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Abstract. We study a new edge stabilization method for the finite element discretization of
the convection-dominated diffusion-convection equations. In addition to the stabilization of
the jump of the normal derivatives of the solution across the inter-element-faces, we addition-
ally introduce a SUPG/GaLS-like stabilization term but on the domain boundary other than
in the interior of the domain. New stabilization parameters are also designed. Stability and
error bounds are obtained. Numerical results are presented. Theoretically and numerically,
the new method is much better than other edge stabilization methods and is comparable to
the SUPG method, and generally, the new method is more stable than the SUPG method.

Keywords: diffusion-convection equation · stabilized finite element method · stability · error
estimates.

1 Introduction

When discretizing the diffusion-convection equations by the finite element method, the standard
Galerkin variational formulation very often produces oscillatory approximations in the convection-
dominated case(cf. [14], [3]). As is well-known, this is due to the fact that there lacks controlling
the dominating convection in the stability of the method. For obtaining some stability in the di-
rection of the convection, over more than thirty years, numerous stabilized methods have been
available. Basically, all the stabilization methods share the common feature: from some residuals
relating to the original problem to get the stability in the streamline direction. The stabilization
method is highly relevant to the variational multiscale approach [6]: solving the original prob-
lem locally(e.g., on element level) to find the unresolved component of the exact solution in the
standard Galerkin method. Some extensively used stabilization methods are: SUPG(Streamline
Upwind/Petrov-Galerkin) method or SD(Streamline Diffusion) method(cf. [12], [7]), residual-free
bubble method(cf. [15]), GaLS method(cf. [22], [4], [9], [11], [16], [10]), local projection method(cf.
[2], [3]), edge stabilization method(cf. [17], [20]), least-squares method(cf. [8], [5], [23]), etc. All
these stabilization methods can generally perform well for the convection-dominated problem, i.e.,
the finite element solution is far more stable and accurate than that of the standard method. The
edge stabilization method is such method, which uses the jump residual of the normal derivatives
of the exact solution, [∇u · n] = 0 across any inter-element-face F . This method is also known

⋆ Supported by NSFC under grants 11571266, 11661161017, 91430106, 11171168, 11071132, the Wuhan
University start-up fund, the Collaborative Innovation Centre of Mathematics, and the Computational
Science Hubei Key Laboratory (Wuhan University).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93713-7_4

https://dx.doi.org/10.1007/978-3-319-93713-7_4


2 HY Duan et al.

as CIP(continuous interior penalty) method [1] for second-order elliptic and parabolic problems.
In [17], the edge stabilization method is studied, suitable for the convection-dominated problem. It
has been as well proven to be very useful elsewhere(e.g., cf. [18], [19], [20], [21], etc).

In this paper, we study a new edge stabilization method, motivated by the one in [17]. Precisely,
letting F int

h be the set of the interior element faces, and hF the diameter of element face F , and
F∂

h the set of the element faces on ∂Ω, we define the new edge stabilization as follows:

Jh(u, v) =
∑

F∈Fint
h

βτint,F

∫
F

[∇u · n][∇v · n] +
∑

F∈F∂
h

ατ∂,F

∫
F

(−ε∆u+ b · ∇u)(b · ∇v). (1.1)

Here α, β are positive constants, and τint,F , τ∂,F are mesh-dependent parameters, which will be
defined later. The role of τint,F , τ∂,F is approximately the same as h2

F . The new method is consistent
in the usual sense(cf. [13], [14]), and it allows higher-order elements to give higher-order convergent
approximations, whenever the exact solution is smooth enough. The first stabilization term on the
right of (1.1) is essentially the same as [17]. However, the additional second term on the right of
(1.1) is crucial. It ensures that the new method can wholly control the term b ·∇u on every element
and can give the same stability as the SUPG method. Differently, the stabilization in [17] cannot
have the same stability. See further explanations later. We analyze the new method, and give the
stability and error estimates. Numerical experiments are provided to illustrate the new method, also
to compare it with the method in [17] and the SUPG method. As will be seen from the numerical
results, in the presence of boundary and interior layers, the new edge stabilization method is much
better than the method in [17] and is comparable to the SUPG method. In general, the new edge
stabilization is more stable than the SUPG method.

2 Diffusion-Convection Equations

We study the following diffusion-convection problem: Find u such that

−ε∆u+ b · ∇u = f in Ω, u = 0 on ∂Ω. (2.1)

Here ε > 0 denotes the diffusive constant, b the convection/velocity field, and f the source function.
The convection-dominated case means that ε ≪ ||b||L∞(Ω); or, the dimensionless quantity Peclet
number: Pe = V L/ε is very large. Here V and L are the characteristic velocity and the length scales
of the problem. In this paper, we shall use the standard Sobolev spaces [13]. The standard Galerkin
variational problem is to find u ∈ H1

0 (Ω) such that

A(u, v) := ε(∇u,∇v)L2(Ω) + (b · ∇u, v)L2(Ω) = (f, v)L2(Ω) ∀v ∈ H1
0 (Ω). (2.2)

