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viliam.kacala@student.upjs.sk, csaba.torok@upjs.sk

Abstract. The paper seeks to introduce a new algorithm for computa-
tion of interpolating spline surfaces over non-uniform grids with C2 class
continuity, generalizing a recently proposed approach for uniform grids
originally based on a special approximation property between biquar-
tic and bicubic polynomials. The algorithm breaks down the classical
de Boor’s computational task to systems of equations with reduced size
and simple remainder explicit formulas. It is shown that the original al-
gorithm and the new one are numerically equivalent and the latter is up
to 50% faster than the classic approach.
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1 Introduction

Spline interpolation belongs to the common challenges of numerical mathemat-
ics due to its application in many fields of computer science such as graphics,
CAD applications or data modelling, therefore designing fast algorithms for their
computation is an essential task. The paper is devoted to effective computation
of bicubic spline derivatives using tridiagonal systems to construct interpolat-
ing spline surfaces. The presented reduced algorithm for computation of spline
derivatives over non-uniform grids at the adjacent segment is based on the re-
cently published approach for uniform spline surfaces [6], [4], [5], and it is faster
than the de Boor’s algorithm [2].

The structure of this article is as follows. Section 2 is devoted to a problem
statement. Section 3 briefly reminds some aspects of de Boor’s algorithm for
computation of spline derivatives. To be self contained, de Boor’s algorithm
is provided in Appendix and will be further referred to as the full algorithm.
Section 4 presents the new reduced algorithm and the proof of its numerical
equality to the full algorithm. The fifth section analyses some details for optimal
implementation of both algorithms and provides measurements of actual speed
increase of the new approach.

2 Problem statement

This section defines inputs for the spline surface and requirements, based on
which it can be constructed.
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For integers I, J > 1 consider a non-uniform grid

[x0, x1, . . . , xI−1]× [y0, y1, . . . , yJ−1], (1)

where

xi−1 < xi, i = 1, 2, . . . , I − 1,

yj−1 < yj , j = 1, 2, . . . , J − 1.
(2)

According to [2], a spline surface is defined by given values

zi,j , i = 0, 1, . . . , I − 1, j = 0, 1, . . . , J − 1 (3)

at the grid-points, and given first directional derivatives

dxi,j , i = 0, I − 1, j = 0, 1, . . . , J − 1 (4)

at the boundary verticals,

dyi,j , i = 0, 1, . . . , I − 1, j = 0, J − 1 (5)

at the boundary horizontals and cross derivatives

dx,yi,j , i = 0, I − 1, j = 0, J − 1 (6)

at the four corners of the grid.
The task is to define a quadruple [zi,j , d

x
i,j , d

y
i,j , d

x,y
i,j ] at every grid-point

[xi, yj ], based on which a bicubic clamped spline surface S of class C2 can be
constructed with properties

S(xi, yj) = zi,j ,

∂S(xi, yj)

∂x
= dxi,j ,

∂S(xi, yj)

∂y
= dyi,j ,

∂2S(xi, yj)

∂x∂y
= dx,yi,j .

For I = J = 3 the input situation is illustrated in Figure 1 below where bold
marked values represents (3)–(6) while the remaining non-bold values represent
the unknown derivatives to compute.

3 Full algorithm

The section provides a brief summary of the full algorithm designed by de Boor
for computing the unknown first order derivatives that are necessary to compute
a C2 class spline surface over the input grid.

For the sake of readability and simplicity of the model equations and algo-
rithms we introduce the following notation.
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Fig. 1. Input situation for I, J = 2.

Notation 1 For k ∈ N0 and n ∈ N+ let {hk}nk=0 be an ordered list of real

numbers. Then the value ĥk is defined as

ĥk = hk+1 − hk, (7)

where hk ∈ {xk, yk}.

The full algorithm is based on a model equation (8) that contains indices k =
0, 1, 2 and parameters dk, pk and hk. This model equation is used to construct
different types of equation systems with corresponding indices and parameters.

