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Abstract. A discrete ordinates method has been developed to approxi-
mate the neutron transport equation for the computation of the lambda
modes of a given configuration of a nuclear reactor core. This method
is based on discrete ordinates method for the angular discretization, re-
sulting in a very large and sparse algebraic generalized eigenvalue prob-
lem. The computation of the dominant eigenvalue of this problem and
its corresponding eigenfunction has been done with a matrix-free imple-
mentation using both, the power iteration method and the Krylov-Schur
method. The performance of these methods has been compared solving
different benchmark problems with different dominant ratios.
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1 Introduction

Neutron transport simulations of nuclear systems are an important goal to ensure
the efficient and safe operation of nuclear reactors. The steady-state neutron
transport equation [4] predicts the quantity of neutrons in every region of the
reactor and thus, the number of fissions and nuclear reactions. The neutron
transport equation for three-dimensional problems is an equation defined in a
support space of dimension 7, and this makes that high-fidelity simulations using
this equation can only be done using super computers.

Different approximations have been successfully used for deterministic neu-
tron transport. They eliminate the energy dependence of the equations by means
of the a multi-group approximation and use a special treatment to eliminate
the dependence on the direction of flight of the incident neutrons. The angular
discretization of the neutron transport equation chosen in this work has been
the Discrete Ordinates method (SN ), which is a collocation method based on a
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quadrature set of points for the unit sphere, [4], obtaining equations depending
only on the spatial variables. A high-order discontinuous Galerkin finite element
method has been used for the spatial discretization. Finally, a large algebraic
generalized eigenvalue problem with rank deficient matrices must be solved.

The eigenvalue problem arising from the different approximations to the de-
terministic neutron transport equations is classically solved with the power it-
eration method. However, Krylov methods are becoming increasingly popular.
These methods permit to solve the eigenvalue problem faster when the power
iteration convergence decreases due to high dominance ratios. They also permit
to compute more eigenvalues than the largest one. We study the advantage of
using a Krylov subspace method such as the Krylov-Schur method for these
generalized eigenproblems, compared to the use of simpler solvers as the power
iteration method.

The rest of the paper is organized as follows. Section 2 describes the angu-
lar discretization method employed. Then, Section 3 briefly reviews the power
iteration method and the Krylov-Schur methodology to solve the resulting al-
gebraic eigenvalue problem. In Section 4 some numerical results are given for
one-dimensional problems in order to check which is the optimal quadrature or-
der in the SN method and the performance of the eigenvalue solvers. Lastly, the
main conclusions of the work are summarized in Section 5.

2 The Discrete Ordinates Method

The energy multigroup neutron transport equation, which describes the neutron
position and energy, can be written as

Lgψg =

G∑
g′=1

(
Sg,g′ +

1

λ
χgFg′

)
ψg′ , g = 1, . . . , G (1)

where ψg is the angular neutron flux of energy group g. Lg is the transport
operator, Sg,g′ is the scattering operator and Fg′ is the fission source operator.
They are defined as

Lgψg = Ω · ∇ψg +Σt, gψg , (2)

Sg,g′ψg′ =

∫
(4π)

Σs, gg′ψg′dΩ
′ , (3)

Fg′ψg′ =
1

4π
νg′Σf,g′

∫
(4π)

ψg′dΩ
′ , (4)

where Σt, g, Σs, gg′ and Σf,g′ are the total, scattering and fission cross sections.
νg is the average number of neutrons produced per fission. Finally, Ω is the
unitary solid angle.

This equation is discretized in the angular variable by means of a collocation

method on a set of quadrature points of the unit sphere, {Ωn}N
′

n=1 with their
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respective weights {ωn}N
′

n=1. This method is referred as the Discrete Ordinates
method, SN [4].

