Bisections-weighted-by-element-size-and-order
algorithm to optimize direct solver performance
on 3D hp-adaptive grids.

H. AbouEisha®, V. M. Calo 34 K. Jopek®,
M. Moshkov()), A. Paszyriska(®), M. Paszyniski(®)

() King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
mikhail.moshkov@kaust.edu.sa
) Chair in Computational Geoscience, Applied Geology Department, Western
Australian School of Mines, Faculty of Science and Engineering, Curtin University,
Perth, WA, Australia
victor.calo@Qcurtin.edu.au
() Mineral Resources, Commonwealth Scientific and Industrial Research
Organization (CSIRO), Kensington, WA, Australia 6152
) Curtin Institute for Computation, Curtin University, Perth, WA, Australia 6845
() AGH University of Science and Technology,
Faculty of Computer Science, Electronics and Telecommunications
al. Mickiewicza 30, 30-059 Krakow, Poland
paszynsk@agh.edu.pl
(©) Jagiellonian University,

Faculty of Physics, Astronomy and Applied Computer Science
Lojasiewicza 11, 30-348 Krakow, Poland
anna.paszynska@uj.edu.pl
http://home.agh.edu.pl/paszynsk

Abstract. The hp-adaptive Finite Element Method (hp-FEM) gener-
ates a sequence of adaptive grids with different polynomial orders of
approximation and element sizes. The hp-FEM delivers exponential con-
vergence of the numerical error with respect to the mesh size. In this
paper, we propose a heuristic algorithm to construct element partition
trees. The trees can be transformed directly into the orderings, which
control the execution of the multi-frontal direct solvers during the hp
refined finite element method. In particular, the orderings determine the
number of floating point operations performed by the solver. Thus, the
quality of the orderings obtained from the element partition trees is im-
portant for good performance of the solver. Our heuristic algorithm has
been implemented in 3D and tested on a sequence of hp-refined meshes.
We compare the quality of the orderings found by the heuristic algorithm
to those generated by alternative state-of-the-art algorithms. We show
50 percent reduction in flops number and execution time.*

Key words: hp adaptive finite element method, ordering, nested-dissections,
multi-frontal direct solvers, heuristic algorithms

1 Authors in alphabetical order. The work was supported by National Science Centre,
Poland grant no. DEC-2015/17/B/ST6/01867.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

2 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

1 Introduction

The finite element method is a widely used approach finding an approximate
solution of partial differential equations (PDEs) specified along with boundary
conditions and a solution domain. A mesh with hexahedral elements is created
to cover the domain and to approximate the solution over it. Then the weak
form of the PDE is discretized using polynomial basis functions spread over the
mesh. The hp-adaptive Finite Element Method (hp-FEM) is the most sophis-
ticated version of FEM [9]. It generates a sequence of refined grids, providing
exponential convergence of the numerical error with respect to the mesh size.
The hp-FEM algorithm uses the coarse and the fine meshes in each iteration
to compute the relative error and to guide the adaptive refinement process. Se-
lected finite elements are broken into smaller elements. This procedure is called
the h-refinement. Also, the polynomial orders of approximation are updated on
selected edges, faces, and interiors. This procedure is called the p-refinement. In
selected cases, both h and p refinements are performed, and this process is called
the hp-refinement.

The hp-FEM is used to solve difficult PDEs, e.g. with local jumps in mate-
rial data, with boundary layers, strong gradients, generating local singularities,
requiring elongated adaptive elements, or utilization of elements with several
orders of magnitude difference in dimension. For such kind of meshes iterative
solvers deliver convergence problems.