From (2.2), the finite element method reads as follows: find uh ∈ Uh ⊂ H1
0 (Ω) such that

A(uh, vh) = (f, vh) ∀vh ∈ Uh. (2.3)

It has been widely recognized whether (2.3) performs well or not depends on whether the following
discrete Peclet number is large or not:

Peh = ||b||L∞(Ω)h/ε discrete Peclet number, (2.4)
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where h is the mesh size of the triangulation Th of Ω. We assume that Ω is partitioned into a
family of triangles, denoted by Th for h > 0 and h → 0, such that Ω̄ = ∪T∈Th

T̄ . The mesh size
h := maxT∈Th

hT , where hT denotes the diameter of the triangle element T ∈ Th. Concretely, letting
Pℓ denote the space of polynomials of degree not greater than the integer ℓ ≥ 1.

Uh = {vh ∈ H1
0 (Ω) : vh|T ∈ Pℓ(T ), ∀T ∈ Th, vh|∂Ω = 0}. (2.5)

3 Edge stabilization

In this paper, we shall consider a stabilized Ah(·, ·) by the residual of the normal derivatives of
the exact solution, i.e.,

[∇u · n] = 0 ∀F ∈ F int
h , (3.1)

and the residual of the partial differential equation (2.1), i.e.,

−ε∆u+ b · ∇u− f = 0 ∀T ∈ Th. (3.2)

Corresponding to the new edge stabilization (1.1), we define the right-hand side as follows:

Lh(v) =
∑

F∈F∂
h

ατ∂,F

∫
F

f(b · ∇v), (3.3)

where, denoting by hF the diameter of F ,

τint,F :=
h3
F ∥b∥2L∞(F )

∥b∥L∞(F )hF + ε
, τ∂,F :=

h3
F

∥b∥L∞(F )hF + ε
. (3.4)

The stabilizing parameters τ∂,F and τint,F are motivated by [9], [10] and [16].
Now, the new edge stabilized finite element method is to find uh ∈ Uh such that

Ah(uh, vh) := A(uh, vh) + Jh(uh, vh) = Rh(vh) := (f, vh)L2(Ω) + Lh(vh) ∀vh ∈ Uh. (3.5)

This method is consistent, i.e., letting u be the exact solution of (2.1), we have

Ah(u, vh) = Rh(vh) ∀vh ∈ Uh. (3.6)

4 Stability and Error Estimates

Without loss of generality, we assume that divb = 0.
Define

|||uh|||2h := ε||∇uh||2L2(Ω) +
∑
T∈Th

τT ||b · ∇uh||2L2(T )

+
∑

F∈Fint
h

βτint,F

∫
F

|[∇uh · n]|2 +
∑

F∈F∂
h

ατ∂,F

∫
F

|b · ∇uh|2,

where

τT =
h2
T

||b||L∞(Ω)hT + ε
.

Now we can prove the following Inf-Sup condition.
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Theorem 1. ( [27]) The Inf-Sup condition

sup
vh∈Uh

Ah(uh, vh)

|||vh|||h
≥ C|||uh|||h ∀uh ∈ Uh

holds, where the constant C is independent of h, ε,b, uh, only depending on Ω and ℓ.

The above result crucially relies on the following Lemma 1.
Denote by Wh = {wh ∈ L2(Ω) : wh|T ∈ Pℓ−1(T ), ∀T ∈ Th}, and let W c

h = Wh ∩H1
0 (Ω) ⊂ Uh.

Introduce the jump of v across F ∈ Fh. If F ∈ F int
h , which is the common side of two elements

T+ and T−, denoting the both sides of F by F+ and F−, we define the jump [v] = (v|T+)|F+ −
(v|T−)|F− . If F ∈ F∂

h , letting T be such that F ⊂ ∂T , we define the jump [v] = (v|T )|F .

Lemma 1. For any wh ∈ Wh, there exists a wc
h ∈ W c

h, which can be constructed by the averaging
approach from wh, such that, for all T ∈ Th,

||wh − wc
h||L2(T ) ≤ Ch

1/2
T

∑
F⊂∂T

||[wh]||L2(F ).

For a linear element, the argument for constructing the finite element function wc
h ∈ W c

h from the
discontinuous wh ∈ Wh through a nodal averaging approach can be found in [25]. For higher-order
elements, we refer to [24](see Theorem 2.2 on page 2378) for a general nodal averaging approach.
An earlier reference is [26], where a similar nodal averaging operator can be found. In [17], a proof
is also given to prove a similar result for any wh|T := hTb · ∇uh for all T ∈ Th, but there is a fault.
In fact, the authors therein made the mistake in those elements whose sides locate on ∂Ω, e.g., for
T ∈ Th with three sides F1, F2, F3, letting F1 ∈ F∂

h and F2, F3 ∈ F int
h ,

||wc
h − wh||L2(T ) ≤ Ch

1/2
T

∑
F⊂∂T

F∈Fint
h

||[wh]||L2(F ) = Ch
1/2
T

∑
F2,F3

||[wh]||L2(F ).

