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Abstract. We propose a method to calculate intersections of two adluless
guadrilateral meshes of the same connectivity. The globadiglateral polygons
intersection problem is reduced to a local problem that hovedge intersects
with alocal framewhich consists7 connected edges. A classification on thestyp
of intersection is presented. By symmetry, an alternativection sweep algo-
rithm halves the searching space. It reduces more than 2&he cases of
polygon intersection to 34 (17 when considering symmetrggmmmable cases
of edge intersections. Besides,we show that the compleeipends on how the
old and new mesh intersect.

Keywords: Computational Geometryintersections Arbitrary Lagrangian Eu-
lerian- Remapping Quadrilateral mesh.

1 Introduction

A remapping scheme for Arbitrary Lagrangian Eulerian(AltBgthods often requires
intersections between the old and new mesh [1, 2]. The airhisfoiaper is to articu-
late the mathematical formulation of this problem. For aghifile quadrilateral meshes
of the same connectivity, we show that the mesh intersegtiobhlem can be reduced
to a local problem that how an edge intersects witbcal framewhich consists of 7
edges. According to our classification on the types of ieigiens, An optimal algo-
rithm to compute these intersections can be applied [3,dé dverlap area between
the new and old mesh, and the union of the fluxémngept area can be traveled@gn)
time (Theorem 1), whera is the number of elements in the underlying mesh or tes-
sellation. When there is non degeneracy of the overlappgdnethe present approach
only requires 34 programming cases(17 when consideringrstny), while the clas-
sical Cell Intersection Based Donor CellIB/DC approach requires 98 programming
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cases|[5, 6]. When consider degeneracy, more benefit canthimed. The degeneracy
of the intersection depends on the so cab&wular intersection pointand impacts
the computational complexity. As far as we known this is thgt fiesult on how the
computational complexity depends on the underlying proble

2 Preliminary

A tessellation7” = {T; } _, of a domainQ is a partition ofQ such thatQ = uI 1 Ti

andT; N TJ =0, WhereTI is the interior of the cell; andQ is the closure of2. An
admissibleessellation has no hanging node on any edge of the tessellBrecisely,
T; andT; can only share a common vertex or a common edge. We use thersamal
notation as follows:

— P. j,fori=1:M,j=1:N are the vertices;
Figjfori=1:M-1j=1:NandF; fori=1:Mj=1:N-1arethe
edges between vertic®; andPi,q j;
-G, g+l stands for the quadnlateral cél jPi j+1Pi+1j1Pijrrforl <i <M -1
an 1< J<N+1.GC,1; o is an eIemento‘T we denote it aJ; j;
xi(t) is the pleceW|se curve which consists all the fac&gf 1 for j =1 : N -1,

y;(t) is the piece wise curve which consists all the facel§ Qf fori=1:M-1.

Let 72 and7™® be two admissible quadrilateral meshes. The vertic§sdnd7 ™ are
denoted a®; ; andQ; ; respectively, if there is a one-to-one map betwBgnandQ; ;,
then the two tessellations share the sadoggcal structureor connectivity We assume
the two admissible meshes of the connectigityand7™ have the following property:

Al. Vertex Q; of 772 can only lie in the interior of the union of the ceII§(; , of T2,

A2. Curve >P(t) has at most one intersection pomtwn?(ly so does for?(tz) and X(1).

A3. The intersection of edges between the old and new meshéstiesmiddle of the
two edges.

For convenience, we also introduce the following notatiod definition.

Definition 1. A local patch #; ; of an admissible quadrilateral mesh consists an ele-
ment T ; and its neighbours iff. Take an interior element of Tas an example,

1P = {Tij, Tisvjs Tijets Tixtje1)- (1)
The index set offt; ; are denoted byJ; j = {(k, ) : Tis € IPi ;).

Definition 2. An invading set of the eIemenijwith respect to the local patcl‘JDﬁj
is defined ag?; = (T, NIP)\(TP; N T7). An occupied set of the elemerft Tvith
respect to the local patcl?ﬁl is defmed a@ia (T3, NPT N TE).