This paper is devoted to the optimization of the element partition trees con-
trolling the LU factorization of systems of linear equations resulting from the hp-
FEM discretizations over three-dimensional meshes with hexahedral elements. In
this paper we focus on a class of hp adaptive grids, which has many applications
in different areas of computational science and several possible implementations
[9,7,21,26,27,22,6,8,28]. The LU factorization for the case of hp-adaptive fi-
nite element method is performed using multi-frontal direct solvers, such as
e.g. MUMPS solver [2—4]. This is because the matrices resulting from the dis-
cretization over the computational meshes are sparse, and smart factorization
will generate a low number of additional non-zero entries (so-called fill-in) [17,
18]. The problem of finding the optimal permutation of the sparse matrix which
minimizes the fill-in (the number of new non-zero entries created during the fac-
torization) is NP-complete [29]. In this paper, we propose a heuristic algorithm
that works for arbitrary hp-adaptive gird, with finite elements of different size
and with a different distribution of polynomial orders of approximation spread
over finite element edge, faces, and possibly interiors. The algorithm performs
recursive weighted partitions of the graph representing the computational mesh
and uses these partitions to generate an ordering, which minimizes the fill-in in
a quasi-optimal way. The partitions are defined by so-called element partition
tree, which can be transformed directly into the ordering.

In this paper we focus on the optimization of the sequential in-core multi-
frontal solver [11-13], although the orderings obtained from our element partition
trees can be possibly utilized to speed up shared-memory [14-16] or distributed-
memory [2-4] implementations as well. This will be the topic of our future work.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 3

The heuristic algorithm proposed in this paper is based on the insights we
gained in [1], where we proposed a dynamic programming algorithm to search
for quasi-optimal element partition trees. These quasi-optimal trees obtained in
[1] are too expensive to generate, and they cannot be used in practice, but rather
guide our heuristic methods. From the insights garnered from this optimization
process, we have proposed a heuristic algorithm that generates quasi-optimal ele-
ment partition trees for arbitrary h-refined grids in 2D and 3D. In this paper, we
generalize the idea presented in [1] to the class of hp-adaptive grids. The heuristic
algorithm uses multilevel recursive bisections with weights assigned to element
edges, faces, and interiors. Our heuristic algorithm has been implemented and
tested in three-dimensional case. It generates mesh partitions for arbitrary hp-
refined meshes, by issuing recursive calls to METIS_WPartGraphRecursive. That
is, we use the multilevel recursive bisection implemented in METIS [20] available
through the MUMPS interface [2—4], to find a balanced partition of a weighted
graph. We construct the element partition tree by recursive calls of the graph
bisection algorithm. Our algorithm for the construction of the element parti-
tion tree and the corresponding ordering differs from the orderings used by the
METIS library (nested dissection) as follows. First, we use a smaller graph, built
from the computational mesh, with vertices representing the finite elements and
edges representing the adjacency between elements. Second, we weight the ver-
tices of the graph by the volume of finite elements multiplied by the polynomial
orders of approximations in the center of the element. Third, we weight the edges
of the graph by the polynomial orders of approximations over element faces.

Previously [23, 24], we have proposed bottom-up approaches for constructing
element partition trees for h-adaptive grids. Herein, we propose an alternative
algorithm, bisections-weighted-by-element-size-and-order, to construct element
partition trees using a top-down approach, for hp-adaptive grids. The element
size in our algorithm is a proxy for refinement level of the element. The order
is related to the polynomial degrees used on finite element edges, faces and
interiors.

The plan of the paper is the following. We first define the computational
mesh and basis functions which illustrate how these computational grids are
transformed into systems of linear equations using the finite element method.
Then, we describe the idea of a new heuristic algorithm which uses bisections
weighted by elements sizes and polynomial orders of approximation. We show
how the ordering can be generated from our element partition tree. The next
section includes numerical tests which compare the number of floating point
operations and wall-clock time resulting from the execution of the multi-frontal
direct solver algorithm on the alternative orderings under analysis.

2 DMeshes, matrices and orderings for the hp-adaptive
finite element methods

We introduce a class of computational meshes that results from the application
of an adaptive finite element method [9]. For our analysis, we start from a three-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

4 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

dimensional boundary-value elliptic partial differential equation problem in its
weak (variational) form given by (1): Find u € V' such that

b(u,v)=1(v) YweV (1)

where b (u,v) and [(v) are some problem-dependent bilinear and linear function-
als, and

V:{v:/ Io]1% + Vo] 2dz < o0, tr (v) = 0 on I'p} @)
(%}

is a Sobolev space over an open set {2 called the domain, and I'p is the part of
the boundary of {2 where Dirichlet boundary conditions are defined.