This result can hold only for wh|∂Ω = 0. In general, it is not necessarily true that wh = 0 on ∂Ω. Of
course, for some problems, say, nonlinear Navier-Stokes equations of the no-slip Dirichlet velocity
boundary condition, the convection field b is the velocity itself of the flow, trivially b|∂Ω = 0, and
consequently, the result of [17] will be correct. Now, it is clear the reason why we introduce the
second stabilization on ∂Ω on the right of (1.1). With this stabilization, we can obtain the result
in Lemma 1 to correct the one of [17] and ensure that the new method is still consistent as usual.
If the method is consistent, for a higher-oder element(applicable when the exact solution is smooth
enough), a higher-order convergence can be obtained.

Theorem 2. ( [27]) Let u and uh be the exact solution and finite element solution of (2.1) and
(3.8), respectively. Then,

|||u− uh|||h ≤ C
((

ε1/2hℓ + (||b||L∞(Ω)h+ ε)1/2hℓ
)
|u|Hℓ+1(Ω)

+(||b||L∞(Ω)h+ ε)−1/2||b||L∞(Ω)h
ℓ+1|u|Hℓ+1(Ω) + ε1/2hℓ+1|∆u|Hℓ(Ω)

)
.

In the case of convection-dominated case, i.e., Peh ≫ 1, or ε ≪ ||b||L∞(Ω)h, we find that

|||u− uh|||h ≤ C(ε1/2hℓ + ||b||1/2L∞(Ω)h
ℓ+1/2)|u|Hℓ+1(Ω) + Cε1/2hℓ+1|∆u|Hℓ(Ω).
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Denote by

||v||2SUPG := ε||∇v||2L2(Ω) +
∑
T∈Th

τT ||b · ∇v||2L2(T )

the norm which is often used in the SUPG method or other methods such as the residual-free bubble
method(or which is equivalent to the norms used in the literature for the SUPG method and other
methods, at least, in the convection-dominated case of Peh ≫ 1). Using this norm, we restate the
above error bounds as follows:

||u− uh||SUPG ≤ (ε1/2hℓ + ||b||1/2L∞(Ω)h
ℓ+1/2)|u|Hℓ+1(Ω) + Cε1/2hℓ+1|∆u|Hℓ(Ω).

In comparison with the SUPG method, here the error bounds are essentially the same [15], only up
to a higher-order error bound Cε1/2hℓ+1|∆u|Hℓ(Ω). Therefore, the new edge stabilization method
in this paper is theoretically comparable to the SUPG method. The numerical results will further
show that the new edge stabilization method is comparable to the SUPG method. Moreover, in the
new edge stabilization method, we have more stability than the SUPG method, i.e., the stability is
measured in the norm ||| · |||h, where the jump of the normal derivatives of the solution(including
the normal derivatives of the solution on ∂Ω) are controlled. Numerically, for some meshes, the new
edge stabilization method is indeed more stable than the SUPG method.

In comparison with the edge stabilization method [17], we have already observed the advantages
of the new method in this paper. Theoretical results have confirmed the observations. Numerical
results will further give the supports.

5 Numerical experiments

In this section, we give some numerical results for illustrating the performance of the new edge
stabilization method, the SUPG method and the edge stabilization method [17] for solving the
convection-dominated diffusion-convection equations with boundary and inner layers.

We study two types of meshes as shown in Fig 1. In the first case(denoted mesh-1) the square
elements are cut into two triangles approximately along the direction of the convection; in the second
case (mesh-2) they are cut almost perpendicular to the direction of the convection. We choose
domain Ω := (0, 1)2, the convection field |b| = 1 which is constant, f = 0, and nonhomogeneous
boundary condition u|∂Ω = U . The geometry, the boundary conditions and the orientation of b
are shown in Fig 2. At h = 1/64 and ε = 10−5 and ε = 10−8, using the linear element, we have
computed the finite element solutions using three methods: SUPG method, BH method [17], New
method in this paper. For mesh-1, the elevations and contours are given by Figs 3-4. For mesh-2,
the elevations and contours are given by Figs 5-6. For mesh-1, from Figs 3-4, we clearly see that
the New method is comparable to the SUPG method and is much better than the BH method. For
mesh-2, from Figs 5-6, we clearly see that the New method is better than the SUPG method and
is still much better than the BH method.
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(a) mesh-1 (b) mesh-2

Fig. 1: Meshes

Fig. 2: Boundary conditions and flow orientation: U = 1 thick edge and U = 0 thin edge.
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Fig. 3: The elevation and contour of the finite element solution, mesh-1, ε = 10−5, h = 1/64.
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Fig. 4: The elevation and contour of the finite element solution, mesh-1, ε = 10−8, h = 1/64.
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Fig. 5: The elevation and contour of the finite element solution, mesh-2, ε = 10−5, h = 1/64.
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Fig. 6: The elevation and contour of the finite element solution, mesh-2, ε = 10−8, h = 1/64.
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