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Abstract. We propose a method to calculate intersections of two admissible
quadrilateral meshes of the same connectivity. The global quadrilateral polygons
intersection problem is reduced to a local problem that how an edge intersects
with a local framewhich consists7 connected edges. A classification on the types
of intersection is presented. By symmetry, an alternative direction sweep algo-
rithm halves the searching space. It reduces more than 256 possible cases of
polygon intersection to 34 (17 when considering symmetry) programmable cases
of edge intersections. Besides,we show that the complexitydepends on how the
old and new mesh intersect.

Keywords: Computational Geometry· Intersections· Arbitrary Lagrangian Eu-
lerian · Remapping· Quadrilateral mesh.

1 Introduction

A remapping scheme for Arbitrary Lagrangian Eulerian(ALE)methods often requires
intersections between the old and new mesh [1, 2]. The aim of this paper is to articu-
late the mathematical formulation of this problem. For admissible quadrilateral meshes
of the same connectivity, we show that the mesh intersectionproblem can be reduced
to a local problem that how an edge intersects with alocal framewhich consists of 7
edges. According to our classification on the types of intersections, An optimal algo-
rithm to compute these intersections can be applied [3, 4]. The overlap area between
the new and old mesh, and the union of the fluxing/swept area can be traveled inO(n)
time (Theorem 1), wheren is the number of elements in the underlying mesh or tes-
sellation. When there is non degeneracy of the overlapped region, the present approach
only requires 34 programming cases(17 when considering symmetry), while the clas-
sical Cell Intersection Based Donor CellCIB/DC approach requires 98 programming
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cases[5, 6]. When consider degeneracy, more benefit can be obtained. The degeneracy
of the intersection depends on the so calledsingular intersection pointsand impacts
the computational complexity. As far as we known this is the first result on how the
computational complexity depends on the underlying problem.

2 Preliminary

A tessellationT = {T j}
n
j=1 of a domainΩ is a partition ofΩ such thatΩ̄ = ∪N

i=1Ti

andṪi ∩ Ṫ j = ∅, whereṪi is the interior of the cellT j andΩ̄ is the closure ofΩ. An
admissibletessellation has no hanging node on any edge of the tessellation. Precisely,
Ti andT j can only share a common vertex or a common edge. We use the conversional
notation as follows:

– Pi, j , for i = 1 : M, j = 1 : N are the vertices;
– Fi+ 1

2 , j
for i = 1 : M − 1, j = 1 : N andFi, j+ 1

2
for i = 1 : M, j = 1 : N − 1 are the

edges between verticesPi, j andPi+1, j ;
– Ci+ 1

2 , j+
1
2

stands for the quadrilateral cellPi, jPi, j+1Pi+1, j+1Pi, j+1 for 1 ≤ i ≤ M − 1
and 1≤ j ≤ N + 1.Ci+ 1

2 , j+
1
2

is an element ofT , we denote it asTi, j;
– xi(t) is the piecewise curve which consists all the face ofFi, j+ 1

2
for j = 1 : N − 1,

y j(t) is the piece wise curve which consists all the faces ofFi+ 1
2 , j

for i = 1 : M − 1.

LetT a andT b be two admissible quadrilateral meshes. The vertices ofT a andT b are
denoted asPi, j andQi, j respectively, if there is a one-to-one map betweenPi, j andQi, j ,
then the two tessellations share the samelogical structureor connectivity. We assume
the two admissible meshes of the connectivityT a andT b have the following property:

A1. Vertex Qi, j ofT b can only lie in the interior of the union of the cells Ca
i± 1

2 , j±
1
2

ofT a.

A2. Curve xbi (t) has at most one intersection point with ya
j (t), so does for ybj (t) and xai (t).

A3. The intersection of edges between the old and new meshes liesin the middle of the
two edges.

For convenience, we also introduce the following notation and definition.

Definition 1. A local patch lPi, j of an admissible quadrilateral mesh consists an ele-
ment Ti, j and its neighbours inT . Take an interior element of Ti, j as an example,

lPi, j := {Ti, j,Ti±1, j,Ti, j±1,Ti±1, j±1}. (1)

The index set of lPi, j are denoted byJi, j = {(k, s) : Tk,s ∈ lPi, j}.