For a given domain {2 the hp-FEM constructs a finite dimensional subspace
Vip C V with a finite dimensional polynomial basis given by {ezp}izl’thp. The
subspace V},), is constructed by partitioning the domain (2 into three-dimensional
finite elements, with vertices, edges, faces, and interiors, as well as shape func-
tions defined over these objects.

Namely, we introduce one-dimensional shape-functions

@) =1-& X)=& X€)=0-92-1)"71=4..p+1 (3)
where p is the polynomial order of approximation, and we utilize them to define

the three-dimensional hexahedral finite element {(£1,&2,&3) : & € [0,1],4 = 1, 3}.
We define eight shape functions over the eight vertices of the element:

$1(61,62,83) = a(ED)X1 ()R (8s) d2(€1,6,88) = X2(§1) 1(&2)x1(63)
P3(61,62,63) = Xa(E)X2(&2)R1(83) halr,&,8) = Xa(€1)R2(E2) X (&)
$5(61,62,83) = Xa(§)X1(E2)R2(83) D61, &, &) = Xa(€1) X1 (S2)X2(&s)
<57(517§2,§3) X2(E)R2(&2)X2(&3) 9s(&1,62,6) = Xa(61)R2(&2)X2(&) (4)
j=1,...,p; — 1 shape functions over each of the twelve edges of the element
¢9,y(§1,§2,§3) Ko+ (E0)X1(E2)X1 (&) D105 (&1, E2,€3) = X2(€1) Xy (E2) X (€3
$11,5(61,62,83) = X1 (E)X2(E) X1 (&) Pr2,5(61, 62, 68) = Xa ()Xt (S2) K0 (E

= x1(&
= x2(&

)x1(€3)
)=)x2(&2))
$13,5 (61,6, €3) = Xori (€)1 (£2)X2(&) dras(€1, &2, 63
)))
) (
) =x1(&1 A2(€2) X2+; (&3

t
X2(&1)X2)
(((X1(&)x)
(((= X2(£1)X 2+g() X2(&3)
b15,5(E1,62,&3) = 2+j(51 Xz (&2)Xa(16,5 (61,6, (§1)X)
17,5(€1, 62, 83) = (15,5 (61,6, (&)X)
P10,5(€1,62,3) = ($20,5(€1,62,63) = x1(&1))

where p; is the polynomial order of approximation utilized over the i-th edge.
We also define (p; — 1) X (p;py — 1) shape functions for j = 1,....,p; — 1 and
k=1,..,pw — 1, over each of six faces of the element

B21(E1,62,63) = X4 (E1)Xark(E2)X1(€3) $22(E1, €0, E3) = Xatj (E1) Xk (E2) X2 (E3)
$23(€1, &2, 63) = X2+j (&1)x1(&2)X2+k(€3) Pl (€1, E2,63) = X2(&1)X2+5(&2) X2+ (€3)
)

$25(E1,E2,€3) = X4 (1) R2(E2) X (€3) $26(E1,Ea,E3) = Xa(€1) X (E2)Rarn (€3
(6)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 5

where p;p,, p;, are the polynomial orders of approximations in two directions in
the i-th face local coordinates system. Finally, we define (p, —1) x (p, —1) x (p.—1)
basis functions over an element interior

bo7.ij (€1, €0) = Rati(€1) X215 (E2) Xark (&) (7)

where (py, py, p-) are the polynomial orders of approximation in three directions,
respectively, utilized over an element interior. The shape functions from the
adjacent elements that correspond to identical vertices, edges, or faces, they are
merged to form global basis functions.

The support interactions of the basis functions defined over the mesh deter-
mine the sparsity pattern for the global matrix.

In the example presented in Figure 1 there are first order polynomial basis
functions associated with element vertices, second order polynomials associated
with element edges, and second order polynomials in both directions, associated
with element interiors. For more details we refer to [9].

