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Abstract. Complex systems (e.g., volcanoes, debris flows, climate) com-
monly have many models advocated by different modelers and incorpo-
rating different modeling assumptions. Limited and sparse data on the
modeled phenomena does not permit a clean discrimination among mod-
els for fitness of purpose, and, heuristic choices are usually made, espe-
cially for critical predictions of behavior that has not been experienced.
We advocate here for characterizing models and the modeling assump-
tions they represent using a statistical approach over the full range of
applicability of the models. Such a characterization may then be used to
decide the appropriateness of a model for use, and, perhaps as needed
weighted compositions of models for better predictive power. We use
the example of dense granular representations of natural mass flows in
volcanic debris avalanches, to illustrate our approach.

Keywords: Model analysis - Statistical Analysis

1 Introduction

This paper presents a systematic approach to the study of models of complex
systems.

1.1 What is a Model?
A simple though not necessarily comprehensive definition of a model is that:

A model is a representation of a postulated relationship among inputs and
outputs of a system usually informed by observation and a hypothesis that
best explains them.

The definition captures two of the most important characteristics

— models depend on a hypothesis, and,
— models use the data from observation to validate and refine the hypothesis.
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Errors and uncertainty in the data and limitations in the hypothesis (usually a
tractable and computable mathematical construct articulating beliefs like pro-
portionality, linearity, etc.) are immediate challenges that must be overcome to
construct useful and credible models.

1.2 Who needs them and why are there so many of them?

A model is most useful in predicting the behavior of a system for unobserved in-
puts and interpretability or explainability of the system’s behavior. Since, models
require a hypotheses implies that the model is a formulation of a belief about
the data. The immediate consequence of this that the model may be very poor
about such prediction even when sufficient care is taken to use all the available
data and information since the subjectivity of the belief can never be completely
eliminated. Secondly, the data at hand may not provide enough information
about the system to characterize its behavior at the desired prediction. What
makes this problem even more acute is that we are often interested in modeling
outcomes that are not observed and perhaps sometimes not observable.

The consequence of this lack of knowledge and limited data is the multi-
plicity of beliefs about the complex system being modeled and a profusion of
models based on different modeling assumptions and data use. These competing
models lead to much debate among scientists. Principles like “Occam’s razor”
and Bayesian statistics [2] provide some guidance but simple robust approaches
that allow the testing of models for fitness need to be developed. We present in
this paper a simple data driven approach to discriminate among models and the
modeling assumptions implicit in each model, given a range of phenomena to
be studied. We illustrate the approach by work on granular flow models of large
mass flows.

1.3 Models and assumptions

An assumption is a simple intuitive concept. An assumption is any atomic pos-
tulate about relationships among quantities under study, e.g., a linear stress
strain relationship ¢ = Fe or neglecting some quantities in comparison to larger
quantities § = sin(#) for small §. Models are compositions of many such as-
sumptions. The study of models is thus implicitly a study of these assumptions
and their composability and applicability in a particular context. Sometimes a
good model contains a useless assumption that may be removed, sometimes a
good assumption should be implemented inside a different model - these are
usually subjective choices, not data driven. Moreover, the correct assumptions
may change through time, making model choice more difficult.

The rest of the paper will define our approach and a simple illustration using
3 models for large scale mass flows incorporated in our large scale mass flow
simulation framework TITAN2D [5]. The availability of 3 distinct models for
similar phenomena in the same tool provides us the ability to directly compare
inputs, outputs and internal variables in all the 3 models.
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1.4 Analysis of Modeling assumptions and models

Let us define (M(A), Pya)), where A is a set of assumptions, M(A) is the
model which combines those assumptions, and P, is a probability distribution
in the parameter space of M. For the sake of simplicity we assume Pj; to be
uniformly distributed on selected parameter ranges. While the support of Py,
can be restricted to a single value by solving an nverse problem for the optimal
reconstruction of a particular flow, this is not possible if we are interested in
the general predictive capabilities of the model, where we are interested in the
outcomes over a whole range.