Let us explain how a model equation can be used to compute first order
derivatives with respect to x in the simplest case of a jth row over a 3× 3 sized
input grid (1) with given values (3)–(6). The input situation is graphically dis-
played in Figure 2. To calculate the single unknown dx1,j , substitute the values
(h0, h1, h2) with (x0, x1, x2), (p0, p1, p2) with (z0,j , z1,j , z2,j) and (d0, d1, d2) with
(dx0,j , d

x
1,j , d

x
2,j) in (3), (4). Then d1 = dx1,j can be calculated using the follow-

ing model equation, where D stands for derivatives and P for right-hand side
parameters,

Dfull(d0, d1, d2, ĥ0, ĥ1) = Pfull(p0, p1, p2, ĥ0, ĥ1), (8)

where

Dfull(d0, d1, d2, ĥ0, ĥ1) = ĥ0 · d2 + 2(ĥ1 + ĥ0) · d1 + ĥ1 · d0, (9)

and

Pfull(p0, p1, p2, ĥ0, ĥ1) = 3

(
ĥ0

ĥ1

· p2 +
ĥ2
1 − ĥ2

0

ĥ1ĥ0

· p1 −
ĥ1

ĥ0

· p0

)
. (10)

The final algorithm for all rows and columns of any size can be found in
Appendix.
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4 Reduced algorithm

The reduced algorithm for uniform splines is originally proposed by this arti-
cle’s second author, see also [6]. The model equation was obtained thanks to a
special approximation property between biquartic and bicubic polynomials. The
resulting algorithm is similar to the de Boor’s approach, however the systems
of equations are half the size and compute only half of the unknown derivates,
while the remaining unknowns are computed using simple remainder formulas.

In the reduced algorithm for uniform grids the total number of arithmetic
operations is equal or larger than in the full algorithm. However the algorithm
is still faster than the full one thanks to two facts Firstly, it contains fewer
costly floating point divisions. The second reason is that the form of the re-
duced equations and rest formulas is more favourable to some aspects of modern
CPU architectures, namely the instruction level parallelism and system of the
relatively small fast hardware caches as described in [4].

The way used to derive the new model equations can be easily generalized
from uniform to non-uniform grids, however in latter case the equations are more
complex and even contain more arithmetic operations than the full equations.
Thus it was not clear whether the non-uniform reduced equations would be more
efficient. The numerical experiments showed that the instruction level parallelism
features of modern CPUs are able to mitigate the higher complexity of reduced
equations and therefore imply slightly lower execution time also for non-uniform
grids.

The reduced algorithm is based on two different model equations, a main and
an auxiliary one, and on an explicit formula. Let us explain how the main model
equation can be used to compute derivatives for the simplest case of a jth row
over a 5× 5 sized grid. By analogy to the previous section, substitute the values
(h0, . . . , h4) with (x0, . . . , x4), (p0, . . . , p4) with (z0,j , . . . , z4,j) and (d0, . . . , d4)
with (dx0,j , . . . , d

x
4,j). For the row j of size 5 there are three unknown values

d1, d2 and d3. First, calculate d2 = dx2,j using the following model equation

Dred(d0, d2, d4, ĥ0, . . . , ĥ3) = Pfull(p0, . . . , p4, ĥ0, . . . , ĥ3), (11)

where

Dred(d0, d2, d4, ĥ0, . . . , ĥ3) = (ĥ1 + ĥ0) · d4+

+
1

ĥ2ĥ1

(ĥ3ĥ1(ĥ1 + ĥ0) + (ĥ3 + ĥ2)(ĥ2ĥ0 − 4(ĥ1 + ĥ0)(ĥ2 + ĥ1))) · d2

+ (ĥ3 + ĥ2) · d0,

(12)

and

Pred(p0, . . . , p4, ĥ0, . . . , ĥ3) = 3

(
(ĥ3 + ĥ2)ĥ2

ĥ1

(
(ĥ1 + ĥ0)2 · p1 − ĥ2

1 · p0
ĥ0

+ ĥ0 · p2

)

+
ĥ1 + ĥ0

ĥ2

(
ĥ1(ĥ2

2 · p4 − (ĥ3 + ĥ2)3 · p3)

ĥ3

− 2(ĥ3 + ĥ2)(ĥ2
2 − ĥ2

1) + ĥ3ĥ
2
1

ĥ1

· p2

))
.