We illustrate these concepts with two-dimensional example. Figure 1 presents
an exemplary two-dimensional mesh consisting of rectangular finite elements
with vertices, edges and interiors, as well as shape functions defined over vertices,
edges and interiors of rectangular finite elements of the mesh.

——

11 /12 13/ 14
16/ s T8 2</
23 24 25

21 22 25

/749//7@/ e

Fig. 1. Examplary four element mesh and basis functions spread over the mesh

The interactions of supports of basis functions defined over the mesh define
the sparsity pattern for the global matrix. In other words, i-th row and j-th
column of the matrix is non-zero, if supports of i-th and j-th basis functions

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

6 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

overlap. For example, for the p = 1 case the global matrix looks like it is presented
in Figure 2. In this case, only vertex functions are present. For p = 2, all the
basis functions are interacting, and this corresponds to the case presented in
Figure 3.

N
BN BN BN |

Fig. 2. Matrix resulting from four element mesh with p = 1 vertex basis functions.

Traditional sparse matrix solvers construct the ordering based on the sparsity
pattern of the global matrix. This is illustrated in the top path in Figure 4. The
sparse matrix is submitted to an ordering generator, e.g., the nested-dissections
[20] or the AMD [5] algorithms from the METIS library. The ordering is utilized
later to permute the sparse matrix, which results in less non-zero entries gener-
ated during the factorization, and lower computational cost of the factorization
procedure. In the meantime, the elimination tree is constructed internally by the
sparse solver, which guides the elimination procedure 2

The alternative approach is discussed in this paper. We construct the ele-
ment partition tree based on the structure of the computational mesh, using
the weighted bisections algorithm. The element partition tree is then browsed
in post-order, to obtain the ordering, which defines how to permute the sparse
matrix. This is illustrated on the bottom path presented in Figure 4. For a de-
tailed description on how to construct ordering based on an element partition
tree, we refer to chapter 8 of the book [25].

The sparsity pattern of the matrix rather not depend on the elliptic PDE
being solved over the mesh. It strongly depends on the basis functions and the
topology of the computational mesh.

% In [25] the name elimination tree was also used for the element partition tree.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOIJ10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 7

16 18 17 23 22

Fig. 3. Matrix resulting from four element mesh with p = 2 basis functions related to
element vertices, edges, faces and interios.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOIJ10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

8 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

Sparse matrix-based

Sparse matrix ordering generator
LU factorization
- \ T
S |
OrferlngP Elimination tree
. PAP

/ Element partition tree-based
ordering generator

Element \ EnsE
partition tree B0
generator @j@;

5 =
) : D

Fig. 4. The construction of the ordering based on sparsity pattern of the matrix, and
based on the element partition tree.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 9

3 Bisections-weighted-by-element-size-and-order

The algorithm of bisections-weighted-by-element-size-and-order creates an initial
undirected graph G for finite element mesh. Each node of the graph corresponds
to one finite element from the mesh. An edge in the graph G exists if the cor-
responding finite elements have a common face. Additionally, each node of the
graph G has an attribute size that is defined as follows. For the regular meshes,
as considered in this paper, the size of an element is defined as the volume of the
element times the order of the element. For general three-dimensional grids, the
volume attribute is defined as the function of a refinement level of an element:

volume = 2(3*(max,refinement,level—refinement,level))(p _ 1)(]7 _ 1)(p _ 1) (8)
= T Y z

Moreover, each vertex of graph G has an attribute weight defined as the polyno-
mial order of approximation of the face between two neighboring elements. The
elements in the three-dimensional mesh may be neighbors through a vertex, an
edge, or a face. In these cases, the weight of the edge corresponds to the vertex
order (always equal to one), the edge order (defined as peqge — 1) or the face
order (defined as (p;r — 1) X (pipy — 1). This is illustrated in Figure 5.