Stage 1: Parameter Ranges In this study, we always assume

Py o~ ®i\;”1[ Unif(a; n,binr), where Ny is the number of parameters of M.
These parameter ranges will be chosen using information gathered from the
literature about the physical meaning of those values together with a preliminary
testing for physical consistency of model outcomes and range of inputs/outcomes
of interest.

Stage 2 Simulations and Data Gathering The simulation algorithms can be
represented as:

Model Evaluation (Simulator)

Model Latent Variable Model
Inputs Outputs

Fig. 1. Models and variables

The model inputs are the parameters of M, The latent variables include
quantities in the model evaluation that are ascribable to specific assumptions
A;. These are usually not observed as outputs from the model. For example
in momentum balances of complex flow calculations these could be values of
different source terms, dissipation terms and inertia terms. Finally, the model
outputs include explicit outcomes, e.g., for flow calculations these could be flow
height, lateral extent, area, velocity, acceleration, and derived quantities such as
Froude number F'r. In general, for each quantity of interest (Qol), we use a Monte
Carlo simulation, sampling the input variables and obtaining a family of graphs
plotting their expectation, and their 5*® and 95" percentiles. Our sampling
technique of the input variables is based on the Latin Hypercube Sampling (LHS)
idea, and in particular, on the improved space-filling properties of the orthogonal
array-based Latin Hypercubes.

Stage 3 Results Analysis These and other statistics can now be compared to
determine the need for different modeling assumptions and the relative merits
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of different models. Thus, analysis of the data gathered over the entire range
of flows for the state variables and outcomes leads to a quantitative basis for
accepting or rejecting particular assumptions or models for specific outcomes.

2  Modeling of mass flows

Dense large scale granular avalanches are a complex class of flows with physics
that has often been poorly captured by models that are computationally tractable.
Sparsity of actual flow data (usually only a posteriori deposit information is
available), and large uncertainty in the mechanisms of initiation and flow prop-
agation, make the modeling task challenging, and a subject of much continuing
interest. Models that appear to represent the physics well in certain flows, may
turn out to be poorly behaved in others, due to intrinsic mathematical or nu-
merical issues. Nevertheless, given the large implications on life and property,
many models with different modeling assumptions have been proposed.

2.1 Three Models

Modeling in this case proceeds by first assuming that the laws of mass and mo-
mentum conservation hold for properly defined system boundaries. The scale of
these flows, very long and wide with small depth led to the first most generally
accepted assumption, shallowness [13]. This allows an integration through the
depth to obtain simpler and more computationally tractable equations. This is
the next of many assumptions that have to be made. Both of these are funda-
mental assumptions which can be tested in the procedure we established above.
Since, there is a general consensus and much evidence in the literature of the
validity of these assumptions we defer analysis of these to future work. The
depth-averaged Saint-Venant equations that result are:

3/1 o, _ o, _
_ 0 9 9,
8— (hu + kgzh > + Ky(huv) =5 (1)
(9 _ 8 _ 0 5 1 2\ _

Here the Cartesian coordinate system is aligned such that z is normal to the
surface; h is the flow height in the z direction; hti and hv are respectively the
components of momentum in the z and y directions; and k is the coefficient
which relates the lateral stress components, 7., and 7, to the normal stress
component, &,,. The definition of this coefficient depends on the constitutive
model of the flowing material we choose. Note that %kgth is the contribution
of hydrostatic pressure to the momentum fluxes. S, and S, are the sum local
stresses: they include the gravitational driving forces, the basal friction force
resisting to the motion of the material, and additional forces specific of rheology
assumptions.
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The final class of assumptions are the assumptions on the rheology of the
flows — in particular in this context assumptions used to model different dissi-
pation mechanisms embedded in S, S, that lead to a plethora of models with
much controversy on the most suitable model.

Mohr-Coulomb(MC) Based on the long history of studies in soil mechanics
[7], the Mohr-Coulomb (MC) rheology model was developed and used to repre-
sent the behavior of geophysical mass flows [13].

Shear and normal stress are assumed to obey Coulomb friction equation,
both within the flow and at its boundaries. In other words,

T =otan g, (2)

where 7 and o are respectively the shear and normal stresses on failure surfaces,
and ¢ is a friction angle. This relationship does not depend on the flow speed.
We can summarize the MC rheology assumptions as:

— Basal Friction based on a constant friction angle.