Definition 3. A swept area or fluxing area is the area which is enclosed byaalqlat-

eral polygon with an edge i and its counterpart edge . For example, the swept

area enclosed by the quadrilateral polygon with edgléﬁ lj:and Fﬁl ,are denoted as
2 2
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Symmetric Sweeping for overlaps of Quadrilateral Meshes 3

Fig. 1. (a) the invading seritjj (red) and occupied Ser,. (b) the swepftluxing areaaFii%,j. (c)
The swepfluxing areaﬁFi_ji%. (d) the swept area (left) v.s. the local swap set(right) local
frame. Solid lines for old mesh and dash lines for new mesh.

dF 1 .. 8°"Fy s stands for boundary of the fluxifsgvept area)Fy s is ordered such that

i+3,)"
d|rect|on of edges of the ceIIi’f}I'are counterclockwise in the ceI|E’}I.' Precisely

b b

0" Fi1y = QijQujeaPijaPij, 0" Fiyji1 = Qe jQuajraPisjaPios,
b

P Fijer = Quint QPP 0 Fig a1 = Qi QujsaPiasjuaPijus.

where Q;Qi;1jQi+1j+1Qi j+1 are in the counterclockwise order.

The invading seerJ has no interior intersection with the occupied Qé} while the
fluxing area associated to two connect edges can be ovedappe invading and oc-
cupied sets consist of the whole intersection between analldind a new cell, while
corners of a fluxing area may only be part of an intersectidwéen an old cell and a
new cell. Fig. 1(a), Fig. 1(b) and Fig. 1(c) illustrate suéfietences. In a local patch,
the union of the occupied and invading set is a subset of ttewi the swepfluxing
area of a home cell?,. However, the dierence (extra corner area), if any, will be self-
canceled when summing all tisignedfluxing area, see the north-west and south-east
color region in Fig. 1(b) and Fig. 1(c).

Definition 4. A local frame consists an edge and its neighbouring edgdsngahe

edge k1 as an examplefi; 1 = {Fi,ji%’ F F,+1 i» FI+ L i)

T.j+3 ij+3»

Figure 2(b) illustrates the local frar‘rhfi,j%.

Definition 5. The region between the two curvﬂt)(and ){’(t) in Q is defined as a
vertical swap region. The region beMeé@tYand )P(t) is defined as a horizonal swap

region. The region enclosed b§(¥, x; O(t), y*J’(t) and )}]’ﬂ(t) is referred to as a local swap
region in the local framef; ;, 1

Definition 6. The intersection points betweef(ty and >{’(t) or ya(t) and )P(t) are re-
ferred to as singular intersection points. The total numbélsmgular mtersectlons
between Xt) and $(t) is denoted as Rgfor 1 < i < M, and the total singular inter-
section points betweer’}‘(‘y) and )P(t) is denoted as Rg
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Fijan

Fi—l/z,j+1 Fi+1/2,j+1

Fi,j+1/2

Iht

(a) swapregions (b) '7'7,14%

Fig. 2. lllustration of the swepswap region and the local frame

3 Facts and results

Let 72 and7® be two admissible quadrilateral meshes with the Assumgibrthen
the following facts hold

Fact1l The elementﬁ} of 7P locates in the interior of a local patclﬂ"ﬁj of 72,

Fact 2 The face I?’Hl locates in the local framéTiaHl.
J+3 J+3

Fact 3 An inner element of ® has at leas#* possible ways to intersect with a local
patch in72.

Fact 4 If there is no singular point in the local swap region betweg(t) and ){’(t) in
Qforsomeie {2,3,..., M—1}, the local swap region consists2fN — 1) — 1 polygons.
Each singular intersection point in the swap region willdgione more polygon.

3.1 Basiclemma

The following results serve as the basis of the {018 and FBDC methods.

Lemma 1. Let72 and7™® be two admissible meshes of the same structure. Under the
assumption A1, we have

p(TE) = u(TS) = (O + u(I7)), 2)

wherey(') is the area of the underlying sd[ffj is the invading set offlj' andOffj is the
occupied set ofﬁ} in Definition 2.

w(TE) = u(T) + HOF D )+ HO™ Fiayjoa) + HOFY, )+ HEF 1), (3)

i+3.] i+3,j+1
wherefi stands for the signed area calculated by directional linegnals.