GRAPH: VERTICES = ELEMENTS
WEIGHT = SCALLED ELEMENT SIZE * ORDER OF APPROXIMATION
EDGES = ADJACENCY RELATION
WEIGHT = ORDER OF APPROXIMATION

@

5 5 6
6 FACE ORDERS ~ EDGE ORDERS ~ VERTEX ORDERS=1

Fig. 5. The exemplary three-dimensional mesh and its weighted graph representation.

The function named BisectionWeightedByElementSizeOrder() is called ini-
tially with the entire graph G, and later it is called recursively with sub-graphs of
G. It generates the element partition tree. The BisectionW eighted ByElement
SizeOrder function is defined as follows:

function BisectionWeightedByElementSizeOrder (G)
If number of nodes in G

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

10 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

is equal to 1 then
create one element tree ¢ with the node v € G; return ¢;
else
Calculate the balanced weighted partition of G into G1 and G2;
//calling METIS WPartGraphRecursive() for G
t1 = BisectionWeightedByElementSizeOrder(G1);
t2 = BisectionWeightedByElementSizeOrder(G2);
create new root node t with left child ¢1 and right child ¢2
return ¢
endif

Once the algorithm generates the element partition tree, we extract the or-
dering and call a sequential solver. Herein, we use METIS_WPartGraphRecursive
[20] function to find a balanced partition of a graph, where weights on vertices
are equal to the size value of the corresponding mesh elements. The METIS WPart
GraphRecursive uses the Sorted Heavy-EdgeMatching method during the coars-
ening phase, the Region Growing method during partitioning phase and the
Early-Exit Boundary FM refinement method during the un-coarsening phase.

4 Numerical results

In this section, we compare the number of flops of the MUMPS multi-frontal
direct solver [2—4] with the ordering obtained from the element partition trees
generated by the bisections-weighted-by-element-size-and-order algorithm, and
the MUMPS with automatic selection of the ordering algorithm, compiled with
icntl(7)="7. The MUMPS solver chooses either nested-dissection [20] or approx-
imate minimum degree algorithm [5] for this kind of problem, depending on the
properties of the sparse matrix. We focus on the model Fichera problem [9, 10]:
Find u temperature scalar field such that Vu = 0 on {2 being 7/8 of the cube,
with zero Dirichlet b.c. on the internal 1/8 boundary, and Neumann b.c. on
the external boundary, computed from the manufactured solution. This model
problem has strong singularities at the central point, and along the three internal
edges, thus the intensive refinements are required.

The hp-FEM code generates a sequence of hp-refined grids delivering ex-
ponential convergence of the numerical error with respect to the mesh size, as
presented in Figure 6. The comparison of flops and wall time concerns the last
two grids, the coarse, and the corresponding fine grids, generated by the hp-FEM
algorithm, with various polynomial orders of approximation, and element sizes,
as presented in Figure 7. It is summarized in Table 1.

To verify the flops and the wall-time performance of our algorithm against
alternative ordering provided by MUMPS, we use the PERM IN input array of
the library. The hp-FEM code generates a sequence of optimal grids. The deci-
sions about the optimal mesh refinements are performed by using the reference
solution on the fine grids, obtained by the global Ap-refinement of the coarse
grids. We compare the flops and the wall time-performance on the last two it-
erations performed by the adaptive algorithm, where the relative error, defined

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 11

relative error

19.54
number
of degrees
of freedom
1
" 100 1000 10000 132213

Scales: log (relative error)
log (number of degees of freedom)

Fig. 6. Exponential convergence of the numerical error with respect to the mesh size
for the model Fichera problem, obtained on the generated sequence of coarse grids.
The corresponding fine grids are not presented here.

iteration 6

. L
coarse mesh fine mesh coarse mesh fine mesh

Fig. 7. Coarse and fine meshes of hp-FEM code for the Fichera problem. Various
polynomial orders of approximation on element edges, faces and interiors are denoted
by different colors.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI{ 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

12 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

Table 1. Comparison of flops and execution times between bisection-weighted-by-
element-size-and-order, with MUMPS equipped with automatic generation of ordering
on different three-dimensional adaptive grids.

