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Abstract.  
 
In this paper, we summarize on an approach which couples the multiscale 

method with the homogenization theory to model the pre-treatment depth 

filtration process in desalination facilities. By first coupling the fluid and 

solute problems, we systematically derive the homogenized equations for 

the effective filtration process while introducing appropriate boundary con-

ditions to account for the deposition process occurring on the spheres’ 

boundaries. Validation of the predicted results from the homogenized 

model is achieved by comparing with our own experimentally-derived val-

ues from a lab-scale depth filter. Importantly, we identify a need to include 

a computational approach to resolve for the non-linear concentration pa-

rameter within the defined periodic cell at higher orders of reaction. The 

computational values can then be introduced back into the respective ho-

mogenized equations for further predictions which are to be compared 

with the obtained experimental values. This proposed hybrid methodology 

is currently in progress.  

Keywords: homogenization theory; multi-scale perturbation; porous media 
filtration; computational and analytical modelling 

1. Introduction 

For seawater reverse osmosis (SWRO) desalination, pre-treatment of the seawater 

source is typically carried out to remove turbidity and natural organic matter to mitigate 

excessive fouling of the RO modules downstream. The most common pre-treatment 

technology in medium- and large-scale desalination plants today is rapid granular filtra-

tion based on single or dual-media (Voutchkov, 2017). The optimised goal of the pre-

treatment step is to maximise the productivity of filtered effluent into the downstream RO 

membranes facility before the maintenance of the granular filter. 
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Generally, filters’ maintenance is resource-expensive and requires proper manage-

ment to minimize logistical problems. For depth filters, maintenance is achieved via 

backwashing by mechanically pumping filtered or brine water reversely through the filter, 

which expands the granular media and flushes away the unwanted materials strained 

inside. Currently, the standard practice calls for backwashing at a fixed interval typically 

once every 24 to 48 hours (MWH, 2005; Voutchkov, 2017), without a full diagnosis of 

the degree of clogging occurring inside the operating filter a priori. Thus, backwashing 

is either carried out unnecessarily since the filter can still operate effectively for an ex-

tended period, or unexpectedly due to elevated turbidity levels in the intake source dur-

ing stormy seasons which results in either exceedance in effluent turbidity or maximum 

allowable head loss within the filter before the scheduled maintenance.  

 

Advanced computational methods have facilitated our understanding of the move-

ment of emulated turbidity particles in an idealised pore-structure representation of the 

filter. In OpenFOAM (The OpenFOAM Foundation), which is an Open-Source Compu-

tational Fluid Dynamics (CFD) software, their Eulerian-Lagrangian (EL) approach uses 

the track-to-face algorithm to simulate the Lagrangian particle movement from one com-

putational grid to the other. The algorithm requires that the size of the Lagrangian parti-

cle to be smaller than the smallest length of the computational grid. Hence, for very small 

Lagrangian particles of 𝑂(10−7 𝑚), the number of grids in each axial flow direction ex-

ceeds 𝑂(103), resulting in billions of grids for a full three-dimensional (3D) problem 

which is computationally very expensive. 

 

Theoretical analysis offers another alternative by coupling the homogenization up-

scaling approach with the multi-scale perturbation technique to reduce the complexity of 

the macroscopic problem. This approach minimizes the empiricism involved in the model 

formulation with two key assumptions: (a) a near- or fully-periodic prescribed microstruc-

ture, and (b) sufficiently small dimensionless parameters to relate the macroscale and 

microscale variations. In the following, we describe several important contributions from 

the literature which adopt this approach to model the remediation process in porous 

media systems in general.  