Proof. See [1] for details.
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Suppose a density function is a piecewise function on theetiegion72 of Q. To
avoid the interior singularity, we have to calculate the mmTitfj piecewisely to avoid
interior singularity according to

f pdQ = f dezf pd.Q—f de—f pdQ. 4)
Us THNTEs T i i

i k9T
The following result is a directly consequence of Lemma 1.
Corollary 1. Let7?2 and7™® be two admissible quadrilateral meshes@®fandp is a
piecewise function ofi @, then the mass on each elemenféfsatisfies

m(TY) = m(T3) - m(O};) + m(Z})). (5)

and

m(T?) = m(T3) + Z m(d"" F.s). ©)

where(k, s) € {(i + 2, D0+ j+ 2) (i+3j+2).G,j+ 2) }, m(aP*Fy s) is directional
mass, the sign is consistent with the directional areébOFk s

The formulas (5) and (6) are the essential formulas for tr&/m method and FBOC
method respectively. It is easy to find tha; 0"’1 Uij L7 = Ui J(6F,+ jYOF, Hl)
This is the total swap region and the fluxmg area Smce tf&psmvgmn is nothmg but
the union of the the intersections between elemenfsiand7 ™.

Theorem 1. Let72 and7™® be two admissible quadrilateral meshes of a square?n R
with the Assumption Al and A2.,nsand nsy be the singular intersection numbers
between the vertical and horizonal edges of the two meshberé is no common edge
in the interior ofQ betweer? 2 and 7. Then the swapping region of the two meshes
consists of

3(N = 1)(M = 1) = 2(M — 1) + (N = 1)) + 1 + NS + NSy (7)

polygons.

Proof. See [1] for details.

Notice that N — 1)(M - 1) is the number of the elements of the tessellatiof ®and
7. Then (7) implies for the CIBDC method, the swap region can be computed(n)
time when every the overall singular intersection pointeasinded inO(n), wheren
is the number of the cells. The complexity depends on theutamgntersection points.
Such singular intersection points depends on the underlginblem, for example, a
rotating flow can bring such singular intersections.

3.2 Intersection between a face and a local frame

For the two admissible mesh&s$ and7™, we classify the intersections between a face
Fin1 and the local framb}'f‘”l into six groups according to the relative position of the
2] T35 2] T35

verticesQ; ; andQ; j;1 in the Iécal framd&fiaHl. The pointQ; j+1 can locate inAg,Ay,
J+3
Az andA4 in the local frame ofﬁh% in Figure 2(c), and the poir®, ; can locate in
B1,B2, B3 andB,4 region. Compared with the fachHl, the faceFibj+1 can be
212 212
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Table 1. Cases of intersections of a vertical edge with a local frame

Intersection # with horizonalertical frames (H#&/#)

HO H1l H2
0 shrunk shifted stretched
V1 diagonally shrunk diagonally shifted diagonally stretd
V2 - shifted stretched
V3 - - diagonally stretched

— shifted:AlBl, A:B,, AzBs andA4, Bys;

diagonally shiftedA;B,, A2B1, AsB,, andAyBs;

— shrunk:A3B, andA4B;; diagonally shrunkAz;B; and A4Bs;
stretchedA; B, andA;Bs; diagonally stretchedd; Bs and A2 B;.

And then for each group, we choose one representative taiblegbe intersection
numbers between the fa<Fé|’j+1 and the local framdff‘Hl. Finally, according to in-
2172 2172
tersection numbers betweﬁf?H1 and the horizongabertical edges in the local frame
21T 2

I?‘iaHl, we classify the intersection cases into six groups in Tadad 17 symmetric
I3
cases in Fig. 3.

Fact5 Let72 and7™® be two admissible quadrilateral meshes of the same strectur
Under the assumption A1, A2 and A3, an inner edilqglFoffrb has 17 symmetric ways

2
to intersect with the local framé—Tf‘Hl. A swepfluxing area has 17 possible symmetric
I3
cases with respect to the local frame.