Definition 2. An invading set of the element Tb
i, j with respect to the local patch lPa

i, j

is defined asIb
i, j = (Tb

i, j ∩ lPa
i, j)\(T

b
i, j ∩ Ta

i, j). An occupied set of the element Ta
i, j with

respect to the local patch lPb
i, j is defined asOa

i, j = (Ta
i, j ∩ lPb

i, j)\(T
a
i, j ∩ Tb

i, j).

Definition 3. A swept area or fluxing area is the area which is enclosed by a quadrilat-
eral polygon with an edge inT a and its counterpart edge inT b. For example, the swept
area enclosed by the quadrilateral polygon with edges Fa

i+ 1
2 , j

and Fb
i+ 1

2 , j
are denoted as
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Symmetric Sweeping for overlaps of Quadrilateral Meshes 3

(a) (b) (c) (d)

Fig. 1. (a) the invading setIb
i, j (red) and occupied setOa

i, j . (b) the swept/fluxing area∂Fi± 1
2 , j

. (c)
The swept/fluxing area∂Fi, j± 1

2
. (d) the swept area (left) v.s. the local swap set(right) in alocal

frame. Solid lines for old mesh and dash lines for new mesh.

∂Fi+ 1
2 , j

. ∂b+Fk,s stands for boundary of the fluxing/swept area∂Fk,s is ordered such that

direction of edges of the cell Tbi, j are counterclockwise in the cell Tb
i, j. Precisely

∂b+Fi+ 1
2 , j
= Qi, jQi, j+1Pi, j+1Pi, j , ∂b+Fi+1, j+ 1

2
= Qi+1, jQi+1, j+1Pi+1, j+1Pi+1, j,

∂b+Fi, j+ 1
2
= Qi, j+1Qi, jPi, jPi, j+1, ∂b+Fi+ 1

2 , j+1 = Qi+1, j+1Qi, j+1Pi+1, j+1Pi, j+1.

where Qi, jQi+1, jQi+1, j+1Qi, j+1 are in the counterclockwise order.

The invading setIb
i, j has no interior intersection with the occupied setOa

i, j , while the
fluxing area associated to two connect edges can be overlapped. The invading and oc-
cupied sets consist of the whole intersection between an oldcell and a new cell, while
corners of a fluxing area may only be part of an intersection between an old cell and a
new cell. Fig. 1(a), Fig. 1(b) and Fig. 1(c) illustrate such differences. In a local patch,
the union of the occupied and invading set is a subset of the union of the swept/fluxing
area of a home cellTa

i, j. However, the difference (extra corner area), if any, will be self-
canceled when summing all thesignedfluxing area, see the north-west and south-east
color region in Fig. 1(b) and Fig. 1(c).

Definition 4. A local frame consists an edge and its neighbouring edges. Taking the
edge Fi, j+ 1

2
as an example, lFi, j+ 1

2
= {Fi, j± 1

2
, Fi, j+ 3

2
, Fi± 1

2 , j
, Fi± 1

2 , j+1}.

Figure 2(b) illustrates the local framelFi, j+ 1
2
.

Definition 5. The region between the two curves xa
i (t) and xbi (t) in Ω is defined as a

vertical swap region. The region between ya
j (t) and ybj (t) is defined as a horizonal swap

region. The region enclosed by xa
i (t), xb

i (t), yb
j (t) and ybj+1(t) is referred to as a local swap

region in the local frame lFi, j+ 1
2
.

Definition 6. The intersection points between xa
i (t) and xbi (t) or ya

j (t) and ybj (t) are re-
ferred to as singular intersection points. The total numberof singular intersections
between xai (t) and xai (t) is denoted as nsxx for 1 ≤ i ≤ M, and the total singular inter-
section points between ya

j (t) and ybj (t) is denoted as nsyy.
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Fig. 2. Illustration of the swept/swap region and the local frame

3 Facts and results

Let T a andT b be two admissible quadrilateral meshes with the AssumptionA1, then
the following facts hold

Fact 1 The element Tbi, j ofT b locates in the interior of a local patch lPa
i, j ofT a.