 

Mei et al. (1996) derived the homogenized Darcy’s Law for saturated porous media 

by considering the flow past a periodic array of rigid media, followed by the numerical 

computation of the hydraulic conductivity inside the microscale cell. Mei (1992), Mei et 

al. (1996) and Mei and Vernescu (2012b) also rigorously derived the convection disper-

sion equation and solved for the dispersion of a passive solute in the seepage flow 

through a spatially periodic domain. Bouddour et al. (1996) derived the characteristic 

models for four varying flow phenomena within the microscale domain to analyse the 

formation damage in the macroscopic porous media due to erosion and deposition of 

solid particles. A similar approach was also adopted by Royer et al. (2002) to investigate 

the transport of contaminants in fractured porous media under varying local Peclet 

(𝑃𝑒) numbers, based on the assumption that both convection and molecular diffusion 

were of equal importance within the microscale domain. Ray et al. (2012) analysed the 
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transport of colloids and investigated the variation to the microstructure during the at-

tachment and detachment of colloidal particles in a two-dimensional (2D) saturated po-

rous media structure by coupling the surface reaction rate and Nernst-Planck equations. 

Most recently, Dalwadi et al. (2015) first demonstrated the effectiveness of a decreasing 

porosity gradient to maximise a filter’s trapping capability. They later consider the 

changes to the microscale media properties to quantify the filter blockage (Dalwadi et 

al., 2016). The theoretical novelty of these models is notable as they enable one to pre-

dict the filter’s initial porosity value which attains homogeneous clogging. However, their 

theoretical analysis has not yet been extended to actual industrial conditions of pre-

treatment depth filters.  

 

In this study, we extend on the homogenization theory by Mei and Vernescu (2012a 

and 2012b) to model the macroscale filter’s clogging condition as particles deposition 

onto the boundaries of the microscale spheres. Our engineering model aims to analyti-

cally predict the normalized pressure gradient behavior acting upon the filter by consid-

ering the known operating conditions. Subsequently, an experimental study was per-

formed with a lab-scale depth filter setup to pre-treat seawater influents under varying 

conditions. We then compare the derived experimental results with the model predic-

tions for validating the proposed engineering model.  

 

In the following, we first describe the full flow and particle transport equations in Sec-

tion 2 and the adopted homogenization procedures in Section 3. In Section 4, we present 

the details of our adopted experimental study. Section 5 compares the experimental and 

predicted values obtained from the engineering model. The computational methodology 

to resolve the non-linear multiscale analysis is then discussed in Section 6. Finally, we 

conclude with an overview of our completed works in Section 7. 

 

 

2. Model Formulation 

 

2.1. Model’s general description 

The macroscale granular filter is first modelled as an idealized network of non-overlap-

ping three-dimensional rigid ideal spheres which either follows the simple cubic (SC) 

arrangement (see Figure 1). The figure is illustrated in its two-dimensional cross-sec-

tional form due to the inherent symmetry of the adopted spheres. However, the analysis 

remains strictly three-dimensional.  
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.  

Figure 1. Cross-sectional (2D) representation of macroscale filter with rigid ideal spheres 

packed in simple-cubic (SC) arrangement to represent filter grains  

 

 The SC configuration is suitable to encapsulate the clean bed porosity (𝜃0) range of 

0.5 – 0.7 for GAC operating filters (MWH, 2005; Voutchkov, 2012; Voutchkov, 2017) as 

its ultimate contact scenario, whereby each sphere touches one another, results in 0.476 

for 𝜃0. The length of each SC periodic cell (𝑙𝑆𝐶) in Figure 1 is computed as follows.   

 

𝑙𝑆𝐶 = √
𝜋
6

𝑑𝑐,0
3

1 − 𝜃0

3

(2.1) 

 

where 𝑑𝑐,0 is the effective size of each ideal sphere.  

 

 Within each SC periodic cell in Figure 1, the fluid motion in the available pore space 

is governed by the incompressible steady-state Stokes equation at low Reynolds num-

ber in (2.2) and mass continuity equation in (2.3).  

 

0 = −
1

𝜌

𝜕𝑝∗

𝜕𝑥𝑖
∗

+
µ

𝜌
𝛻2𝑢𝑖

∗, 𝑥 ⊂  Ω𝑓(𝑡∗)     (2.2) 

 
𝜕𝑢𝑖

∗

𝜕𝑥𝑖
∗ = 0, 𝑥 ⊂  Ω𝑓(𝑡∗)   (2.3) 

 

where 𝑥∗ is the position vector, 𝑢∗ the velocity vector, µ the fluid dynamic viscosity, 𝑝∗ 

the fluid pressure, and 𝜌 the fluid density.  
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 The transport of solute (turbidity particles or NOM materials), via advection and diffu-

sion, within Ω𝑓(𝑡∗) of each SC periodic cell is described in (2.4). We define the concen-

tration of solute, 𝑐∗ as mass of solute per unit volume of fluid.  

