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Abstract. A stable gas-kinetic scheme based on circular function is proposed for 

simulation of viscous compressible flows in this paper. The main idea of this 

scheme is to simplify the integral domain of Maxwellian distribution function 

over the phase velocity and phase energy to modified Maxwellian function, 

which will integrate over the phase velocity only. Then the modified Maxwellian 

function can be degenerated to a circular function with the assumption that all 

particles are distributed on a circle. Firstly, the RAE2822 airfoil is simulated to 

validate the accuracy of this scheme. Then the nose part of an aerospace plane 

model is studied to prove the potential of this scheme in industrial application. 

Simulation results show that the method presented in this paper has a good com-

putational accuracy and stability. 

Keywords. Circular function, Maxwellian function, Gas-kinetic scheme, Vicous 

compressible flows. 

1 Introduction 

With the development of numerical simulation, the computational fluid dynamics 

(CFD) is becoming more and more important in industrial design of aircraft since its 

high-fidelity description of the flow field compared to the engineering method. Most 

numerical schemes are based on directly solving the Euler or N-S equations [1-3]. 

Whereas, a new method we proposed here is to solve the continuous Boltzmann model 

at the micro level and N-S equations at macro level. The gas-kinetic scheme (GKS) is 

commonly used as a continuous Boltzmann model which is based on the solution of 

Boltzmann equation and Maxwellian distribution function [4-7]. The GKS attracts 

more researchers' attention during the last thirty years since its good accuracy and effi-

ciency in solving the inviscid and viscous fluxes respectively [8, 9]. 

The GKS is developed from the equilibrium flux method (EFM) [10] to solve invis-

cid flows in the very beginning. Then, the Kinetic Flux Vector Splitting (KFVS) [11] 

scheme is applied to solve collisionless Boltzmann equation. The Bhatnagar Gross 

Krook (BGK) gas kinetic scheme was developed by Prendergast et al. [12], Chae et al. 
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[13], Xu [14, 15] and other researchers based on the KFVS scheme. The particle colli-

sions are considered in BGK scheme to improve the accuracy, which contributes great 

developments and application potential for BGK gas kinetic scheme.  

In this work, a stable gas-kinetic scheme based on circular function framework is 

proposed for simulating the 2-D viscous compressible flows. Most existing GKS are 

based on Maxwellian function and make it time consuming and complex. Hence, the 

original Maxwellian function, which is the function of phase velocity and phase energy, 

is simplified into a function including phase velocity only. The effect of phase energy 

is contained in the particle inter energy
pe . Then, based on the assumption which all 

particles are concentrated on a circle, the simplified Maxwellian function can be rduced 

to a circular function, which makes the original infinite integral to be integrated along 

the circle. Compressible flow around RAE2822 airfoil is simulated to validate the pro-

posed scheme. Furthermore, the nose part of an aerospace plane model is studied to 

prove the application potential of this scheme. 

2 Methodology 

2.1 Maxwellian Distribution Function 

Maxwellian distribution function is an equilibrium state distribution of Boltzmann 

function. The continuous Boltzmann equation based on Bhatnagar Gross Krook (BGK) 

without external force collision model is shown as Eq. (1): 
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where f is the gas distribution function and the superscript eq means the equilibrium 

state approached by f through particle collisions within a collision time scale . 

The Maxwellian distribution function is  
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in which 
iU  is the macroscopic flow velocity in i-direction and

/ (2 ) 1/ (2 )m kT RT   . The number of phase energy variables is =3K D N  . D

is the dimension and N is freedom rotational degree number.  

The heat ratio  can be expressed as: 
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in which b represents the freedom degree number of molecules. 
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Based on Maxwellian function (Eq. (2)), the continuous Boltzmann equation (Eq. 

(1)) can be recovered to N-S equations by applying Chapman-Enskog expansion anal-

ysis [4] with following conservation moments equations: 

 
Mg d   ,  (4a) 

 
Mg d u    ,  (4b) 
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in which 
1 2 Kd d d d d d d          is the volume element in the phase velocity 

and energy space.   is the density of mean flow, the integral domain for each variable 

is ( , )  .  

Due to phase velocity is independent from phase energy space, Eq. (2) can be written 

as:  
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If we define 
1=d d d d      and 2 1 2= Kd d d d    , then we can get 

1 2=d d d   . With these definitions, the integral form of 
2Mg can be concluded as:  
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Substituting Eq. (5)-Eq. (8) to Eq. (4), we have 

 1 1Mg d   , (9a) 

 1 1Mg d u    ,  (9b) 
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1 1( 2 ) ( )M pg e d u u bRT         , (9c) 

 
1 1Mg d u u p          ,  (9d) 

 
1 1( 2 ) [ ( 2) ]M pg e d u u b RT u              , (9e) 

in which 
pe  is particle potential energy, shown as Eq. (10): 
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where = / [( 1) ]e p    is the potential energy of mean flow. It can be seen from Eq. (9) 

and Eq. (10) that 
pe  is independent from phase velocity 

i . 

2.2  Simplified Circular Function 

Suppose that all the particles in the phase velocity space are concentrated on a circle 

which has center (
1u , 

2u ) and radius c , shown as:  

    
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in which 2c  means the mean particle kinetic energy and we have 
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By substituting Eq. (12) into Eq. (9a) we can get Eq. (13), which is the mass conserva-

tion form in the cylindrical coordinate system: 
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Then we can get the simplified circular function shown as follows: 
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Fig. 1. Configuration of the phase velocity at a cell interface 

All particles are concentrated on the circle and the velocity distribution is shown as Fig. 