At this point, the scattering cross section is expanded into a series of Legendre
polynomials as

Σs, gg′(r, Ω
′ ·Ω) =

L∑
l=0

l + 1

4π
Σs, gg′, l(r)Pl(Ω

′ ·Ω) (5)

where the expansion is usually truncated at L = 0, assuming isotropic scattering.
The addition theorem of the spherical harmonics gives an expression for

Pl(Ω
′ · Ω) as a function of Y ml and Y m∗l . Making use of this expression an the

orthogonality properties of the spherical harmonics, the scattering source (3)
becomes

Sg,g′ψg′ =

L∑
l=0

Σs, gg′, l

l∑
m=−l

Y ml φg′,ml (6)

where φg′,ml is the flux moment. The scattering source term calculation is per-
formed projecting it in the spherical harmonics basis. So the projector moment-
to-direction operator is expressed as follows

ψ(r, Ω) =Mφ(r) =

L∑
l=0

l∑
m=−l

Y ml (Ω)φml(r) (7)

and the direction-to-moment operator is

φml(r) = Dψ(r, Ω) =

∫
(4π)

dΩ Y m∗l (Ω)ψ(r, Ω) (8)

where generally L 6=M−1.
Using the angular discrete ordinates quadrature set the discrete ordinates

equation is written as

Lg,nψg,n =Mn

G∑
g′=1

Sg,g′Dψg′ +
χg
λ

G∑
g′=1

Fg′φ0
g′ , (9)

g = 1, . . . , G, n = 1, . . . , N ′,

where
ψg,n(r) = ψ(r, Ωn) (10)

and the transport and fission operators are redefined by

Lg,mψg, n = Ω · ∇ψg, n +Σt, gψg, n ,

Fg′ψg′ =
1

4π
νg′Σf,g′ψg′dΩ

′ ,

The angular discretization to the boundary conditions is applied in a straight-
forward way, because it we can be applied for the specific set of directions used.
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3 Eigenvalue Calculation

The following algebraic generalized eigenvalue problem is obtained from equation
(9).

LΨ = MSDΨ +
1

λ
XFDΨ (11)

where each matrix is the result of the energetic, angular and spatial discretization
of neutron transport operators. Equation (11) can be arranged into an ordinary
eigenvalue problem of the form

AΦ = λΦ , (12)

where A = DH−1XF, H = L−MSD and Φ = DΨ . In particular, the solution of
the system involving H is performed as H−1v = (I− L−1MSD)−1L−1v, which
greatly reduces the number of iterations needed to solve the system, where L−1

is the most costly operation known as the transport sweep.
It must be said that all the matrices involved in this computation are large

and sparse. They can have more than hundreds of millions of rows and columns.
Then, we cannot explicitly compute the inverse of any of these matrices. More-
over all of these matrices are computed on the fly using a matrix-free scheme
[3].

To solve the ordinary eigenvalue problem (12) only the multiplication by the
matrix A is available. Each multiplication is usually called an outer iteration
and the total number of outer iterations is defined as O.

The matrices L, M and D are block diagonal where each block corresponds
to the transport equation for a particular energy group. If a problem does no
have up-scattering, the S is block lower triangular. In that case, the action of
the operator H on a vector is calculated by block forward substitution for each
group from high to low energy in a sequence. Each forward substitution requires
solving the spatially discretized SN equations for a single energy group, which
is called the source problem [7]. This source problem is usually solved by using
an iterative method. The iterations used to solve each source problem are called
inner iterations, and the total number of inner iterations used to solve the source
problems for every energy group and for every outer iteration is denoted by I. It
is worth to notice that each inner iteration performs exactly one transport sweep,
so we can expect the computational time to be proportional to the number of
transport sweeps, and thus, proportional to the number of inner iterations I.

3.1 Power Iteration method

The power iteration method to solve the eigenvalue problem (12) reads as the
iterative procedure

Φi+1 =
1

λ(i)
AΦi, (13)

where the fundamental eigenvalue is updated at each iteration according to the
Rayleigh quotient

λ(i+1) = λ(i)Φ
(i)TXFΦ(i+1)

Φ(i)TXFΦ(i)
, (14)
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where Φ(i) = DΨ (i). It has been observed that using Rayleigh quotient for the
eigenvalue can usually improve the efficiency of the power iteration method by
providing a better estimate (earlier) of the eigenvalue.