(13)
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Then the unknown d1 can be calculated from

d1 = Rred(p0, p1, p2, d0, d2, ĥ0, ĥ1), (14)

where

Rred(p0, p1, p2, d0, d2, ĥ0, ĥ1) =

=
−1

2(ĥ1 + ĥ0)ĥ1ĥ0

(3(ĥ2
1p0 + (ĥ2

0 − ĥ2
1)p1 − ĥ2

0p2)ĥ1ĥ0(ĥ1d0 + ĥ0d2)).
(15)

Relation (14) will be referred to as the explicit rest formula and it is also used

to compute the unknown value d3 = Rred(p2, p3, p4, d2, d4, ĥ2, ĥ3) with different
indices of the right-hand side parameters.

In case the j-th row contains only four nodes, the model equation (11)
should be replaced with the auxiliary model equation for even-sized input rows
or columns

DA
red(d0, d2, d3, ĥ0, . . . , ĥ2) = PA

red(p0, . . . , p3, ĥ0, . . . , ĥ2), (16)

where

DA
red(d0, d2, d3, ĥ0, . . . , ĥ2)

= −2(ĥ1 + ĥ0) · d3 +
ĥ2ĥ0 − 4(ĥ2 + ĥ1)(ĥ1 + ĥ0)

ĥ1

· d2 + ĥ2ĥ0 · d0,
(17)

and

PA
red(p0, . . . , p3, ĥ0, . . . , ĥ2) = 3

(
ĥ2

ĥ0

(
(ĥ1 + ĥ0)2

ĥ2
1

· p1 − p0

)

+
1

ĥ2

(
−2(ĥ1 + ĥ0) · p3 +

ĥ0ĥ
2
2 + 2(ĥ1 + ĥ0)(ĥ1

1 − ĥ2
2)

ĥ2
1

· p2

))
.

(18)

Thus the reduced algorithm comprises the equation system constructed from
two model equations (11), (16) to compute even-indexed derivatives and the rest
formula (14) to compute the odd-indexed derivatives.

The reduced algorithm for arbitrary sized input grid also consists of four
main steps, similarly to the full algorithm, each evaluating equation systems
constructed from the main (11) and auxiliary (16) model equations, and it is
summarized by the lemma bellow.

Lemma 1 (Reduced algorithm). Let the grid parameters I, J > 2 and the
x, y, z values and d derivatives be given by (1) – (6). Then the values

dxi,j , i = 1, . . . , I − 2, j = 0, . . . , J − 1,

dyi,j , i = 0, . . . , I − 1, j = 1, . . . , J − 2,

dx,yi,j , i = 0, . . . , I − 1, j = 0, . . . , J − 1

(19)
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are uniquely determined by the following 3I+2J+5
2 linear systems of altogether

5IJ−I−J−23
4 equations and 7IJ−7I−7J+7

4 rest formulas:
for each j = 0, 1, . . . , J − 2,

solve system(

Dred(dxi−2,j , di,j , di+2,j , x̂i−2, . . . , x̂i+1) = Pred(zi−2,j , . . . , zi+2,j ,

x̂i−2, . . . , x̂i+1),where i ∈ {2, 4, . . . , I − 3}
),

(20)

for each i = 1, 3, . . . , I − 2 and j = 1, 3, . . . , J − 2,

dxi,j = Rred(x̂i−1, x̂i, zi−1,j , zi,j , zi+1,j , d
x
i−1,j , d

x
i+1,j), (21)

for each i = 0, 1, . . . , I − 1,

solve system(

Dred(ŷj−2, . . . , ŷj+1, d
y
i,j−2, d

y
i,j , di,j+2) = Pred(ŷj−2, . . . , ŷj+1,

zi,j−2, . . . , zi,j−2),where j ∈ {2, 4, . . . , I − 2}
),

(22)