N |Weighted bisections| MUMPS |Ratio||Weighted bisections| MUMPS| Ratio
flops flops | flops time(s] time[s] [time]s]

3,958 119%10° 140%10° | 1.17 2.7s 452 | 1.67
32,213 4,797%10° 9,469%10°| 1.90 36.02s 43.21s | 1.19
94,221 56%10° 111%10° | 1.97 14.49s 28.29s | 1.95
139,425 132%10° 254%10° | 1.92 33.06s 67.94s | 2.05

as the H1 norm difference between the coarse and the fine mesh solutions is less
than 1.0 percent. In particular, on the last iteration for the Fichera problem
(N=139,425) MUMPS with its default orderings used 67.94 seconds while with
our ordering it used 33.06 seconds. The number of floating point operations re-
quired to perform the factorizations was 254 * 10° as reported by the MUMPS
with automatic ordering, and 111 % 10° as reported by the MUMPS with our or-
dering. We can conclude that the bisections-weighted-by-element-size-and-order
is an attractive alternative algorithm for generation of the ordering based on the
element partition trees.

5 Conclusions

We introduce a heuristic algorithm called bisections-weighted-by-element-size-
and-order that utilizes a top-down approach to construct element partition trees.
We compare the trees generated by our algorithm against the alternative state-
of-the-art ordering algorithms, on a three-dimensional hp-refined grids used to
solve the model Fichera problem. We conclude that our ordering algorithm can
deliver up to 50% improvement against the state-of-the-art orderings used by
MUMPS both in floating-point operations counts as well as wall time.

References

1. AbouEisha H, Calo VM, Jopek K, Moshkov M, Paszynska A, Paszyriski M, Skot-
niczny M (2017) Element partition trees for two- and three-dimensional h-refined
meshes and their use to optimize direct solver performance. Dynamic programming,
Int J Appl Math Comput Sci (accepted)

2. Amestoy PR, Duff IS (2000) Multifrontal parallel distributed symmetric and unsym-
metric solvers, Comput Methods Appl Mech Eng 184:501-520. doi:10.1016/S0045-
7825(99)00242-X

3. Amestoy PR, Duff IS, Koster J, L’Excellent J-Y (2001) A fully asynchronous mul-
tifrontal solver using distributed dynamic scheduling, SIAM J Matrix Anal Appl,
1(23):15-041. doi:10.1137/50895479899358194

4. Amestoy PR, Guermouche A, L’Excellent J-Y, Pralet S (2011) Hybrid scheduling for
the parallel solution of linear systems, Comput Methods Appl Mech Eng 2(32):136—
156. doi:10.1016/j.parco.2005.07.004

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

Bisections-weighted-by-element-size-and-order algorithm 13

5. Amestoy PR, Davis TA, Du IS (1996) An Approximate Minimum De-
gree Ordering Algorithm, SIAM J Matrix Anal Appl 17(4):886-905.
doi:10.1137/S0895479894278952

6. Babuska I, Rheinboldt WC (1978) Error estimates for adaptive finite element com-
putations, SIAM J Num Anal 15:736-754. doi:10.1137/0715049.

7. Babuska I, Guo BQ (1992) The h, p and hp version of the finite element method:
basis theory and applications, Adv Eng Softw 15(3-4): 159-174. doi:10.1016,/0965-
9978(92)90097-Y

8. Becker R, Kapp J, Rannacher R (2000) Adaptive finite element methods for opti-
mal control of partial differential equations: Basic concept, STAM J. Control Optim,
39:113-132. doi:10.1137/S0363012999351097.