Power iteration will converge to the eigenvalue of largest magnitude, keff. If
more than one eigenvalue is requested a deflation technique should be used. In
other words, it can be computed one harmonic at a time while decontaminating
the subspace of the computed eigenvalue. However, the deflation technique has
a very slow convergence. The convergence rate is determined by the dominance
ratio δ = |λ2|/|λ1|, where λ2 is the next largest eigenvalue in magnitude [7].
Convergence of the power iteration method slows as δ → 1.0.

3.2 Krylov-Schur method

The Krylov-Schur method is an Arnoldi method which uses an implicit restart
based on a Krylov-Schur decomposition [6]. This technique permits to solve more
than one eigenvalue without an excessive extra computational cost. In this work,
the Krylov-Schur method algorithm has been implemented using the eigenvalue
problem library SLEPc [1]. The Arnoldi method is based on the creation of a
Krylov subspace of dimension m,

Km(A,Φ(0)) = span{Φ(0), AΦ(0), . . . , Am−1Φ(0)}. (15)

If Vm is a basis of the Krylov subspace of dimension m the method is based
on the Krylov decomposition of order m,

AVm = VmBm + vm+1b∗m+1, (16)

in which matrix Bm is not restricted to be an upper Hessenberg matrix and
bm+1 is an arbitrary vector.

Krylov decompositions are invariant under (orthogonal) similarity transfor-
mations, so that

AVmQ = VmQ(QTBmQ) + vm+1b
T
m+1Q,

with QTQ = I, is also a Krylov decomposition. In particular, one can choose
Q in such way that Sm = QTBmQ is in a (real) Schur form, that is, upper
(quasi-)triangular with the eigenvalues in the 1×1 or 2×2 diagonal blocks. This
particular class of relation, called Krylov-Schur decomposition, can be written
in block form as

A
(
Ṽ1 Ṽ2

)
=
(
Ṽ1 Ṽ2

)(S11 S12

0 S22

)
+ vm+1

(
b̃T1 b̃T2

)
,

and has the nice feature that it can be truncated, resulting into a smaller Krylov-
Schur decomposition,

AṼ1 = Ṽ1S11 + vm+1b̃
T
1 ,

that can be extended again to order m.
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4 Numerical Results

4.1 Seven-Region Heterogeneous Slab

A seven-region one-dimensional slab is solved in order to show the capability of
the discrete ordinate method to approximate accurately the neutron transport
equation. Figure 1 shows the geometry definition of this problem and Table 1
displays the one energy group cross sections. This benchmark was defined and
solved using the Green’s Function Method (GFM) in [2].

Table 2 shows a comparison for different quadrature orders of the discrete
ordinates method of the first 4 eigenvalues of the 1D heterogenoeus slab problem
and their error. The eigenvalue error is defined in pcm ∆λ = 105 |λ− λref| where
λref is the reference eigenvalue extracted from [2].

Figure 2 shows the neutron flux distribution for the fundamental eigenvalue
using S4, S16 and S64. In Figure 3, we can observe an exponential convergence
of all the eigenvalues with the quadrature order, N , in the discrete ordinates
method.

Reflector Fuel Reflector Fuel Reflector Fuel Reflector

2.4 cm2.7 cm 2.4 cm2.7 cm 2.4 cm2.7 cm 2.7 cm

Fig. 1: Geometry of the seven region heterogeneous slab.

Table 1: Eigenvalues results for the 1D heterogeneous slab.

Material νΣf (cm−1) Σs (cm−1) Σt (cm−1)

Fuel 0.178 0.334 0.416667
Reflector 0.000 0.334 0.370370

Table 2: Eigenvalues results for the 1D heterogeneous slab.

keff ∆keff λ2 ∆λ2 λ3 ∆λ3 λ4 ∆λ4

S4 1.15885 1476 0.74012 1841 0.53128 2049 0.16603 4602
S16 1.17319 42 0.75808 45 0.55139 38 0.21053 152
S64 1.17359 2 0.75850 3 0.55175 2 0.21200 5

GFM 1.17361 0.75853 0.55177 0.21205
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Fig. 2: Scalar neutron flux solution for the fundamental eigenvalue.
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Fig. 3: Eigenvalue errors for the 1D heterogeneous slab.
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4.2 MOX Fuel Slab