3.3 Fluxing/swept area and local swap region in a local frame

For the FBDC method, once the intersection betwd'éh betweenl?'El 1 is de-

termined, then the shape of the swept a#€g;, 1 will be determmed Thezre are 17

symmetric cases as shown in Fig. 3. On contrast the locg) segion requires addi-
tional efort to be identified. The verteR; j lies on the line segmegf(t), according the

Assumption A2,yE’(t) can only have one intersection wixfi(t). This intersection point
is referred to a¥/;. The line segmen®; ;V, can have 0 or 1 intersection with the local
framel#; ; i+ 1 exceptV, itself; the intersection point, if any, will be denoted\4s

The north and south boundary of the local swap region thezefan have 1 or 2
intersection with the local frame. Therefore each case gufé 3 results up to four
possible local swap region. We use the intersection numétgrden the up and south
boundary and the local frame to classify the four cases, gpgd-4 for an illustration.
For certain cases, it is impossible for the pahV1 have two intersection points with
the local frame, 98 possible combinations are illustratefigure 5.

Fact6 Let72 and7™® be two admissible quadrilateral meshes of the same streictur
Under the Assumption A1, A2 and A3, a local swap region hasugaSes with respect
to a local frame.
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)

(a) HOVO (b) HOV1 (c) H2v0 (d) H2V2A  (e) H2v2B
]
T4 >
(f) H1VO (g) H1VO (h) H1V2A (i) H1V2B

(i) H1VIA (k) H1V1A () H1V1B (m) H1V1B

(n) H2V1A (0) H2V1B (}o) H2V1C (q) H2v3

Fig. 3.Intersections between a face(dashed line) and a local fi@nshrunk (b) diagonal shrunk,
whereHO stands for the intersection number with horizontal edgés V1 stands for the inter-
section number between the dash line and the vertical edge is

s I e B

(a) U1S1 (b) U1S2 (c) U2s1 (d) U2S2

Fig. 4. The shapes of local swap region based on the case of HOVO in3FighereU1/U2
stands for the fac j,1Qi 1.1 Or Qi—1j+1Q; j+1 has ¥2 intersections with the old local frame,
while S1/S2 stands for the fac€; j-1Qi.1j-1 or Qi_1;-1Qi-1,; has 12 intersections with the old
local frame.

Form the Fig.1 in [7] and [6], we shall see that Ramshaw’s aagin requires at least
98 programming cases. Under the assumption Al, A2 and A3e\ilie swept region
approachrequires only 34 programming cases. This is disigni improvement. When
the assumption A3 fails, or the so called degeneracy of tleelapped region arises,
more benefit can be obtained.

3.4 Degeneracy of the intersection and signed area of a polyg

The intersection betweé’rP andT? for (k,s) € ja can be an polygon, an edge or even
only a vertex. The degeneracy of the mtersectlon was kedi@s one of the fliculty
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u
L
D
Qi j+1
D
dsk— HOV1 - -~~~ )
sk— HOVO -------""
,’(//
H2Vv3----"" /
R dsh< A---"
/
H2V1<Bu—v‘
,
Cc----77°7
’ /

A_--
H2V2< )/
U sh< B----- .

Fig. 5. Classification tree for all possible cases of a local swared;. .1 is on of the ver-
tex of Fibjﬂ/z, L, R U andD stand for the relative position d;; in the local framel?iaﬁl.
’ ATz

The edgeFibj , can be shifted(st), shrunk(sk), stretched(sh), diagprsdifted(dst), diagonally
S+ 3
shrunk(dsk), and diagonally stretched(dsh).

of the challenge of the CI®C method[8, p.273]. In fact, some cases can be handled
by the Green formula to calculate the planar polygon witk limegrals. Suppose the
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(@) (b) (© (d) (e) ® ) (h)

Fig. 6. Some degeneracy of the intersections. The sffleping area for (a)-(e) degenerates to be
a triangle plus a segment, for (f),(g) and (h), the inteisaaiegenerate to a line segment. While
for the swap region, an overlap line segment of a new edgefandltl edge can be viewed a
degeneracy of a quadrilaterals. A overlap of the horizosutal vertical intersection point can be
viewed as the degeneracy of a triangular.