 
𝜕𝑐∗

𝜕𝑡∗
+  

𝜕(𝑐∗𝑢𝑖
∗)

𝜕𝑥𝑖
∗

= 𝐷𝑝
∗𝛻2𝑐∗, 𝑥 ⊂  Ω𝑓(𝑡∗)     (2.4) 

 

where 𝐷𝑝
∗ the unknown particle diffusivity responsible for the depth filter’s removal mech-

anisms (rapid effective filtration, adsorption), and 𝑡∗ is time. 

 

 We introduce a unique boundary condition in (2.5) to account for the concentration of 

solute undergoing a 𝑛 order reaction rate on the fluid-solid interface due to the assumed 

particle diffusion mechanism.  

 

−

𝜕𝑆∗

𝜕𝑥𝑖
∗

|𝛻𝑆|
· (𝐷𝑝

∗
𝜕𝑐∗

𝜕𝑥𝑖
∗) = 𝑘𝑓𝑠(𝑐∗)𝑛 , 𝑥 ⊂  Ω𝑓𝑠(𝑡∗)    (2.5) 

where 𝑆 is the boundary of the sphere, 

𝜕𝑆∗

𝜕𝑥𝑖
∗

|𝛻𝑆|
 the outward normal vector acting on the mi-

croscale sphere, 𝑘𝑓𝑠 the reaction rate occurring on the fluid-solid interface (Ω𝑓𝑠), and 𝑛 

(≥ 0) the order of reaction occurring. It is important to highlight that an increasing 𝑛 

value will violate the linearity of the PDE problem in (2.5), hence we will only analyse 

the 𝑛 values of 1 and 2 (assumed to be weakly non-linear) in this study as our first ap-

proach.  

 

 

2.2. Normalization 

 

We then adopt the following scaling variables to normalize (2.2 – 2.5): (i) 𝑐∗  =  𝑐0,𝑡𝑠𝑠𝑐, 

(ii) 𝑡∗  =  𝑇𝑡, (iii) 𝑢𝑖
∗  =  𝑈𝑢𝑖 , (iv) 𝑥𝑖

∗  =  𝑙𝑥𝑖 , (v) 𝑝∗  =  𝑃𝑝, and (vi) 𝐷𝑝
∗  =  𝐷𝑝𝐷, whereby 

𝑇,𝑈, 𝑃 and 𝐷𝑚 are the respective scales for the time, velocity, pressure and diffusion 

parameters, and 𝑐0,𝑡𝑠𝑠  represents the influent’s total suspended solids concentration. 

Three unique macroscopic time scales (𝑇) are also adhered in our analysis: (a) convec-

tion time scale (𝑇𝑐) in (2.6), (b) reaction time scale (𝑇𝑅) in (2.7), and (c) macroscopic 

diffusion time scale (𝑇𝐷) in (2.8). 

𝑇𝑐 =
𝑙′

𝑈
   (2.6) 

 

𝑇𝑅 =
𝑙′

𝑘𝑓𝑠𝑐𝑒𝑞𝑚
𝑛−1

   (2.7) 

 

𝑇𝐷 =
(𝑙′)2

𝐷𝑝
   (2.8) 
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where 𝑙′ is the characteristic length of the macroscale filter, and 𝑘𝑓𝑠 adopts the dimen-

sions of [𝑀1−𝑎𝐿3𝑎−2𝑇−1] for generality. The dimensionless microscale Reynolds num-

ber (𝑅𝑒), Peclet number (𝑃𝑒) and Damköhler (𝐷𝑎,𝑙) number are also defined in (2.9), 

(2.10) and (2.11) respectively.  