Fact 2 The face Fb
i, j+ 1

2

locates in the local frame lF a
i, j+ 1

2

.

Fact 3 An inner element ofT b has at least44 possible ways to intersect with a local
patch inT a.

Fact 4 If there is no singular point in the local swap region betweenxa
i (t) and xbi (t) in

Ω for some i∈ {2, 3, . . . ,M−1}, the local swap region consists of2(N−1)−1polygons.
Each singular intersection point in the swap region will bring one more polygon.

3.1 Basic lemma

The following results serve as the basis of the CIB/DC and FB/DC methods.

Lemma 1. LetT a andT b be two admissible meshes of the same structure. Under the
assumption A1, we have

µ(Tb
i, j) = µ(T

a
i j ) − µ(O

a
i, j) + µ(I

b
i, j), (2)

whereµ(·) is the area of the underlying set,Ib
i, j is the invading set of Tbi, j andOa

i, j is the
occupied set of Tai, j in Definition 2.

µ(Tb
i, j) = µ(T

a
i, j) +

−→µ (∂Fb+
i+ 1

2 , j
) + −→µ (∂b+Fi+1, j+ 1

2
) + −→µ (∂Fb+

i+ 1
2 , j+1

) + −→µ (∂b+Fi, j+ 1
2
), (3)

where−→µ stands for the signed area calculated by directional line integrals.

Proof. See [1] for details.
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Symmetric Sweeping for overlaps of Quadrilateral Meshes 5

Suppose a density function is a piecewise function on the tessellationT a of Ω. To
avoid the interior singularity, we have to calculate the mass onTb

i, j piecewisely to avoid
interior singularity according to

∫

Tb
i, j

ρdΩ =
∑

(k,s)∈Ja
i, j

∫

Tb
i, j∩Ta

k,s

ρdΩ =
∫

Ta
i, j

ρdΩ −
∫

Ib
i, j

ρdΩ −
∫

Oa
i, j

ρdΩ. (4)

The following result is a directly consequence of Lemma 1.

Corollary 1. LetT a andT b be two admissible quadrilateral meshes ofΩ, andρ is a
piecewise function onT a, then the mass on each element ofT b satisfies

m(Tb
i, j) = m(Ta

i, j) −m(Oa
i, j) +m(Ib

i, j). (5)

and
m(Tb

i, j) = m(Ta
i, j) +

∑

k,s

m(∂b+Fk,s). (6)

where(k, s) ∈ {(i + 1
2 , j), (i + 1, j + 1

2), (i + 1
2 , j + 1), (i, j + 1

2)}, m(∂b+Fk,s) is directional
mass, the sign is consistent with the directional area of∂b+Fk,s.

The formulas (5) and (6) are the essential formulas for the CIB/DC method and FB/DC
method respectively. It is easy to find that

⋃

i, j O
a
i, j =
⋃

i, j I
b
i, j =
⋃

i, j(∂Fi+ 1
2 , j
∪ ∂Fi, j+ 1

2
).

This is the total swap region and the fluxing area. Since the swap region is nothing but
the union of the the intersections between elements inT a andT b.

Theorem 1. LetT a andT b be two admissible quadrilateral meshes of a square in R2

with the Assumption A1 and A2. nsxx and nsyy be the singular intersection numbers
between the vertical and horizonal edges of the two meshes. If there is no common edge
in the interior ofΩ betweenT a andT b. Then the swapping region of the two meshes
consists of

3(N − 1)(M − 1)− 2((M − 1)+ (N − 1))+ 1+ nsxx + nsyy. (7)

polygons.

Proof. See [1] for details.

Notice that (N − 1)(M − 1) is the number of the elements of the tessellation ofT a and
T b. Then (7) implies for the CIB/DC method, the swap region can be computed inO(n)
time when every the overall singular intersection points isbounded inO(n), wheren
is the number of the cells. The complexity depends on the singular intersection points.
Such singular intersection points depends on the underlying problem, for example, a
rotating flow can bring such singular intersections.