vertices of a polygon are arranged in counterclockwise,Rg&, ..., Ps, then it area
can be calculated by

s-1
[[oxay=¢p . xay-3 Z(xkym Vo), ®)
P1P2+P2P3+'-'+P5P1

wherePs,1 = P;. This is due to the fact

f xdy = f Y1 dx _ (e-y)a+ Xz)
P1P; w X2 2

The formula (8) can handle any polygon including the degatiearases: a polygon with
s+ 1 vertices degenerate to one walvertices, a triangle degenerates to a vertex or
a quadrilateral polygonal degenerates to a line segmenh &egenerated cases arise
when one or two vertices of the faE@ lie on the local framda&ra L1nOr the horizon-

tal intersection points overlap with the vertlcal interts@T points. Thze later cases bring
no difficulty, while the cases whe@;; locates in the vertical lines in the local frame or
the face overlaps with partial of the vertical lines in thedbframe do bring dficul-
ties. To identify such degeneracies, one need more flageidifg whether such cases
happens when calculating the intersections betweenﬁ%g«g and Ffji% and Fi&?ﬂ%

3.5 Assign a new vertex to an old cell

As shown in Fig. 5, the relative position of a new vertex in &hlocal frame is the basis
to classify all the intersections. This can also be obtamethe Green formula for the
singed area of a polygon. We denote the signed ar€q;8%.1;Qi j asAs, Pi jPi j+1Qi
asAy, Pi_1 P jQij asAs andP; j_1P; jQ; ; asAs. Then the vertex), ; can be assigned
according to Algorithm 1. This determines the first two I€left) of branches of the
classification tree in Fig. 5.

3.6 Alternative direction sweeping

To calculate all intersections in the swap area and siflexing area, we can apply
the alternative direction idea: view the union of the swagadretween two admissible
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Algorithm 1 Assign current new vertex to an old cell

ComputeA;
if A, >0then
ComputeA,
if A, <O0then
return flag='RU’; > Qi €Ciyjig
else
ComputeAs
if As > 0then
return flag="LU’; > Qi eCiyit
else
return flag="LD’; »QijeCiyig
end if
end if
else
ComputeA,
if A4 <O0then
return flag="RD’; »QijeCiyjt
else
ComputeAs
if A3 <Othen
return flag="LD’; »QijeCiyjs
else
return flag="LU"; >Qij€Ciyt
end if
end if
end if

(@)

Fig. 7. lllustration for the vertical and horizontal swap and swegfions

quadrilateral meshes of a domain as the union of (logicakyjical strips (shadowed
region in Fig. 7(b)) and horizonal strips (shadowed aredgdn FHc)). One can alterna-
tively sweep the vertical and horizontal swap strips. Notitat the horizonal strips can
be viewed as the vertical strip by exchanging the x-cootdmand the y-coordinates.
Therefore, one can only program the vertical sweep casd &aeep calculate the in-
tersections in the vertigédorizontal strips chunk by chunk. For the GIBC method,
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Symmetric Sweeping for overlaps of Quadrilateral Meshes 11

each chunk is a local swap region, while the/BB method, each chunk is a flux-
ing/swept area.

For the CIBDC method, one can avoid to repeat calculating the corndribation
by thinning the second sweeping. The first vertical sweepuiate all the intersection
areas in the swap region. The second sweep only calculaesvip region due to the
intersectionTi’fj N Tf'il- On contrast, in the FBC methods, the two sweep is totaly
symmetric, repeat calculating the corner contributiorsisassary.

4 Examples

The following examples is used to illustrated the applaatiackground. Direct apply
the implementation of the result results a first order renrappcheme. We consider
the following two kinds of grids.

1 1,

°
&
°
&

05 10 0.5 10 0.5 10 0.5 10 0.5 1

(a) Tensor grids (b) Random grids  (c) Franke  (d) tanh function (e) peak function

Fig. 8. lllustration of the tensor grids (a) and the random grids the franke test function (c),
the tanh function(d) and the peak function(e).