 

𝑅𝑒 =
𝜌𝑈𝑙

µ
   (2.9) 

 

𝑃𝑒 =
𝑈𝑙

𝐷𝑚
   (2.10) 

 

𝐷𝑎,𝑙′ =
𝑇𝐷

𝑇𝑅
=

𝑘𝑓𝑠𝑐𝑒𝑞𝑚
𝑛−1 𝑙

𝜀𝐷𝑝
=  

𝐷𝑎,𝑙

𝜀
 (2.11) 

where 𝐷𝑎,𝑙′ the macroscale Damköhler number.  

 

 Finally, we note that a small length scale (𝜀) which is defined as 
𝑙

𝑙′ is adopted for the 

subsequent homogenization procedures. A dominant balance is defined between the 

macroscale pressure gradient acting upon the depth filter and the viscous flow re-

sistance around the microscale sphere which enables us to derive the homogenized 

effective Darcy’s Law equation subsequently.  

 

 

3. Homogenization procedures 

 

We adopt the multiple-scale coordinates of 𝑥 and 𝑥’ = 𝜀𝑥 whereby 𝑥 is the fast variable 

defined within the periodic cell, and 𝑥’ is the slow variable spanning across the macro-

scopic domain (Mei and Vernescu, 2012a and 2012b). The perturbation expansions for 

the fluid parameters (which are all cell-periodic) can be expressed as follows. 

 

𝐻 = 𝐻(0) + 𝜀𝐻(1) + 𝜀2𝐻(2) + ⋯ (3.1) 

 

where 𝐻 can be 𝑝, 𝑐 and 𝑢𝑖. 

 

 We then introduce the following spatial derivative to perform the multiple-scale ex-

pansions. 
𝜕

𝜕𝑥𝑖
→

𝜕

𝜕𝑥𝑖
+ 𝜀

𝜕

𝜕𝑥𝑖
′    (3.2) 

 

 To demonstrate the homogenization procedure, we succinctly perform the analysis 

by adopting the time scale of 𝑇𝑐 for rapid filtration conditions. The final dimensionless 

forms of (2.2 – 2.5) are then shown in (3.3a – d) respectively after the appropriate nor-

malization procedures. We note that the extension to slow filtration conditions is 

achieved by changing the time scale to either 𝑇𝐷 or 𝑇𝑅 while the homogenization proce-

dures remain unchanged.  
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0 = −
𝜕𝑝

𝜕𝑥𝑖
+ 𝜀𝛻2𝑢𝑖  , 𝑥 ⊂  Ω𝑓(𝑡)     (3.3𝑎) 

 
𝜕𝑢𝑖

𝜕𝑥𝑖
= 0, 𝑥 ⊂  Ω𝑓(𝑡)   (3.3𝑏) 

 

𝜀
𝜕𝑐

𝜕𝑡
+

𝜕(𝑐𝑢𝑖)

𝜕𝑥𝑖
= 𝑃𝑒−1𝐷𝛻2𝑐, 𝑥 ⊂  Ω𝑓(𝑡)     (3.3𝑐) 

−

𝜕𝑆
𝜕𝑥𝑖

|𝛻𝑆|
⋅ (𝐷

𝜕𝑐

𝜕𝑥𝑖
) = 𝜀𝐷𝑎,𝑙′𝑐𝑛, 𝑥 ⊂  Ω𝑓𝑠(𝑡)     (3.3𝑑) 

 

 To demonstrate our novelty, we confine our homogenization analysis to the solute 

transport problem (3.3c – 3.3d) while noting that the analysis for the flow problem (3.3a 

– 3.3b) can be understood from previous multiscale works (Mei et al., 1996; Mei and 

Vernescu, 2012a and 2012b; Dalwadi et al., 2015 and 2016) whereby the homogenized 

dimensionless Darcy’s law can be derived systematically.  

 

 

3.1. Solute problem analysis 

 

By using (3.2), the multi-scale expansion forms (3.3c – 3.3d) are as follows.  