3.2 Intersection between a face and a local frame

For the two admissible meshesT a andT b, we classify the intersections between a face
Fb

i, j+ 1
2

and the local framelF a
i, j+ 1

2

into six groups according to the relative position of the

verticesQi, j andQi, j+1 in the local framelF a
i, j+ 1

2

. The pointQi, j+1 can locate inA1,A2,

A3 andA4 in the local frame oflFi, j+ 1
2

in Figure 2(c), and the pointQi, j can locate in

B1,B2, B3 andB4 region. Compared with the faceFa
i, j+ 1

2

, the faceFb
i, j+ 1

2

can be
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Table 1.Cases of intersections of a vertical edge with a local frame

Intersection # with horizonal/vertical frames (H#/V#)
H0 H1 H2

0 shrunk shifted stretched
V1 diagonally shrunk diagonally shifted diagonally stretched
V2 – shifted stretched
V3 – – diagonally stretched

– shifted:A1B1, A2B2, A3B3 andA4, B4;
– diagonally shifted:A1B2, A2B1, A3B2, andA4B3;
– shrunk:A3B2 andA4B1; diagonally shrunk:A3B1 andA4B3;
– stretched:A1B2 andA2B3; diagonally stretched:A1B3 andA2B4.

And then for each group, we choose one representative to describe the intersection
numbers between the faceFb

i, j+ 1
2

and the local framelF a
i, j+ 1

2

. Finally, according to in-

tersection numbers betweenFb
i, j+ 1

2

and the horizonal/vertical edges in the local frame

lF a
i, j+ 1

2

, we classify the intersection cases into six groups in Table1 and 17 symmetric

cases in Fig. 3.

Fact 5 LetT a andT b be two admissible quadrilateral meshes of the same structure.
Under the assumption A1, A2 and A3, an inner edge Fb

i, j+ 1
2

ofT b has 17 symmetric ways

to intersect with the local frame lF a
i, j+ 1

2

. A swept/fluxing area has 17 possible symmetric

cases with respect to the local frame.

3.3 Fluxing/swept area and local swap region in a local frame

For the FB/DC method, once the intersection betweenFb
i, j+ 1

2

betweenlF a
i, j+ 1

2

is de-

termined, then the shape of the swept area∂Fi, j+ 1
2

will be determined. There are 17
symmetric cases as shown in Fig. 3. On contrast, the local swap region requires addi-
tional effort to be identified. The vertexQi, j lies on the line segmentyb

j (t), according the

Assumption A2,yb
j (t) can only have one intersection withxa

i (t). This intersection point
is referred to asV1. The line segmentQi, jV1 can have 0 or 1 intersection with the local
framelFi, j+ 1

2
exceptV1 itself; the intersection point, if any, will be denoted asV2.

The north and south boundary of the local swap region therefore can have 1 or 2
intersection with the local frame. Therefore each case in Figure 3 results up to four
possible local swap region. We use the intersection number between the up and south
boundary and the local frame to classify the four cases, see Figure 4 for an illustration.
For certain cases, it is impossible for the pointQi, jV1 have two intersection points with
the local frame, 98 possible combinations are illustrated in Figure 5.

Fact 6 LetT a andT b be two admissible quadrilateral meshes of the same structure.
Under the Assumption A1, A2 and A3, a local swap region has up 98 cases with respect
to a local frame.
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(a) H0V0 (b) H0V1 (c) H2V0 (d) H2V2A (e) H2V2B

(f) H1V0 (g) H1V0 (h) H1V2A (i) H1V2B

(j) H1V1A (k) H1V1A (l) H1V1B (m) H1V1B

(n) H2V1A (o) H2V1B (p) H2V1C (q) H2V3

Fig. 3.Intersections between a face(dashed line) and a local frame. (a) shrunk (b) diagonal shrunk,
whereH0 stands for the intersection number with horizontal edges is 0, V1 stands for the inter-
section number between the dash line and the vertical edge is1.