4.1 Tensor product grids

The mesh on the unit square [ x [0, 1] is generated by the following function

X(Em.1) = (L a®)é + o), y(En 1) = (1-at)r’, 9)
wherea(t) = sin(4rt)/2,&,n,t € [0, 1]. This produces a sequence of tensor product
gridsx{jj given by

XE] = X(fi’ i, tn)’ y::l] = y(é:i’ nj» tn) (10)

where¢; andn; arenx andny equally spaced points in [@]. For the old gridt; =
1/(320+ nx), t; = 2t;. We chooseaxx=ny=11,21,31,41,...,101.

4.2 Random grids

A random grid is a perturbation of a uniform gri)q‘r =& +yrih, andyﬂ =7+ yr?h.
where¢; andz; are constructed as that in the above tensor ghids1/(nx—1). We use
v = 0.4 as the old grid angt = 0.1 as the new gridax = ny.
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0 h 0 ~h
10 o~ 10 _—
o0 _Fe " --- K3 Ot —--R3
a® e h e gz h
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F‘*** gy m xx"x_x_x _ym
o A -x-F-L oo -x- F=L ]
S o
[0 1M x _m
T o T & S T-L
J TP 10 A T-LP
-o-P-L" -o-P-L"
- —LP - P
0b1 0025 005 0.1 e P-L 001 0025 005 0.1 e P-L,
(a) Tensor grids (b) Random grids

Fig. 9. Convergence of the error between the remapped densityidascand the true density
functionsF: the Franke function, P: the peak function, and T: tanh fiencfThe error are scaled
by the level on the coarse level.

4.3 Testing functions

We use three examples as density functionsfitemke function in Matlab (Fig. 8(c)),
a shock like function (Fig. 8(d)) defined by

p2(X,y) = tanhfy — 15x + 6) + 1.2. (11)

and the peak function (Fig. 8(e)) used in [8]

— 2 _ 2 .
pa(X.y) = {O’ V(x-05)2 + (y- 0.5 > 0.25; 12)

max0.001 4(025-r)}, [(x— 0.5)Z+ (y— 0.5 < 0.25.

The initial mass of on the old cell is calculated by a fourtldesr quadrature, the
remapped density function is calculated by the exagbEBmethod: the swept region
is calculated exactly. The density are assumed to be a pise@onstant on each old
cell. Since the swefftux area are calculated exactly. The remapped error onlgmtip
on the approximation scheme to the density function on ttieell. ThelL., norm

* h
™ = plleo = mMaXloy 1.5 = P04, (13)

is expected in the order @(h) for piecewise constant approximation to the density
function on the old mesh. While tHg norm
. h

I = mileo = maxi(ory s = P04 3je3DH(Ciag o)l
is expected to be in the order@th®). We don’t use thé; normal like in other publica-
tions, because when plot the convergence curve in in the figore, theL; norm and
the L. norm for the density function converges also the same rage9Flemonstrates
the convergence of the remmapping error based on the pise@wonstant reconstruc-
tion of the density function in the old mesh.
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5 Discussion

Computing the overlapped region of a Lagrangian mesh (oldhjnand a rezoned
mesh(new mesh) and reconstruction (the density or flux) erLdgrangian mesh are
two aspects of a remapping scheme. According to the way heveterlapped (ver-
tical) strips are divided, a remmapping scheme can be edtheZ|B/DC approach or
an FBDC approach. Both approaches are used in practice. ThgDClBnethods is
based on pure geometric or set operation. It is conceptaatiple, however, it is non
trial even for such a simple case of two admissible meshekeo§ame connectively.
The CIB/DC approach requires 98 programming cases for the non-degjerintersec-
tions to cover all the possible intersection cases whichramee than 256. On contrast,
the FBDC method, only requires 34 programming cases for the ngesrate inter-
sections. This approach is attractive for the case whenitbarteshes share the same
connectivity. Here we present method to calculate flusawgpt area or the local swap
area. They are calculated exact. The classification on tieesiction types can help
us to identify the possible degenerate cases, this is caaneanhen develop a robust
remapping procedure. Based on the Fact 3, we know there l@asa256 possible ways
for a new cell to intersect with an old tessellation. But adaag to Fig.3, we can tell
there are more cases than 256. What is the exactly pods##liThis problem remains
open as far as we know.
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