 

𝜀
𝜕

𝜕𝑡
(𝑐(0) + 𝜀𝑐(1) + ⋯ ) + (

𝜕

𝜕𝑥𝑖
+ 𝜀

𝜕

𝜕𝑥𝑖
′
) (𝑢𝑖

(0) + 𝜀𝑢𝑖
(1) + ⋯ )(𝑐(0) + 𝜀𝑐(1) + ⋯ )

= 𝑃𝑒−1𝐷 (
𝜕

𝜕𝑥𝑗
+ 𝜀

𝜕

𝜕𝑥𝑗
′) (

𝜕

𝜕𝑥𝑗
+ 𝜀

𝜕

𝜕𝑥𝑗
′) (𝑐(0) + 𝜀𝑐(1) + ⋯ ),    𝑥 

⊂  Ω𝑓(𝑡)      (3.4𝑎) 

 

−

𝜕𝑆
𝜕𝑥𝑖

|𝛻𝑆|
⋅ (𝐷 (

𝜕

𝜕𝑥𝑖
+ 𝜀

𝜕

𝜕𝑥𝑖
′) (𝑐(0) + 𝜀𝑐(1) + ⋯ )) = 𝜀𝐷𝑎,𝑙′(𝑐(0) + 𝜀𝑐(1) + ⋯ )

𝑛
,

𝑥 ⊂  Ω𝑓𝑠(𝑡)     (3.4𝑏) 

 

 At the leading order of 𝜀0, 𝑐(0) is also determined to be independent of the microscale 

variations. At the next order of 𝜀1, we systematically derive the following for (3.4a) and 

(3.4b) respectively.  

 

𝜃
𝜕𝑐(0)

𝜕𝑡
+ �̃�𝑖

(0)  
𝜕𝑐(0)

𝜕𝑥𝑖
′ = −𝑃𝑒−1𝐷𝑎,𝑙′𝐶𝑅𝑐(0)𝑛

, 𝑥 ⊂  Ω𝑓(𝑡)  (3.5) 

 

subject to the boundary condition of (3.6).  
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−

𝜕𝑆
𝜕𝑥𝑖

|𝛻𝑆|
⋅ (𝐷

𝜕𝑐(1)

𝜕𝑥𝑖
+ 𝐷

𝜕𝑐(0)

𝜕𝑥𝑖
′ ) = 𝐷𝑎,𝑙′𝑐(0)𝑛

, 𝑥 ⊂  Ω𝑓𝑠(𝑡)     (3.6) 

 

where 𝐶𝑅  is a proposed dimensionless effective reaction rate which depends on the 

pore-geometry 
|Ω𝑠|

|Ω𝑓|
 within the periodic cell whereby |Ω𝑠| =

2

3
𝜋𝑑𝑐,0

3  which represents the 

volume of the spheres inside the SC periodic cell, and |Ω𝑓| represents the volume of 

fluid within the SC periodic cell.  

 

 We then consider the solution for the cell problem of 𝑐(1) in the following form (Auri-

ault and Adler, 1995, Equation 40).  

 

𝑐(1) = 𝜒𝑖

𝜕𝑐(0)

𝜕𝑥𝑖
′

+ �̂�(1)   (3.7) 

 

where 𝜒𝑖 is the microscale periodic vector field of spatial dimensions, and �̂�(1) is an in-

tegration constant which is independent of the microscale variations. The microscale 

variation of 𝑐(1) from (3.8) is then expressed as follows.  

𝜕𝑐(1)

𝜕𝑥𝑖
=

𝜕𝜒𝑘

𝜕𝑥𝑘

𝜕𝑐(0)

𝜕𝑥𝑖
′ + 𝜒𝑖𝛻 ⋅ 𝛻′𝑐(0)   (3.8) 

Substituting (3.8) back into (3.6) results in the following modified form.  

−

𝜕𝑆
𝜕𝑥𝑖

|𝛻𝑆|
⋅ (𝐷 (

𝜕𝜒𝑘

𝜕𝑥𝑘

𝜕𝑐(0)

𝜕𝑥𝑖
′

+ 𝜒𝑖𝛻 ⋅ 𝛻′𝑐(0)   ) + 𝐷
𝜕𝑐(0)

𝜕𝑥𝑖
′

) = 𝐷𝑎,𝑙′𝑐(0)𝑛
, 𝑥 ⊂  Ω𝑓𝑠(𝑡)     (3.9) 

At the next order of 𝜀2, we obtain the following.  