1. Then the phase velocity components in the Cartesian coordinate system can be ex-

pressed as: 

 
1 1 cos( )u c   ,  (15a) 

 
2 2 sin( )u c   .  (15b) 

Substituting Eq. (14) and Eq. (15) to Eq. (9), the conservation forms of moments to 

recover N-S equations can be expressed as follows: 
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2.3  Governing Equations Discretized by Finite Volume Method 

N-S equation discretized by finite volume method in 2-dimensional can be expressed 

as: 
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in which I represents the index of a control volume, 
I is the volume,

fN means the 

number of interfaces of control volume I  and 
jS is the area of the interface in this vol-

ume. The conservative variables W  and convective flux
nF can be expressed as: 
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Suppose that cell interface is located on 0r , then the distribution function at cell in-

terface (Eq. (19)) consists two parts, the equilibrium part eqf and the non-equilibrium 

part neqf : 

 (0, ) (0, ) (0, ) (0, ) (0, )neq eq neq

Cf t g t f t f t f t    .  (19) 

To recover N-S equations by Boltzmann equation from Chapman-Enskog analysis [4, 

9, 16-19], the non-equilibrium part (0, )neq

if t  applying Taylor series expansion in time 

and physics space can be written as: 

 2
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Substituting Eq. (20) into Eq. (19) and omit the high order error item, then we have  

  0(0, ) (0, ) ( , ) (0, )C C Cf t g t g t t t g t       ,  (21) 

in which ( , )Cg t t t    is the distribution function around the cell interface, 

0 / /t p t       is dimensionless collision time.   is dynamic coefficient of vis-

cosity, t  is the streaming time step which represents the physical viscous of N-S equa-

tions. Now convective flux at cell interface can be expressed as: 
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in which 
F
Ⅰrepresents contribution of equilibrium distribution function (0, )Cg t  at cell 

interface and F
Ⅱ  means equilibrium distribution function ( , )Cg t t t    at sur-

rounding point of the cell interface. Their functions are shown as: 
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in which the superscript face represents value at (0, )t and cir means ( , )t t t   .  

When 
1 0  , we have expressions as Eq. (25). The superscript L become R when
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Substituting Eq. (25) into Eq. (24), the final expression of the equilibrium distribution 

function at the surrounding points of the cell interface F
Ⅱ  can be calculated by 
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The operators in Eq. (26) can be expressed as: 
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  (27) 

in which 
1u , 

2u  and c  are predictional normal velocity, tangential velocity and par-

ticle specific velocity at cell interface. These velocities can be obtained both by Roe 

average [19] and the value of the former moment at cell interface. 

3 Numerical Simulations 

To validate the proposed circular function-based gas-kinetic scheme for simulation of 

viscous compressible flows, the RAE2822 airfoil and nose part of aerospace plane 

model are discussed.  

3.1 Case1: compressible flow around RAE2822 airfoil 

The transonic flow around RAE2822 airfoil is discussed to validate the accuracy of the 

proposed scheme. The free stream has Mach number of 0.729Ma   with 2.31 degree 

angle of attack. 

  

Fig. 2. Pressure contours of presented scheme 

around RAE2822 airfoil. 

Fig. 3. Pressure coefficient comparison of 

RAE2822 airfoil surface. 

Fig. 2 shows the pressure contours obtained by the proposed scheme. Fig. 3 shows the 

comparison between experimental data [20], Roe scheme and the presented scheme. It 
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can be seen clearly that the presented scheme has good accordance with both experi-

mental data and results of Roe scheme. 

3.2 Case2: supersonic flow around nose part of aerospace plane model 

  

Fig. 4. Pressure contours at 5 degree angle of at-

tack 

Fig. 5. Mach number contours at 5 degree angle 

of attack 

The supersonic flow around the nose part of an aerospace plane model (wind tunnel) is 

simulated in this section. The model is 290mm in length, 58mm in width, the head 

radius is 15mm and semi-cone angle is 20 degree. The free stream has Mach number 

of 3.6Ma  with -5, 0 and 5 degree angle of attack respectively. Fig. 4 gives out the 

pressure contours simulated by the presented scheme at 5 degree angle of attack, and 

Fig. 5 is the Mach number contours at the same condition.  

Fig. 6 shows comparison of pressure coefficient distribution on upper and lower sur-

face of aerospace plane model at -5 angle of attack, which computed by scheme pre-

sented, Roe scheme and Van Leer scheme. It can be seen that the result of present solver 

has good accordance with other two numerical schemes. Similar conclusions can be 

obtained according to Fig. 7 and Fig.8. Therefore, the solver presented in this article 

shows both high computational accuracy and numerical stability. Hence, the circular 

function-based gas-kinetic scheme shows the potential of future industrial application 

in flight vehicle research and design. 
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Fig. 6. Pressure coefficient comparison at -5 de-

gree angle of attack 

Fig. 7. Pressure coefficient comparison at 0 

degree angle of attack 

 

Fig. 8. Pressure coefficient comparison at 5 degree angle of attack 

4 Conclusions 

This paper presents a stable gas-kinetic scheme based on circular function. It is focus 

on improving the calculation efficiency of existing GKS. Firstly, simplifying the orig-

inal Maxwellian function, which is the function of phase velocity and phase energy, 

into the function of phase velocity. Furthermore, reducing the simplified function to a 

circular function. Hence, the original infinite integral can be changed to the integral 

along the circle. 

Transonic flow around RAE2822 airfoil and supersonic flow around the nose part 

of an aerospace plane model are studied. The results show a good computational accu-

racy and the potential for future industrial application. 
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