon demonstrates that current nu-

merical methods cannot automatically ensure the mass conservation, although the 

computation is based on the mass conservation equation (Eq.(3) and Eq.(4)). There-

fore, mass conservation law should be utilized to correct current numerical methods. 
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Fig. 2. Difference between real mass and computational mass 
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Fig. 3. Matrix pressure after 10000 t                  Fig. 4. Fracture pressure after 10000 t  

Table 1. Computational parameters 

Parameter Value Unit 

M  
0.5 / 

F  
0.001 / 

 0Mp t
 

100 atm 

 0Fp t
 

100 atm 

bhp
 

2 atm 

xxFk
 

100 md 

yyFk
 

100 md 

xxMk
 

1 md 

yyMk
 

1 md 

Mk
 1 md 

W 16 g/mol 

R 8.3147295 J/(mol·K) 

T 25 oC 

  11.067×10-6 Pa·s 

nx 101 / 

ny 101 / 

L 100 m 

xl  
20 cm 

yl  
20 cm 

wr  
20 cm 

t  0.24 h 

*1atm=101325Pa; 1md=9.8692327×10
-16

m
2
; 

0t  represents initial time. 
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Matrix pressure and fracture pressure at 10000 t  are shown in Fig.3 and Fig.4 re-

spectively. Their distributions indicate that pressure gradients are correct. Thus, the 

incorrect pressures are caused by the unreal mean pressures. They can be corrected by 

the real mean pressures as follows: 
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for each time step. Thus, the calculation of 
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 turns to the calcula-

tion of unknown real

Mp  and real

Fp . Gas is continuously flowing from matrix to fracture 

and leaving the dual-continuum system from the well. Therefore, mass balance of 

matrix in each time step should be: 
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Mass balance of fracture in each time step is: 
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Where  n
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moment of each time step,  1n
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  and  1n
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fracture at the ending moment of each time step,  1n
mT

  is the mass leaving matrix 

(i.e. equivalent to the mass entering fracture) at each time step,  1n
Q


 is the mass leav-

ing the fracture via the production well at each time step. 

Eq.(3) and Eq.(4) are mass conservation equations in the unit of Pa/s. 
W

x y t
RT

    

should be multiplied to all terms of Eq.(3) and Eq.(4) to obtain the masses in Eq.(11) 

and Eq.(12): 
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The masses of gas can be calculated via equation of state: 
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Eq.(17) and Eq.(18) can be used to directly obtain the values of  n
mM  and  n

mF  in 

every time step. Eq.(13)~Eq.(16) are substituted to Eq.(11) and Eq.(12) so that the 

mass balance equations become: 
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Eq.(9) and Eq.(10) are substituted to the above two equations to obtain the following 

expressions: 
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ny nx
M

M M M M F Fi j i j i j
j i i j

n

w F F F F bhiW jW iW jW

p p C x y t p p p p

k
x y t p p p p p p

RT
C x y t p p p p p mF

W




 

 

 
        

   

 
        

 

        





  (22) 

 

where iW, jW are the grid numbers of the well in the x and y directions respectively. 

Eq.(21) and Eq.(22) are the final expressions of mass balance equations Eq.(11) and 

Eq.(12). real

Mp  and real

Fp  can be directly solved combining these two equations. Once 

the combined equations (Eq.(21) and Eq.(22)) are solved, real

Mp  and real

Fp  are obtained 

so that pressures can be corrected using Eq.(9) and Eq.(10) for every time step. 

Table 2. Well pressure and mass difference after improvement 

nt/100 1 2 3 … 10 11 12 13 14 

pwell 3.83 3.63 3.47 … 2.80 2.74 2.69 2.65 2.75 

mreal-mcomp 0 0 0 … 0 0 0 0 0 

 

 

Well pressure and total mass of gas using the above method considering mass conser-

vation law are shown in Table 2. Well pressure becomes positive. The mass differ-

ence is always zero to show the mass conservation is satisfied. However, the well 

pressure (pwell) in Table 2 has an unphysical inverse. This is due to the diagonal do-

minance cannot be satisfied. It is clear in the governing equations that only the well 

term 
  ,

n

w w Fi j bhC t p p    may cause the diagonal coefficient decreasing. Thus, the non-

linear well term (  w w F F bhS C p p p   ) in Eq.(4) should be transformed to the form of 

c p FS S S p   with 0pS   [9]. cS  and pS  can be obtained by the following Taylor 

expansion: 

 

 

 

    

            
      

1

1

2 1

2

2

n

n n n

F F

F

n n n n n

w w F F bh w w F bh F F

n n n

w w F w w F bh F

dS
S S p p

dp

C p p p C p p p p

C p C p p p

 

 







  

     

  

          (23) 
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Eq.(23) is used in the discretization of Eq.(4) instead of  w w F F bhS C p p p    so that 

Eq.(8) can be modified to be the following form: 

         

         

1 , 1

, , , , ,

1 1 1 1 2

, 1, , 1, , , 1 , , 1 ,

2
n n Mi j n n

Fi j w w Fi j bh Fi j Mi j Mi j

n n n n n

Fi j Fi j Fi j Fi j Fi j Fi j Fi j Fi j Fi j w w F

k
cp C t p p p t p p

cex p cwx p cny p csy p b C p








 

   

   

   

     

  (24) 

Fig.5 shows that pwell decreases monotonically and is always larger than pbh after this 

improvement. 
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Fig. 5. Improved well pressure using linearization of source term 

4 Conclusion 

From the above discussions, the proposed numerical methods can be summarized as 

follows: 1) Governing equations should be discretized into the form of Eq.(7) and 

Eq.(24) respectively, using linearization of source term; 2) Mass conservation equa-

tion (Eq.(21) and Eq.(22)) should be established according to the mass balance of the 

whole system and solved to obtain real mean pressures of matrix and fracture in every 

time step; 3) Matrix pressure and fracture pressure should be corrected using the mean 

pressures obtained in 2). Future computations could be made using field data in engi-

neering. 
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