for each j = 1, 3, . . . , J − 2 and i = 1, 3, . . . , I − 2,

dyi,j = Rred(ŷj−1, ŷj , zi,j−1, zi,j , zi,j+1, d
y
i,j−1, d

x
i,j+1), (23)

for each j = 0, J − 1,

solve system(

Dred(x̂i−2, . . . , x̂i+1, d
x,y
i−2,j , x, yi,j , x, yi+2,j) = Pred(x̂i−2, . . . , x̂i+1,

dxi−2,j , . . . , d
x
i+2,j),where i ∈ {2, 4, . . . , I − 3}

),

(24)

for each i = 1, 3, . . . , I − 2 and j = 1, 3, . . . , J − 2,

dx,yi,j = Rred(x̂i−1, x̂i, d
x
i−1,j , d

x
i,j , d

x
i+1,j , d

x,y
i−1,j , d

x,y
i+1,j), (25)

for each i = 0, 1, . . . , I − 1,

solve system(

Dred(ŷj−2, . . . , ŷj+1, d
x,y
i,j−2, d

x,y
i,j , di,j+2) = Pred(ŷj−2, . . . , ŷj+1,

dyi,j−2, . . . , d
y
i,j−2),where j ∈ {2, 4, . . . , I − 2}

),

(26)

for each j = 1, 3, . . . , J − 2 and i = 1, 3, . . . , I − 2,

dyi,j = Rred(ŷj−1, ŷj , d
y
i,j−1, d

y
i,j , d

y
i,j+1, d

x,y
i,j−1, d

x,y
i,j+1), (27)

If I is odd, then the last model equation in steps (20) and (24) needs to be
accordingly replaced by auxiliary model equation (16). Analogically, if J is odd,
the same applies to steps (22) and (26).

Before the actual proof we should note that the reduced algorithm is intended
as a faster drop-in replacement for the classic full algorithm. Therefore it should
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be equivalent to the full algorithm as well as to reach lower execution time to
be worth of actual implementation.

Proof. To prove the equivalence of the reduced and the full algorithm we have
to show that the former implies the latter.

Consider values and derivatives from (1) – (6) for I, J = 5. For the sake of
simplicity consider only the jth row of the grid and substitute values (h0, . . . , h4)
with (x0, . . . , x4), (p0, . . . , p4) with (z0,j , . . . , z4,j) and (d0, . . . , d4) with (dx0,j , . . . , d

x
4,j).

The unknowns d1 = dx1,j , ..., d3 = dx3,j can be computed by solving the full
tridiagonal system (30) of size 3. We have to show that the reduced system (20)
with corresponding rest formulas (21) is equivalent to the full system of size 3.
One can easily notice that (20) consists of only one equation and (21) consists
of two rest formulas.

The rest formula with k = 1, 3

dk = Rred(pk−1, pk, pk+1, dk−1, dk+1, ĥk−1, ĥk)

can be easily modified into

Dfull(dk−1, dk, dk+1, ĥk−1, ĥk) = Pfull(pk−1, pk, pk+1, ĥk−1, ĥk),

thus giving us the first and the last equations of the full equation system of size
3. The second equation of the full equation system of size 3 can be obtained from
the reduced model equation (11). From rest formulas

d1 = Rred(p0, p1, p2, d0, d2, ĥ0, ĥ1),

d3 = Rred(p2, p3, p4, d2, d4, ĥ2, ĥ3)

we express

d0 = R∗
red(p0, p1, p2, d1, d2, ĥ0, ĥ1),

d4 = R∗∗
red(p2, p3, p4, d2, d3, ĥ2, ĥ3).

Then substitute R∗
red(p0, p1, p2, d1, d2, ĥ0, ĥ1) and R∗∗

red(p2, p3, p4, d2, d3, ĥ2, ĥ3)
for d0 and d4 in the reduced model equation

Dred(d0, d2, d4, ĥ0, . . . , ĥ3) = Pfull(p0, . . . , p4, ĥ0, . . . , ĥ3),

thus we get the second equation of the full system.