9. Demkowicz L, Kurtz J, Pardo D, Paszynski M, Rachowicz W, Zdunek A (2007)
Computing with hp Adaptive Finite Element Method. Part II. Frontiers: Three Di-
mensional Elliptic and Maxwell Problems with Applications, Chapmann & Hall, CRC
Press, Boca Raton, London, New York

10. Demkowicz L, Pardo D, Rachowicz W (2006) Fully automatic hp-adaptivity
in three-dimensions, Comput Methods Appl Mech Eng 196(37-40):4816-4842.
doi:10.1023/A:1015192312705

11. Duff IS, Erisman AM, Reid JK (1986) Direct Methods for Sparse Matrices, Oxford
University Press, Inc., New York

12. Duff IS, Reid JK (1983) The multifrontal solution of indefinite sparse symmetric
linear, ACM Trans Math Softw, 9(3):302-325. doi:10.1145/356044.356047

13. Duff IS, Reid K (1984) The multifrontal solution of unsymmetric sets of linear
systems, STAM J Sci Comput 5:633-641. doi:10.1137/0905045

14. Fiatko S (2009) A block sparse shared-memory multifrontal finite element solver
for problems of structural mechanics, Computer Assisted Mechanics and Engineering
Science 16:117-131.

15. Fiatko S (2009) The block subtracture multifrontal method for solution of large
finite element equation sets, Technical Transactions 1-NP, 8:175-188.

16. Fialko S (2010) PARFES: A method for solving finite element lin-
ear equations on multi-core computers, Adv Eng Softw 40(12):1256-1265.
doi:10.1016 /j.advengsoft.2010.09.002

17. George A, Lu JW-H (1978) An automatic nested dissection algorithm for irregular
finite element problems, STAM J Num Anal 15:1053-1069. doi:10.1137/0715069

18. Gilbert JR, Tarjan RE (1986/87) The analysis of a nested dissection algorithm,
Numer Math 50(4):377-404. doi:10.1007/BF01396660

19. Hughes TJR (1987) The Finite Element Method. Linear Statics and Dynamics
Finite Element Analysis, Prentice-Hall, Englewood Cliffs, New-York.

20. Karypis G, Kumar V (1998) A fast and high quality multilevel scheme
for partitioning irregular graphs, SIAM J Sci Comp 20(1):359-392.
doi:10.1137/S1064827595287997

21. Melenk JM (2002) hp-Finite Element Methods for Singular Perturbations,
Springer-Verlag, Berlin, Heidelberg.

22. Niemi A, Babuska I, Pitkaranta J, Demkowicz L (2012) Finite element analysis of
the Girkmann problem using the modern hp-version and the classical h-version, Eng
Comput 28:123-134. doi:10.1007/s00366-011-0223-0

23. Paszyriska A (2014) Volume and neighbors algorithm for finding elimination
trees for three dimensional h-adaptive grids, Comput Math Appl 68(10):1467-1478.
doi:10.1016/j.camwa.2014.09.012

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

14 H.AbouEisha, V.Calo, K. Jopek, M.Moshkov, A.Paszynska, M.Paszyriski

24. Paszyriska A, Paszynski M, Jopek K, Wozniak M, Goik D, Gurgul P, AbouFEisha
H, Moshkov M, Calo VM, Lenharth A, Nguyen D, Pingali K (2015) Quasi-Optimal
Elimination Trees for 2D Grids with Singularities, Scientific Programming, Volume
2015 Article ID 303024, 1-18. doi:10.1155/2015/303024

25. Paszyniski M (2016) Fast solvers for mesh-based computations, Taylor and Francis,
CRC Press, Boca Raton, London, New York

26. Schwab, C (1998) p and hp Finite Element Methods: Theory and Applications in
Solid and Fluid Mechanics, Clarendon Press, Oxford

27. Solin P, Segeth K, Dolezel I (2003) Higher-Order Finite Element Methods, Chap-
man & Hall/CRC Press, Boca Raton, London, New York

28. Szymczak A, Paszyriska A, Paszyriski M, Pardo D (2013) Preventing deadlock
during anisotropic 2D mesh adaptation in hp-adaptive FEM, J Comput Sci, 4(3):170—
179. doi:10.1016/j.jocs.2011.09.001

29. Yannakakis M (1981) Computing the minimum fill-in is NP-complete, SIAM J Alg
Disc Meth 2:77-79. doi:doi.org/10.1137/0602010

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_60 |

https://dx.doi.org/10.1007/978-3-319-93701-4_60

