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Abstract. High efficient methods are required for the computation of
several lambda modes associated with the neutron diffusion equation.
Multiple iterative eigenvalue solvers have been used to solve this prob-
lem. In this work, three different block methods are studied to solve
this problem. The first method is a procedure based on the modified
block Newton method. The second one is a procedure based on sub-
space iteration and accelerated with Chebyshev polynomials. Finally,
a block inverse-free Krylov subspace method is analyzed with different
preconditioners. Two benchmark problems are studied illustrating the
convergence properties and the effectiveness of the methods proposed.
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1 Introduction

The neutron transport equation models the behaviour of a nuclear reactor over
the reactor domain [14]. However, due to the complexity of this equation, the
energy of the neutrons is discretized into two energy groups and the flux is
assumed to be isotropic leading to an approximation of the neutron transport
equation known as, the two energy groups neutron diffusion equation [14].

The reactor criticality can be forced by dividing the neutron production
rate in the neutron diffusion equation by λ obtaining a steady state equation
expressed as a generalized eigenvalue problem, known as the λ-modes problem,

Lφ =
1

λ
Mφ, (1)

where

L =

(
−∇(D1∇) +Σa1

+Σ12 0
−Σ12 −∇(D2∇) +Σa2

)
,

is the neutron loss operator and

M =

(
νΣf1 νΣf2

0 0

)
, φ =

(
φ1
φ2

)
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are the neutron production operator and the neutron flux. The rest of coefficient,
called macroscopic cross sections, are dependent on the spatial coordinate. The
diffusion cross sections are D1 (for the first energy group) and D2 (for the second
one); Σa1 and Σa2 denote the absorption cross sections; Σ12, the scattering
coefficient from group 1 to group 2. The fission cross sections are Σf1 and Σf2,
for the first and second group, respectively. And ν is the average number of
neutron produced per fission.

The eigenvalue (mode) with the largest magnitude shows the criticality of
the reactor and its corresponding eigenvector describes the steady state neutron
distribution in the core. The next sub-critical modes and their associated eigen-
functions are useful to develop modal methods to integrate the transient neutron
diffusion equation.

For the spatial discretization of the λ-modes problem, a high order continuous
Galerkin Finite Element Method (FEM) is used, transforming the problem (1)
into an algebraic generalized eigenvalue problem

Mx = λLx, (2)

where these matrices are not necessarily symmetric (see more details in [17]).
However, with several general conditions, it has been proved, that the dominant
eigenvalues of this equation are real positive numbers [8].

Different methods have been successfully used to solve this algebraic gener-
alized eigenvalue problem such as the Krylov-Schur method, the classical Arnoldi
method, the Implicit Restarted Arnoldi method and the Jacobi-Davidson method
[15,16,17]. However, if we want to compute several eigenvalues and they are very
clustered, these methods might have problems to find all the eigenvalues. In
practical situations of reactor analysis, the dominance ratios corresponding to
the dominant eigenvalues are often near unity. By this reason, block methods,
which approximate a set of eigenvalues simultaneously are an alternative since
their rate of convergence depends only on the spacing of the group of desired
eigenvalues from the rest of the spectrum. In this work, three different block
methods are studied and compared with the Krylov-Schur method.

The rest of the paper has been structured in the following way. In Section
2, the block iterative methods are presented. In Section 3, numerical results
to study the performance of the method for two three dimensional benchmark
problems are presented. In the last Section, the main conclusions of the paper
are collected.

2 Block iterative methods

This section describes the block methods to obtain the dominant eigenvalues and
their associated eigenvectors of a generalized eigenvalue problem of the form

MX = LXΛ, (3)

where X ∈ Rn×q has the eigenvectors in their columns and Λ ∈ Rq×q has the
dominant eigenvalues in its diagonal, n denotes the degrees of freedom in the
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spatial discretization with the finite element method for the equation (1) and q
is the number of desired eigenvalues.

2.1 Modified block Newton method

The original modified block Newton method was proposed by Lösche in [10] for
ordinary eigenproblems. This section briefly reviews an extension of this method
given by the authors in [4] for generalized eigenvalue problems.