 

𝜃
𝜕𝑐(1)

𝜕𝑡
+ �̃�𝑖

(0)  
𝜕𝑐(1)

𝜕𝑥𝑖
′ + �̃�𝑖

(1)  
𝜕𝑐(0)

𝜕𝑥𝑖
′

= 𝑃𝑒−1
𝜕

𝜕𝑥𝑖
′ (𝐷 (

𝜕𝜒𝑘

𝜕𝑥𝑘

𝜕𝑐(0)

𝜕𝑥𝑖
′ + 𝜒𝑖𝛻 ⋅ 𝛻′𝑐(0)) + 𝐷

𝜕𝑐(0)

𝜕𝑥𝑖
′ )

− 𝑛𝑃𝑒−1𝐷𝑎,𝑙′𝐶𝑅𝑐(0)𝑛−1
𝑐(1), 𝑥 ⊂  Ω𝑓  (3.10) 

 

subject to the following boundary condition.  

 

−

𝜕𝑆
𝜕𝑥𝑖

|𝛻𝑆|
⋅ (𝐷

𝜕𝑐(2)

𝜕𝑥𝑖
+ 𝐷

𝜕𝑐(1)

𝜕𝑥𝑖
′ ) = 𝑛𝐷𝑎,𝑙′𝑐(0)𝑛−1

𝑐(1), 𝑥 ⊂  Ω𝑓𝑠(𝑡)     (3.11) 

 

We consider the perturbation expansion of the temporal derivative of �̃� within the SC 

microscale cell as follows. 
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𝜕�̃�

𝜕𝑡
=

𝜕�̃�(0)

𝜕𝑡
+ 𝜀

𝜕�̃�(1)

𝜕𝑡
+ 𝑂(𝜀2)   (3.12) 

 

To further modify (3.12), we adhere to the respective representations of (3.5) and (3.10) 

to derive the following.  

 

𝜕�̃�

𝜕𝑡
= −�̃�𝑖

(0)  
𝜕𝑐(0)

𝜕𝑥𝑖
′

− 𝜀�̃�𝑖
(1)  

𝜕𝑐(0)

𝜕𝑥𝑖
′

− 𝜀�̃�𝑖
(0)  

𝜕𝑐(1)

𝜕𝑥𝑖
′

− 𝑃𝑒−1𝐷𝑎,𝑙′𝐶𝑅𝑐(0)𝑛

+ 𝜀𝑃𝑒−1
𝜕

𝜕𝑥𝑖
′ (𝐷 (

𝜕𝜒𝑘

𝜕𝑥𝑘

𝜕𝑐(0)

𝜕𝑥𝑖
′ + 𝜒𝑖𝛻 ⋅ 𝛻′𝑐(0)) + 𝐷

𝜕𝑐(0)

𝜕𝑥𝑖
′ )

− 𝜀𝑛𝑃𝑒−1𝐷𝑎,𝑙′𝐶𝑅𝑐(0)𝑛−1
𝑐(1) + 𝑂(𝜀2)  , 𝑥 ⊂  Ω𝑓    (3.13) 

 

By assuming  𝛻′𝑐(0) ≈ 𝛻′𝑐  and the following relationships of (3.14) and (3.15), we obtain 

(3.16) from (3.13).  

 

�̃�𝑖  
𝜕𝑐

𝜕𝑥𝑖
′

= �̃�𝑖
(0)  

𝜕𝑐(0)

𝜕𝑥𝑖
′

+ 𝜀�̃�𝑖
(0)  

𝜕𝑐(1)

𝜕𝑥𝑖
′

+ 𝜀�̃�𝑖
(1)  

𝜕𝑐(0)

𝜕𝑥𝑖
′

+  𝑂(𝜀2)  (3.14) 

 

𝑐𝑛 = 𝑐(0)𝑛
+ 𝜀𝑛𝑐(0)𝑛−1

𝑐(1) +  𝑂(𝜀2)  (3.15) 