(a) U1S1 (b) U1S2 (c) U2S1 (d) U2S2

Fig. 4. The shapes of local swap region based on the case of H0V0 in Fig. 3, whereU1/U2
stands for the faceQi, j+1Qi+1, j+1 or Qi−1, j+1Qi, j+1 has 1/2 intersections with the old local frame,
while S1/S2 stands for the faceQi, j−1Qi+1, j−1 or Qi−1, j−1Qi−1, j has 1/2 intersections with the old
local frame.

Form the Fig.1 in [7] and [6], we shall see that Ramshaw’s approach requires at least
98 programming cases. Under the assumption A1, A2 and A3, while the swept region
approach requires only 34 programming cases. This is a significant improvement. When
the assumption A3 fails, or the so called degeneracy of the overlapped region arises,
more benefit can be obtained.

3.4 Degeneracy of the intersection and signed area of a polygon

The intersection betweenTb
i, j andTa

k,s for (k, s) ∈ Ja
i, j can be an polygon, an edge or even

only a vertex. The degeneracy of the intersection was believed as one of the difficulty
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Qi, j+1

R

U

st
H1V0

H1V2

dst H1V1
B

A

sh

H2V0

H2V2
B

A

dsh

H2V1

C

B

A

H2V3

D

sk H0V0

dsk H0V1

dst H1V1
B

A

st
H1V0

H1V2

L

D

st
H1V2

H1V0

dst H1V1
B

A

dsk H0V1

sk H0V0

U

dsh

H2V3

H2V1

C

B

A

sh

H2V2
B

A

H2V0

dst H1V1
B

A

st
H1V2

H1V0

u1
s2

s1

u1 s1

s1
u2

u1

s1 u1

I

u2
s2

s1

u1
s2

s1

Fig. 5. Classification tree for all possible cases of a local swap region. Qi+1, j+1 is on of the ver-
tex of Fb

i, j+1/2, L, R U and D stand for the relative position ofQi, j in the local framelF a
i, j+ 1

2
.

The edgeFb
i, j+ 1

2
can be shifted(st), shrunk(sk), stretched(sh), diagonally shifted(dst), diagonally

shrunk(dsk), and diagonally stretched(dsh).

of the challenge of the CIB/DC method[8, p.273]. In fact, some cases can be handled
by the Green formula to calculate the planar polygon with line integrals. Suppose the
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(a) (b) (c) (d) (e) (f) (g) (h)

Fig. 6.Some degeneracy of the intersections. The swept/fluxing area for (a)-(e) degenerates to be
a triangle plus a segment, for (f),(g) and (h), the intersection degenerate to a line segment. While
for the swap region, an overlap line segment of a new edge and the old edge can be viewed a
degeneracy of a quadrilaterals. A overlap of the horizontaland vertical intersection point can be
viewed as the degeneracy of a triangular.

vertices of a polygon are arranged in counterclockwise, say, P1P2, . . . ,Ps, then it area
can be calculated by

"
dxdy=

�
−−−−→
P1P2+

−−−−→
P2P3+···+

−−−−→
PsP1

xdy=
1
2

s−1
∑

k=1

(xkyk+1 − ykxk+1), (8)

wherePs+1 = P1. This is due to the fact
∫

−−−−→
P1P2

xdy=
∫ x2

x1

x
y2 − y1

x2 − x1
dx=

(y2 − y1)(x1 + x2)
2

.

The formula (8) can handle any polygon including the degenerate cases: a polygon with
s+ 1 vertices degenerate to one withs vertices, a triangle degenerates to a vertex or
a quadrilateral polygonal degenerates to a line segment. Such degenerated cases arise
when one or two vertices of the faceFb

i, j+ 1
2

lie on the local framelF a
i, j+ 1

2

, or the horizon-

tal intersection points overlap with the vertical intersection points. The later cases bring
no difficulty, while the cases whenQi j locates in the vertical lines in the local frame or
the face overlaps with partial of the vertical lines in the local frame do bring difficul-
ties. To identify such degeneracies, one need more flags to identify whether such cases
happens when calculating the intersections between faceFb

i, j+ 1
2

andFa
i, j± 1

2

andFa
i, j+ 3

2

.