Analogically, this proof of equivalence can be extended for any number of
rows or columns as well as for the case of even sized grid dimensions I and J
that use the auxiliary model equation (16).

ut
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5 Speed comparison

The reduced algorithm is numerically equivalent to the full one, however there
is still a question of its computational effectiveness.

First of all, let’s discuss the implementation details of both algorithms and
propose some low level and rather easy optimizations that significantly decrease
the execution time. These optimizations positively affect both algorithms, but
the reduced one is influenced to a greater extent. Although, it must be mentioned
that the reduced algorithm is faster even without the optimization.

5.1 Implementation details

The base task of both algorithms is computation of the tridiagonal system of
equations described in (30), (31), (32) and (33) for the full algorithm and (20),
(22), (24) and (26) for the reduced algorithm. It can be easily proved that the re-
duced systems are diagonally dominant, therefore our reference implementation
uses the LU factorization as the basis for both full and reduced algorithms.

There are several options to optimize the equations and formulas used in both
algorithms. One option is to modify the model equations to lessen the number of
slow division operations, since the double precision floating point division is 3 – 5
times slower than multiplication, see the CPU instructions documentation [3], [9]
and [10]. This will measurably decrease the evaluation time of both algorithms.

Another, more effective optimization is memoization. Consider the full equa-
tion system from (30). The equations can be expressed in the form of

l2 · d2 + l1 · d1 + l0 · d0 = r2 · p2 + r1 · p1 + r0 · p0 (28)

where li−1, li, li+1, ri−1, ri and ri+1 depend on x̂i−i and/or x̂i. Since most
of the x̂ values are used more than once in the equation system, these can be
precomputed to simplify the equations and to reduce the number of calculations.
Analogically, such optimization can be performed for each of the full equation
systems and, of course, for each of the reduced equation systems and rest for-
mulas as well, where such simplification will be more beneficial as the model
expressions for reduced algorithm (11), (16) and (14) are more complex than
those in the full algorithm (8). In our implementation for benchmarking of both
algorithms, we consider only optimized equations.

Computational complexity We should give some words about importance
of the suggested optimization. For I, J being dimensions of an input grid, the
total arithmetic operation count of the full algorithm is asymptotically 63IJ of
which 12IJ are divisions. For the reduced algorithm the count is 129IJ where
the number of divisions is the same. These numbers of operations takes into
account the model equations and a LU factorization of equation systems.

Given these numbers it may be questionable if the reduced algorithm is actu-
ally faster than the full one. However thanks to the pipelined superscalar nature
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of the modern CPU architectures and general availability of auto-optimizing
compilers, the reduced algorithm is still approximately 15% faster than the full
one depending on the size of grid.

For implementations with optimized form of expressions and memoization,
the asymptotic number of operations is 33IJ of which 3IJ are divisions for
the full algorithm. For the reduced algorithm the count is significantly less-
ened to 30IJ where the number of divisions is only 1.5IJ . While the optimized
full algorithm is only slightly faster than the unoptimized one, in case of the
reduced algorithm the improvements are more noticeable. Comparing such im-
plementations, the reduced algorithm is up to 50% faster than the optimized
full algorithm. More detailed comparison of the optimized implementations is in
following Subsection 5.2.

Memory requirements For the sake of completness a word about memory re-
quirements and data structures used to store input grid and helper computation
buffers should be given.

To store the input grid one needs I + J space to store x and y coordinates
of the total I · J grid nodes, and additional 4IJ space to store the z, dx, dy and
dxy values for each node, thus giving us overall 4IJ + I + J space requirement
just to store the input values.

Needs of the full and reduced algorithms are quite low considering the size
of the input grid. The full tridiagonal systems of equations (30)–(33) needs
5 · max(I, J) space to store the lower, main and upper diagonals, right-hand
side and an auxiliary buffer vector for the LU factorization. If the memoization
technique described above is used, then there is a need for another 3I + 3J aux-
iliary vectors for precomputed right-hand side attributes, thus the total memory
requirement for the computationally optimized implementation is 5 ·max(I, J)+
3(I + J) of space.