 
𝜕�̃�

𝜕𝑡
= −�̃�𝑖  

𝜕𝑐

𝜕𝑥𝑖
′ − 𝑃𝑒−1𝐷𝑎,𝑙′𝐶𝑅𝑐𝑛 + 𝜀𝑃𝑒−1

𝜕

𝜕𝑥𝑖
′ (𝐷 (

𝜕𝜒𝑘

𝜕𝑥𝑘

𝜕𝑐

𝜕𝑥𝑖
′ + 𝜒𝑖𝛻 ⋅ 𝛻′𝑐) + 𝐷

𝜕𝑐

𝜕𝑥𝑖
′)

+ 𝑂(𝜀2)  , 𝑥 ⊂  Ω𝑓   (3.16) 

 

(3.16) represents the macroscopic effective advection-dispersion-reaction equation 

which is accurate up to 𝑂(𝜀2). We again note that our analysis is confined to the 𝑛 values 

of 1 or 2 as our first approach which will be discussed further in the subsequent sections.  

 

4 Experimental design  

We perform a series of rapid filtration experiments for model validations. Figure 2 illus-

trates the simplified version of our filter setups and the general operational mode to 

remove both turbidity particles and NOMs materials from the intake seawater source. At 

regular intervals, samples are collected from both filters to measure turbidity, total sus-

pended solids (TSS) and dissolved organic carbon (DOC) concentrations. Likewise, the 

pressure gradient measurements of between 𝑝1 and 𝑝2, and between 𝑝3 and 𝑝4 are also 

taken at designated intervals. The biological slow filtration experiments are currently 

underway, while we have completed a set of rapid filtration experiments for model vali-

dations. Readers are referred to Table 1 for the summary of adopted conditions for the 

rapid filtration experiments conducted by far.   
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Figure 2. Schematic representation of hybrid rapid and slow granular filters to remove 

both turbidity particles and natural organic matters from intake seawater  

 

 
Table 1. Summary of experimental conditions adopted for pre-treatment rapid filtration 

Exp 

no. 

𝑞𝑖𝑛 

(𝑚/ℎ) 

𝑐0,𝑡𝑢𝑟 

(𝑁𝑇𝑈) 

𝑐0,𝑡𝑠𝑠 

(𝑚𝑔/𝐿) 

𝑑𝑝 

(µ𝑚) 

Duration 

(𝑚𝑖𝑛𝑠) 

1 8.00 6.63 16.6 83.3 90 

2 7.40 2.95 7.38 26.0 90 

3 8.15 2.72 6.80 507 90 

 

 

5  Model Validations  

We first modify (3.16) into (5.1) by adopting the following assumptions: (i) quasi-steady-

state condition for the discharge concentration from the 0.155m GAC media depth de-

ployed (see Figure 3), (ii) unidirectional flow within the depth filter, (iii) homogeneous 

clogging inside the filter, (iv) spatial averaging theorem coupled with periodicity bound-

ary conditions, (v) 𝑛 = 1 for rapid effective filtration, (vi) 𝑃𝑒−1~𝑂(𝜀) which ensures a 

dominant balance between advection and the regarded particle diffusion at the mac-

roscale, and (vii) 𝐷𝑎,𝑙′~𝑂(𝜀−1). 

 

0 = −�̃�3  
𝜕𝑐

𝜕𝑥3
′ − 𝐶𝑅𝑐 + 𝜀2

𝜕

𝜕𝑥𝑖
′ (𝐷

𝜕𝑐

𝜕𝑥𝑖
′) + 𝑂(𝜀2)  , 𝑥 ⊂  Ω𝑓   (5.1) 

 

By comparing the respective terms of 𝑂(1) of (5.1), we obtain the final solution of 

(5.2) while including an unknown calibration factor in 𝐶1 to account for the random pack-

ing of media grains in the actual depth filter.  

 

�̃�3 = 𝐶1

𝐶𝑅𝑥3
′

ln (
𝑐0,𝑡𝑠𝑠

𝑐
)

, 𝑥 ⊂  Ω𝑓   (5.2) 

 We then adhere to the dimensionless homogenized Darcy’s Law equation in the fol-

lowing with respect to the derived form of (5.2).  
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𝐶1

𝐶𝑅𝑥3
′

ln (
𝑐0,𝑡𝑠𝑠

𝑐
)

= −𝐾
𝜕𝑝(0)

𝜕𝑥3
′

, 𝑥 ⊂  Ω𝑓  (5.3) 

Finally, we compute the normalized values (𝛽)  of the macroscale dimensionless 

pressure gradient acting upon the lab-scale depth filter in (5.4) which predicted values 

generally agree with the respective experimentally-derived values in Figure 4.  