To apply this method to the problem (3), we assume that the eigenvectors
can be expressed as

X = ZS, (4)

where ZTZ = Iq. Then, problem (3) can be rewritten as

MX = LXΛ⇒MZS = LZSΛ⇒MZ = LZSΛS−1 ⇒MZ = LZK. (5)

If we add the biorthogonality condition WTZ = Iq in order to determine the
problem, with W is a matrix of rank q, it is obtained the following system

F (Z,Λ) :=

(
MZ − LZK
WTZ − Iq

)
=

(
0
0

)
. (6)

Applying a Newton’s iteration to the problem (6), a new approximation arises
from the previous iteration as,

Z(k+1) = Z(k) −∆Z(k), K(k+1) = K(k) −∆K(k), (7)

where ∆Z(k) and ∆K(k) are solutions of the system that is obtained when the
equation (7) is substituted into (6) and it is truncated at the first terms.

The matrix K(k) is not necessarily a diagonal matrix, as a consequence the
system is coupled. To avoid this problem, the modified generalized block New-
ton method (MGBNM) applies previously two steps. The initial step is to apply
the modified Gram-Schmidt process to orthogonalize the matrix Z(k). The sec-
ond step consist on use the Rayleigh-Ritz projection method for the generalized
eigenvalue problem [12]. More details of the method can be found in [4].

2.2 Block inverse-free block preconditioned Krylov subspace
method

The block inverse-free preconditioned Arnoldi method (BIFPAM) was originally
presented and analyzed for L and M symmetric matrices and L > 0 (see [7,11]).
Nevertheless, this methodology works efficiently to compute the λ-modes.

We start with the problem for one eigenvalue

Mx = λLx, (8)

and an initial approximation (λ0, x0). We aim at improving this approximation
through the Rayleigh-Ritz orthogonal projecting on them-order Krylov subspace

Km(M−λ0L, x0) := span{x0, (M−λ0L)x0, (M−λ0L)2x0, . . . , (M−λkL)mx0}.
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Arnoldi method is used to construct the basis Km. The projection can be
carried out as

ZTMZU = ZTLZUΛ, (9)

where Z is a basis of Km(M−λ0L, x0) and then computing the dominant eigen-
value Λ1,1 and its eigenvector u1 to obtain the value of λ1 = Λ1,1 and its eigen-
vector x1 = Zu1. In the same way, we compute the eigenvalues and eigenvectors
in the following iterations.

If we are interested on computing q eigenvalues of problem (2), we can ac-
celerate the convergence by using the subspace Km with

Km :=

q⋃
i=1

Ki
m(M − λk,iL, xk,i),

where λk,i denotes the i-th eigenvalue computed in the k-th iteration and xk,i its
associated eigenvector. Thus, this method can be dealt with through an iteration
with a block of vectors that allows computing several eigenvalues simultaneously.

Furthermore, the BIFAM will be accelerated with an equivalent transforma-
tion of the original problem by means of a preconditioner. With an approximate
eigenpair (λi,k, xi,k), we consider for some matrices Pi,k, Qi,k the transformed
eigenvalue problem

(P−1
i,k MQ−1

i,k )x = λ(P−1
i,k LQ

−1
i,k )x ⇔ M̂i,kx = λL̂i,kx, (10)

which has the same eigenvalues as the original problem. Applying one step of the
block inverse-free Krylov method to the problem (10), the convergence behaviour
will be determined by the spectrum of

Ĉi,k := M̂i,k − λi,kL̂i,k = P−1
i,k (M − λi,kL)Q−1

i,k . (11)

Different preconditioning transformations can be constructed using different
factorizations of the matrix M−λi,kL. The main goal must be to choose suitably

Pi,k and Qi,k to obtain a favorable distribution of the eigenvalues of matrix Ĉi,k.
In this paper, we have considered the classical incomplete LU factorization

with level 0 of fill (ILU(0)). We also use constants Pi,k = P1,1 and Qi,k = Q1,1

obtained from a preconditioner for M−λ1,1L, where λ1,1 is a first approximation
of the first eigenvalue.

2.3 Chebyshev filtered subspace iteration method

Subspace iteration with a Chebyshev polynomial filter (CHEFSI) is a well known
algorithm in the literature [12,18]. In this paper, we have studied a version
proposed by Berjafa et al. in [5] that iterates over the polynomial filter and
the Rayleigh quotient with block structure. This algorithm is implemented for
ordinary eigenvalue problems, so the original problem (3) is reformulated as

AX = XΛ with A = L−1M. (12)
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The goal of this method is to build an invariant subspace for several eigenvec-
tors using multiplication in block. This subspace is diagonalized using previously
a polynomial filter in these vectors to improve the competitiveness of the method.