The reduced algorithm needs 5
2 · max(I, J) of space for the non-memoized

implementation. Using a memoization optimization the reduced algorithm re-
quires additional 5

2 (I + J) to store precomputed right-hand side attributes of
the equation systems and rest formulas, thus giving us 5

2 · (max(I, J) + I + J)
space needed to store computational data, that is less than the space requirement
of the full algorithm.

Mention must be made that the speedup for uniform grid was achieved with-
out special care for memoization that here play a significant role.

Data structures Consider the input situation (1) – (6) from Section 2. Since
the input grid may contain tens of thousands or more nodes the most effective
representation of the input grid is a jagged array structure for each of the zi,j ,
dxi,j , d

y
i,j and dxyi,j values. Each tridiagonal system from either of the two algo-

rithms always depends on one row of the jagged array, thus during equation
system evaluation the entire subarrays of the jagged structure can be effectively
cached, supposed that the I or J dimension is not very large, see Table 1. Notice
that the iterations have interchanged indices i, j in (30), (20) and (21) compared
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to the iteration in (31), (33), (22), (23), (26) and (27). For optimal performance
an effective implementation should setup the jagged arrays in accordance with
how we want to iterate the data [7].

5.2 Measured speedup

Now it is time to compare optimal implementations of both algorithms taking
into account the proposed optimizations in the previous subsection.

For this purpose a benchmark was implemented in C++17 and compiled with
a 64 bit GCC 7.2.0 using -Ofast optimization level and individual native code
generation for each tested CPU using -march=native setting. Testing environ-
ments comprised several computers with various recent CPUs where each system
had 8 – 32 GB of RAM and Windows 10 operating system installed. The tests
were conducted on freshly booted PCs after 5 minutes of idle time without run-
ning any non-essential services or processes like browsers, database engines, etc.

The tested data set comprised the grid [x0, x1, . . . , xI ]× [y0, y1, . . . , yJ ] where
x0 = −20, xI = 20, y0 = −20, yJ = 20 and values zi,j , d

x
i,j , d

y
i,j , d

x,y
i,j , see (3)

– (6), are given from function sin
√
x2 + y2 at each grid-point. Concrete grid

dimensions I and J are specified in Tables 1 and 2. The speedup values were
gained averaging 5000 measurements of each algorithm.

Table 1 represents measurements on five different CPUs and consists of seven
columns. The first column contains the tested CPUs ordered by their release
date. Columns two through four contain measured execution times in microsec-
onds for both algorithms and their speed ratios for grid dimension 100 × 100,
while the last three columns analogically consist of times and ratios for grid
dimension 1000× 1000.

I, J = 100 I, J = 1000
CPU Full Reduced Speedup Full Reduced Speedup

Intel E8200 619 413 1.50 77540 67188 1.15
AMD A6 3650M 934 657 1.42 173472 145371 1.19
Intel i3 2350M 839 553 1.52 114329 95740 1.19
Intel i7 6700K 267 173 1.54 35123 25828 1.36
AMD X4 845 495 319 1.55 92248 76139 1.21

Table 1. Multiple CPU comparison of full and reduced algorithms tested on two
datasets. Times are in microseconds.

Table 2, unlike the former table, represents measurements on different sized
grids. For the sake of readability the table contains measurements from single
CPU.

Let us summarize the measured performance improvement of the reduced
algorithm in comparison with the full one. According to Tables 1 and 2 the
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CPU Full Reduced Speedup

I, J = 50 70 45 1.56
I, J = 100 267 173 1.54
I, J = 200 1117 736 1.52
I, J = 500 7680 54645 1.41
I, J = 1000 35123 25828 1.36
I, J = 1500 89337 69083 1.29
I, J = 2000 178875 144083 1.24

Table 2. Multiple dataset comparison of full and reduced algorithms tested on i7
6700K. Times are in microseconds.

measured decrease of execution time for small grids of size smaller than 500×500
is approximately 50% while for the datasets of size 1000 × 1000 or larger the
average speedup drops to 30%. A noteworthy fact is, that the measured speed
ratio between the full and reduced algorithms is in line for grids with dimensions
in the order of hundreds where the total number of spline nodes will be in
the order of tens of thousands. In other words the individual rows or columns
of the grid should fit in the CPUs’ L1 cache. In case of a sufficiently large
grid, the caching will be less effective resulting in a much costlier read latency
eventually mitigating the speed-up of the reduced algorithm. At some point,
for very large datasets, the algorithms will be memory bound and therefore
performing similarly.