𝛽 =

(
𝜕𝑝(0)

𝜕𝑥3
′ )

𝑡

(
𝜕𝑝(0)

𝜕𝑥3
′ )

0

, 𝑥 ⊂  Ω𝑓   (5.4) 

 
Figure 3. Transient variations of 

𝑐

𝑐0
 at 0.155m GAC media depth 

  

 
Figure 4. Comparison between predicted and experimental values of 𝛽 for Exp 1 to 3 
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With respect to Figure 4, we believe that the agreement will further improve with a higher 

GAC media depth due to a smaller resultant value in 𝜀. 

 

6  Computational methodology  

 

In this section, we succinctly describe on our computational methodology to resolve for 

the non-linear microscale problem of 𝑐𝑛 for 𝑛 greater than 2. Computationally, it is not 

possible to resolve for a numerical domain having fully periodic flow conditions which is 

required for the periodic cell problem in Figure 1. Hence, we propose to adopt the con-

figurations in Figures 5a to 5c by defining the inlet and outlet zones to the numerical 

domain as shown. Errors are expected to be incurred due to the imposed boundaries 

and these errors can gradually be reduced as the length of the domain increases (Fig-

ures 5b and 5c) to approach the true 𝜀 value. However, emulating the full unidirectional 

depth of the macroscale filter under periodic flow conditions is computationally expen-

sive. Hence, we hypothesize that there exists a 𝜀′ value, but is more than the true 𝜀 

value, which ensures that the error function is sufficiently small for subsequent predic-

tions.   

 
We perform the simulation runs in OpenFOAM AWS (The OpenFOAM Foundation) 

which enables us to harness on a large number of computer processes if necessary. 

Our general methodology is as follows.  

i. Introducing the homogenized effective solute transport equations (related to 

𝑐𝑛) into the incompressible fluid flow solver (icoFoam) for coupling the fluid-

solute problems 

ii. Introducing a unique boundary condition to account for the solute interactions 

occurring on the microscale spheres’ boundaries 

iii. Develop the basic cell geometry of either SC or FCC of varying lengths using 

CAD program and the snappyHexMesh utility in OpenFOAM 

iv. Perform the simulation runs while varying the number of computational grids 

for each analysed domain to check on grid convergence 

v. Total simulation runtime for each analysed domain depends on the velocity 

scale and 𝜀′ 

vi. Time step of simulation run is varied to check on temporal convergence 

vii. Predicted spatial gradient of 𝑐𝑛 will be introduced back into the homogenized 

effective equation to perform the subsequent predictions for the normalized 

pressure gradient and be compared with the respective experimental values  

 

 

7  Conclusion 

  

In this study, the multiscale perturbation analysis is coupled with the homogenization 

theory to model the clogging behaviour of pre-treatment filters in desalination facilities. 

We have validated our linear homogenization analysis for pre-treatment rapid filtration 

by comparing the predicted values from the derived effective homogenized equation 
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with our experimentally-derived values for the normalized pressure gradient acting upon 

the lab-scale filter under varying conditions. To extend the analysis to non-linear pertur-

bation analysis, a computational methodology is required to resolve the microscale con-

centration parameter at higher orders which is difficult to do so analytically. This exten-

sion component is currently underway. Finally, extension of the model to slow filtration 

process can be achieved by changing the time scale to either that of reaction time or 

diffusion time, while retaining the same homogenization procedures to derive the effec-

tive homogenized equations for analysis.  

 

(a) 

 

(b) 

 

(c) 

 
Figure 5. Simplified representation of numerical domains in OpenFOAM to resolve the 

non-linear microscale problem of 𝑐𝑛: (a) 𝜀′ ≈ 1.00, (b) 𝜀′ ≈ 0.333, (b) 𝜀′ ≈ 0.200. 
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