3.5 Assign a new vertex to an old cell

As shown in Fig. 5, the relative position of a new vertex in an old local frame is the basis
to classify all the intersections. This can also be obtainedby the Green formula for the
singed area of a polygon. We denote the signed area ofPi, jPi+1, jQi, j asA1, Pi, jPi, j+1Qi, j

asA2, Pi−1, jPi, jQi, j asA3 andPi, j−1Pi, jQi, j asA4. Then the vertexQi, j can be assigned
according to Algorithm 1. This determines the first two level(left) of branches of the
classification tree in Fig. 5.

3.6 Alternative direction sweeping

To calculate all intersections in the swap area and swept/fluxing area, we can apply
the alternative direction idea: view the union of the swap area between two admissible
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10 X. Xu and S. Zhu

Algorithm 1 Assign current new vertex to an old cell
ComputeA1

if A1 ≥ 0 then
ComputeA2

if A2 ≤ 0 then
return flag=’RU’; ⊲ Qi, j ∈ Ci+ 1

2 , j+
1
2

else
ComputeA3

if A3 ≥ 0 then
return flag=’LU’; ⊲ Qi, j ∈ Ci− 1

2 , j+
1
2

else
return flag=’LD’; ⊲ Qi, j ∈ Ci− 1

2 , j−
1
2

end if
end if

else
ComputeA4

if A4 ≤ 0 then
return flag=’RD’; ⊲ Qi, j ∈ Ci+ 1

2 , j−
1
2

else
ComputeA3

if A3 < 0 then
return flag=’LD’; ⊲ Qi, j ∈ Ci− 1

2 , j−
1
2

else
return flag=’LU’; ⊲ Qi, j ∈ Ci− 1

2 , j+
1
2

end if
end if

end if

(a) (b) (c)

Fig. 7. Illustration for the vertical and horizontal swap and sweptregions

quadrilateral meshes of a domain as the union of (logically)vertical strips (shadowed
region in Fig. 7(b)) and horizonal strips (shadowed area in Fig. 7(c)). One can alterna-
tively sweep the vertical and horizontal swap strips. Notice that the horizonal strips can
be viewed as the vertical strip by exchanging the x-coordinates and the y-coordinates.
Therefore, one can only program the vertical sweep case. Each sweep calculate the in-
tersections in the vertical/horizontal strips chunk by chunk. For the CIB/DC method,
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each chunk is a local swap region, while the FB/DC method, each chunk is a flux-
ing/swept area.

For the CIB/DC method, one can avoid to repeat calculating the corner contribution
by thinning the second sweeping. The first vertical sweep calculate all the intersection
areas in the swap region. The second sweep only calculates the swap region due to the
intersectionTb

i, j ∩ Ta
i, j±1. On contrast, in the FB/DC methods, the two sweep is totaly

symmetric, repeat calculating the corner contribution is necessary.

4 Examples

The following examples is used to illustrated the application background. Direct apply
the implementation of the result results a first order remapping scheme. We consider
the following two kinds of grids.

0 0.5 1
0

0.5

1

(a) Tensor grids
0 0.5 1

0

0.5

1

(b) Random grids
0 0.5 1

0

0.5

1

(c) Franke
0 0.5 1

0

0.5

1

(d) tanh function
0 0.5 1

0

0.5

1

(e) peak function

Fig. 8. Illustration of the tensor grids (a) and the random grids (b). The franke test function (c),
the tanh function(d) and the peak function(e).

4.1 Tensor product grids

The mesh on the unit square [0, 1] × [0, 1] is generated by the following function

x(ξ, η, t) = (1− α(t))ξ + α(t)ξ3, y(ξ, η, t) = (1− α(t))η2, (9)

whereα(t) = sin(4πt)/2, ξ, η, t ∈ [0, 1]. This produces a sequence of tensor product
gridsxn

i, j given by
xn

i, j = x(ξi , ηi , t
n), yn

i, j = y(ξi , η j , t
n). (10)

whereξi andη j arenx andny equally spaced points in [0, 1]. For the old grid,t1 =
1/(320+ nx), t2 = 2t1. We choosenx= ny= 11, 21, 31, 41, . . . , 101.