6 Discussion

Let us discuss the new algorithm from the numerical and experimental point
of view. The reduced algorithm works with two model equations and a simple
formula, see (11), (16) and (14). The reduced tridiagonal equation systems (20),
(22), (24), (26) created from model equations (11), (16) contain only two times
less equations than the corresponding full systems. In addition, the reduced sys-
tems are diagonally dominant and therefore, from the theoretical point of view,
computationally stable [1], similarly to the full systems. The other half of the
unknowns are computed from simple explicit formulas, see (21), (23), (25), (27),
and therefore do not present any issue. The maximal numerical difference be-
tween the full and reduced system solutions during our experimental calculations
in our C++ implementation was shown to be in the order of 10−16. As this com-
putational error is precision-wise the edge of FP64 numbers of the IEEE 754
standard we can conclude that the proposed reduced method yields numerically
accurate results in a shorter time.
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7 Conclusion

The paper introduced a new algorithm to compute the unknown derivatives
used for bicubic spline surfaces of class C2. The algorithm reduces the size of
the equation systems by half and computes the remaining unknown derivatives
using simple explicit formulas. A substantial decrease of execution time of deriva-
tives at grid-points has been achieved with lower memory space requirements at
the cost of a slightly more complex implementation. Since the algorithm con-
sist of many independent systems of linear equations, it can be also effectively
parallelized for both CPU and GPU architectures.
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Appendix

To be self-contained, we provide de Boor’s classic algorithm [2] in a slightly
modified form for easy comparison with the reduced algorithm.

Lemma 2 (Full algorithm). Let the grid parameters I, J > 1 and the x, y,
z values and d derivatives be given by (1) – (6). Then values

dxi,j , i = 1, . . . , I − 2, j = 0, . . . , J − 1,

dyi,j , i = 0, . . . , I − 1, j = 1, . . . , J − 2,

dx,yi,j , i = 0, . . . , I − 1, j = 0, . . . , J − 1

(29)

are uniquely determined by the following 2I + J + 2 linear systems of altogether
3IJ − 2I − 2J − 4 equations:
for each j = 0, . . . , J − 1,

solve system(

Dfull(d
x
i−1,j , d

x
i,j , d

x
i+1,j , x̂i−1, x̂i) = Pfull(zi−1,j , zi,j , zi+1,j , x̂i−1, x̂i),

where i ∈ {1, . . . , I − 2}
),

(30)

for each i = 0, . . . , I − 1,

solve system(

Dfull(d
y
i,j−1, d

y
i,j , d

y
i,j+1, ŷj−1, ŷj) = Pfull(zi,j−1, zi,j , zi,j+1, ŷj−1, ŷj),

where j ∈ {1, . . . , J − 2}
),

(31)
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for each j = 0, J − 1,

solve system(

Dfull(d
x,y
i−1,j , d

x,y
i,j , d

x,y
i+1,j , x̂i−1, x̂i) = Pfull(d

y
i−1,j , d

y
i,j , d

y
i+1,j , x̂i−1, x̂i),

where i ∈ {1, . . . , I − 2}
),

(32)

for each i = 0, . . . , I − 1,

solve system(

Dfull(d
x,y
i,j−1, d

x,y
i,j , d

y
i,j+1, ŷj−1, ŷj) = Pfull(d

x
i,j−1, d

x
i,j , d

x
i,j+1, ŷj−1, ŷj),

where j ∈ {1, . . . , J − 2}
),

(33)
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