The basic idea for computing the first dominant eigenvalue is the following:
Using the notation introduced in Section 2, it is known that any vector z can be
expanded in the eigenbasis as

z =

n∑
i=1

γixi.

Applying a polynomial filter p(x) of degree m to A through a matrix-vector
product leads to

pm(A)z = pm(A)
n∑

i=1

γixi =

n∑
i=1

pm(λi)γixi,

where it is assumed that γ1 6= 0, which is almost always true in practice if z is
a random vector.

If we want to compute x1 as fast as possible, then a suitable polynomial
would be a p(x) such that p(λ1) dominates p(λj), when j 6= 1. That it means,
the filter must separate the desired eigenvalue from the unwanted ones, so that
after normalization p(A)z will be mostly parallel to x1. This leads us to seek a
polynomial which takes small values on the discrete set R = {λ2, . . . , λn}, such
that pm(λ1) = 1. However, it is not possible to compute this polynomial with
the unacknowledged of all eigenvalues of A. The alternative is use a continuous
domain in the complex plane containing R but excluding λ1 instead of the dis-
crete min-max polynomial. In practice, the continuous domain is restricted to
an ellipse E containing the unwanted eigenvalues and then theoretically it can
be shown that the best min-max polynomial is the polynomial

pm(λ) =
Cm((λ− c))/e
Cm((λ1 − c))/e

,

where Cm is the Chebyshev polynomial of degree m, c is the center of the ellipse
E and e is the distance between the center and the focus of E (see more details
in [12]).

In our case, where the eigenvalues are positive real numbers, the ellipse E
is restricted to an interval [α, β], where α, β > 0. These values are computed
following the algorithms proposed in [18].

3 Numerical Results

The competitiveness of the block methods has been tested on two three dimen-
sional problems: the 3D IAEA reactor [13] and the 3D NEACRP reactor [6].
For the spatial discretization of the λ-modes problem, we have used Lagrange
polynomials of degree 3 in the finite element method.
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In the numerical results, the global residual error has been used, defined as

res = max
i=1,...,q

‖Lxi − λiMxi‖2 ,

where λi is the i-th eigenvalue and xi its associated unitary eigenvector.
As the block methods need an initial approximation of a set of eigenvectors,

a multilevel initialization proposed in [3] with two meshes is used to obtain this
approximation.

The solutions of linear systems needed to apply the MGBN method and the
CHEFSI method have been computed with the GMRES method preconditioned
with ILU and a reordering using the Cuthill-McKee method. The dimension of
the Krylov subspace for the BIFPAM has been set equal to 8. The degree of the
Chebyshev polynomial has been 10.

The methods have been implemented in C++ based on data structures pro-
vided by the library Deal.ii [2], PETSc [1] using the definition of the cited papers.
For make the computations, we have used a computer that has been an Intel R©

CoreTM i7-4790 @3.60GHz×8 processor with 32Gb of RAM running on Ubuntu
16.04 LTS.

3.1 3D IAEA reactor

The 3D IAEA benchmark reactor is a classical two-group neutron diffusion prob-
lem [13]. It has 4579 different assemblies and the coarse mesh used to obtain the
initial guess has 1040 cells. The algebraical eigenvalue problems have 263552 and
62558 degrees of freedom, for the fine and the coarse mesh, respectively.

To compare the block methods, the number of iterations for the BIFPAM,
the MGBNM and the CHEFSI method and the residual errors are represented
in Figure 1(a) in the computation of four eigenvalues. These eigenvalues are
1.02914, 1.01739, 1.01739 and 1.01526. In this Figure, we observe similar slopes
in the convergence histories for the BIFPAM and the CHEFSI method and
moreover, they are smaller than the convergence history for the MGBNM since
this is a second-order method. The computational times (CPU time) and the
residual errors (res) obtained for each method are shown in Figure 1(b). In this
Figure, in contrast to the previous one, it is observed that the most efficient
method in time is the BIFPAM although its CPU times are similar to the CPU
times obtained for the MGBNM. This means that in spite of the number of
iterations needed to converge the BIFPAM is larger than the MGBNM, the
CPU time in each iteration is much smaller than the needed to compute one
iteration of the MGBNM. It is due to the BIFPAM does not need to solve linear
systems.