4.2 Random grids

A random grid is a perturbation of a uniform grid,xn
i j = ξi + γr

n
i h, andyn

i j = η j + γrn
j h.

whereξi andη j are constructed as that in the above tensor grids.h = 1/(nx−1). We use
γ = 0.4 as the old grid andγ = 0.1 as the new grid,nx= ny.
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(b) Random grids

Fig. 9. Convergence of the error between the remapped density functions and the true density
functions.F: the Franke function, P: the peak function, and T: tanh function. The error are scaled
by the level on the coarse level.

4.3 Testing functions

We use three examples as density functions, thefranke function in Matlab (Fig. 8(c)),
a shock like function (Fig. 8(d)) defined by

ρ2(x, y) = tanh(y− 15x+ 6)+ 1.2. (11)

and the peak function (Fig. 8(e)) used in [8]

ρ3(x, y) =















0,
√

(x− 0.5)2 + (y− 0.5)2 > 0.25;

max{0.001, 4(0.25− r)},
√

(x− 0.5)2 + (y− 0.5)2 ≤ 0.25.
(12)

The initial mass of on the old cell is calculated by a fourth order quadrature, the
remapped density function is calculated by the exact FB/DC method: the swept region
is calculated exactly. The density are assumed to be a piecewise constant on each old
cell. Since the swept/flux area are calculated exactly. The remapped error only depends
on the approximation scheme to the density function on the old cell. TheL∞ norm

‖ρ∗ − ρ‖∞ = max
i j

|ρh
i+ 1

2 , j+
1
2
− ρ(xi+ 1

2 , j+
1
2
)| (13)

is expected in the order ofO(h) for piecewise constant approximation to the density
function on the old mesh. While theL1 norm

‖m∗ −m‖∞ = max
i, j
|(ρh

i+ 1
2 , j+

1
2
− ρ(xi+ 1

2 , j+
1
2
))µ(Ci+ 1

2 , j+
1
2
)|.

is expected to be in the order ofO(h3). We don’t use theL1 normal like in other publica-
tions, because when plot the convergence curve in in the samefigure, theL1 norm and
theL∞ norm for the density function converges also the same rate. Fig. 9 demonstrates
the convergence of the remmapping error based on the piecewise constant reconstruc-
tion of the density function in the old mesh.
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Fig. 10.Remapped error of the density function on 101× 101 tensor grids.
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Fig. 11.Remapped error of the density function on 101× 101 random grinds.

5 Discussion

Computing the overlapped region of a Lagrangian mesh (old mesh) and a rezoned
mesh(new mesh) and reconstruction (the density or flux) on the Lagrangian mesh are
two aspects of a remapping scheme. According to the way how the overlapped (ver-
tical) strips are divided, a remmapping scheme can be eitheran CIB/DC approach or
an FB/DC approach. Both approaches are used in practice. The CIB/DC methods is
based on pure geometric or set operation. It is conceptuallysimple, however, it is non
trial even for such a simple case of two admissible meshes of the same connectively.
The CIB/DC approach requires 98 programming cases for the non-degenerate intersec-
tions to cover all the possible intersection cases which aremore than 256. On contrast,
the FB/DC method, only requires 34 programming cases for the non-degenerate inter-
sections. This approach is attractive for the case when the two meshes share the same
connectivity. Here we present method to calculate fluxing/swept area or the local swap
area. They are calculated exact. The classification on the intersection types can help
us to identify the possible degenerate cases, this is convenient when develop a robust
remapping procedure. Based on the Fact 3, we know there are atleast 256 possible ways
for a new cell to intersect with an old tessellation. But according to Fig.3, we can tell
there are more cases than 256. What is the exactly possibilities? This problem remains
open as far as we know.
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Fig. 12. Contour lines of the remapped density functions onnx× ny random grids.nx = ny =
11(left), 21(middle) and 51(right).
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