The second numerical example studied corresponds to a one-dimensional mixed
oxide (MOX) problem, derived from the C5G7 benchmark [5]. The MOX fuel
geometry is defined in Figure 4. The assemblies definition and the materials of
each assembly are described in Figures 5a and 5b. Seven group cross section
data are given in reference [5]. In this work, up-scattering has been neglected
and different problems with different dominance ratios, δ, have been defined
changing the pin size from 1.26 cm to 1.50 cm and 2.00 cm giving δ =0.895,
0.945 and 0.975, respectively.

UO2MOX MOX

Fig. 4: MOX fuel benchmark definition.

11 16 11 11 61 151 16 61

MOX

2 3 644 36 65 24 46 44 4 4

UO2

(a) Assemblies definition.

Water

I II III

IV V VI

Pin 1 Pin 2 Pin 3

Pin 6Pin 5Pin 4

(b) Pin definition.

Fig. 5: MOX fuel benchmark materials definition

Table 3 shows the number of outer, O, and inner iterations, I, using the
eigenvalue solvers for the different problems with different dominance ratio that
have been defined. It can be seen that for problems with a high dominance ratio
Krylov-Schur method can be from 1.5 to 6 times faster than the usual power
iteration method. Note that high dominance ratios are needed to outperform
power iteration with Krylov-Schur method. Also, for these high dominance ratio
problems the Krylov subspace dimension, m, must be high to achieve a better
performance.

Figure 6 displays the linear dependence of the CPU time with the number
of inner iterations, as expected. In other words, the algorithm spends most of
the computational resources in the inner iterations, due to the application of a
transport sweep per inner iteration.

It is important to mention here that neglecting the upscattering makes the
problem easier for the Krylov-Schur method. This is due to the fact that the
product by H−1 is only calculated approximately, and the Arnoldi method is
more sensible to the error in this approximation than the power iteration. The
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Table 3: Performance results in the MOX Fuel Slab

δ Method m O I Time (s)

0.895

Power Iteration - 31 2410 14.0
Krylov-Schur 3 25 3771 22.5
Krylov-Schur 5 14 2129 11.9
Krylov-Schur 10 10 1509 9.1

0.945

Power Iteration - 100 7447 44.8
Krylov-Schur 3 31 4542 36.8
Krylov-Schur 5 17 2484 14.0
Krylov-Schur 10 20 2914 16.7

0.975

Power Iteration - 191 14264 85.0
Krylov-Schur 3 53 7876 52.2
Krylov-Schur 5 23 3364 19.3
Krylov-Schur 10 17 2484 14.0

0 5000 10000
Inner Iterations

20

40

60

80

C
P

U
T

im
e

(s
)

Fig. 6: Dependence of CPU time with the number of inner iterations

reason is that the system has to be solved accurately in order to have a Krylov
basis, which is essential for the convergence of the Krylov method to the right
solution, while solving this system in an approximate manner requires more iter-
ations of the Power Iteration method, but does not affect its final accuracy. Ne-
glecting the up-scattering we solve the system using just one block Gauss-Seidel
iteration because of the block lower triangular structure of H, thus neglecting
this effect that will be considered in future works.
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5 Conclusions

In this work, a SN method has been presented to solve the eigenvalue problem
associated to the steady-state neutron transport equation. The generalized alge-
braic eigenvalue problem resulting from the energy, angles and spatial discretiza-
tion is sparse and large. Then, it was implemented using a matrix-free method-
ology. Two eigenvalue solvers have been considered, the usual power iteration
method and the Krylov-Schur method and the performance of both methods
have been evaluated solving different problems with different dominance ratios.
From the obtained results in can be concluded that only for problems with high
dominance ratios, δ > 0.85, without up-scattering it is worth to use the Krylov
subspace method. Also, this method is a good alternative if more than one eigen-
value must be computed. Otherwise it is better to use the simpler power iteration
method to compute the dominant eigenvalue and its corresponding eigenfunction
for a reactor core.
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