3.2 3D NEACRP reactor

The NEACRP benchmark [6] is also chosen to compare the block methodology
proposed. The reactor core has a radial dimension of 21.606 cm × 21.606 cm
per cell. Axially the reactor is divided into 18 layers with height (from bottom
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Fig. 1. Residual error (res) for the computation of 4 eigenvalues in the IAEA reactor.

to top): 30.0 cm, 7.7 cm, 11.0 cm, 15.0 cm, 30.0 cm (10 layers), 12.8 cm (2
layers), 8.0 cm and 30.0 cm. The boundary condition is zero flux in the outer
reflector surface. The fine mesh and the coarse mesh considered have 3978 and
1308 cells, respectively. Using polynomials of degree three the fine mesh has
230120 degrees of freedom. The coarse mesh used to initialize the block methods
has 7844 degrees of freedom.

Figure 2(a) shows the convergence histories of the BIFPAM, the MGBNM
and the CHEFSI method in terms of the number of iterations in the computa-
tion of four eigenvalues. The eigenvalues obtained have been 1.00200, 0.988620,
0.985406 and 0.985406. That it means the spectrum for this problem is very
clustered. In this Figure, we observe the similar behaviour between the BIF-
PAM and the CHEFSI method being these two methods slower in convergence
than the MBNM. Figure 2(b) displays the CPU time and the residual errors
obtained for each method. In this Figure, we observe that the quickest method
is the BIFPAM by the same reason given in the previous. So, the most efficient
block method studied is the BIFPAM.

Finally, these block methods are compared with the Krylov-Schur method
implemented in the library SLEPc [9] for the NEACRP reactor. This method is
a non-block method, but it is a very competitive method to solve eigenvalue prob-
lems. The dimension of the Krylov subspace used in the Krylov-Schur method has
been 15 + q that is the default value of the library. This method is implemented
in the library using a locking strategy, so the history block convergence cannot
be displayed and compared with the block method presented in this work. The
total computational times obtained for a different number of eigenvalues are dis-
played in Table 1 to compare the block methods with the Krylov-Schur method.
The total CPU time of the block methods includes the time needed to compute
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Fig. 2. Residual error (res) for the computation of 4 eigenvalues in the NEACRP
reactor.

the initial guess. The tolerance set for all methods has been res= 10−6. In this
Table, we observe that the BIFPAM and MGBNM methods compute the eigen-
values faster than the Krylov-Schur method from a number of eigenvalues equal
to 4, being the fastest the MGBNM. This is also observed when we compute one
eigenvalue. For 2 and 3 eigenvalues the CPU times obtained with the Krylov-
Schur method are smaller than the CHEFSI method and the BIFPAM, while
these values are larger than for the MGBNM. In these cases, it is necessary to
use higher subspace dimension than 8 for the BIFPAM to obtain better results.
For all cases, it is observed that the CHEFSI method does not improve the times
obtained with the other block methods and the Krylov-Schur method.

Table 1. Computational times (s) obtained for the NEACRP reactor using the Krylov-
Schur method, the BIFPAM, the MGBNM and the CHEFSI method for different num-
ber of eigenvalues

n. eigs (q) Krylov-Schur BIFPAM MGBNM CHEFSI

1 98 65 76 249
2 134 174 108 390
3 135 207 132 390
4 214 153 149 510
5 237 213 185 630
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4 Conclusions

The computation of the λ-modes associated with the neutron diffusion equation
is interesting for several applications such as the study of the reactor criticality
and the development of modal methods. A high order finite element method
is used to discretize the λ-modes problem. Different block methods have been
studied and compared to solve the algebraical problem obtained from the dis-
cretization. These methods have been tested using two 3D benchmark reactors:
the IAEA reactor and the NEACRP reactor.

The main conclusion of this work is that the use of block methods is a good
strategy alternative to Krylov methods when we are interested in computing
a set of dominant eigenvalues. However, the efficiency depends on the type of
method. For generalized eigenvalues problems, the BIFPAM, that does not need
to solve linear systems, or the MGBNM, that converges with a short number of
iterations, are good choices that improve the computational times obtained with
the competitive Krylov-Schur method. With respect to the CHEFSI method,
due to their implementation for ordinary eigenvalue problems, it needs to solve
many linear systems that makes the method inefficient. In future works, a gen-
eralization of this method for generalized eigenvalue problems will be studied.
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