— Internal Friction based on a constant friction angle.

— Farth pressure coefficient formula depends on the Mohr circle. The
Velocity based curvature effects are included into the equations.

Under the assumption of symmetry of the stress tensor with respect to the z
axis, the earth pressure coefficient k = k4, can take on only one of three values
{0, £1}. The material yield criterion is represented by the two straight lines at
angles +¢ (the internal friction angle) relative to horizontal direction. Similarly,
the normal and shear stress at the bed are represented by the line 7 = —o tan(d)
where § is the bed friction angle.

MC equations As a result, we can write down the source terms of the Egs. (1):

So = goh — 727 [ (9= + ) tan(0ea)] — hkap sgn (52 ) 252 sin(ine)

dCI)
I
Nej
<
>
|
g
[ — |
>
Voumn
N
+

2 tan(dpea)| — hhop sen (32) 222 sin(9ine) (3)

Where, @ = (u,v), is the depth-averaged velocity vector, r, and r, denote the

radii of curvature of the local basal surface. The inverse of the radii of curvature
is usually approximated with the partial derivatives of the basal slope, e.g.,
1/r, = 00, /0x, where 0,, is the local bed slope.

Pouliquen-Forterre(PF) The scaling properties for granular flows down rough
inclined planes led to a new formulation of the basal friction stress as a function
of the flow depth and velocity [6]. PF rheology assumptions can be summarized
as:

— Basal Friction is based on an interpolation of two different friction angles,
based on the flow regime and depth.
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Internal Friction is neglected.

— FEarth pressure coefficient is equal to one.

Normal stress is modified by a hydrostatic pressure force related to the flow
height gradient.

— Velocity based curvature effects are included into the equations.

Two critical slope inclination angles are defined as functions of the flow thickness,
namely @siare(h) and @siop(h). The function ¢giop(h) gives the slope angle at
which a steady uniform flow leaves a deposit of thickness h, while ¢stqrt(h) is
the angle at which a layer of thickness h is mobilized. They define two different
basal friction coefficients.

,LLstart(h) = tan(¢start (h)) (4)
,ustop(h) = tan(¢stop(h)) (5)

An empirical friction law p(|[ul], ) is then defined in the whole range of
velocity and thickness.

PF equations The depth-averaged Egs. (1) source terms thus take the following
form:

u u? _ Oh

.=~ g [0 (94 ) wwllalon] -+
v v? _ Oh

5, =gt — or [ (04 ) stlal. ) +a0 5] (©
~ Yy

Voellmy-Salm(VS) The theoretical analysis of dense snow avalanches led to
the VS rheology model [9, 15]. The following relation between shear and normal

stresses holds:

ot rligll

I, (7
where, o denotes the normal stress at the bottom of the fluid layer and g =
(92, 9y, g-) represents the gravity vector. The VS rheology adds a velocity de-
pendent turbulent friction to the traditional velocity independent basal friction
term which is proportional to the normal stress at the flow bottom. The two pa-
rameters of the model are the bed friction coefficient p and the turbulent friction
coefficient &.
We can summarize VS rheology assumptions as:

— Basal Friction is based on a constant coefficient, similarly to the MC rheol-
ogy.

— Internal Friction is neglected.

— FEarth pressure coefficient is equal to one.

— Additional turbulent friction is based on the local velocity by a quadratic
expression.
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— Velocity based curvature effects are included into the equations, following
an alternative formulation.

The effect of the topographic local curvatures is again taken into account
by adding the terms containing the local radii of curvature r, and r,. In this
case the formula is considering the modulus of velocity instead than the scalar
component [3].

VS equations Therefore, the final source terms take the following form:

_— a2 gl ]
~ ~ a2
Sx:gzh—f h g, + , M‘i‘THEH ,

[l .
. fay el
Sy=g,h—— |h|g.+ uw+—I|u . 8

Latent Variables For analysis of modeling assumptions we need to record and
classify the results of different modeling assumptions. These terms are explored
in detail in the next sections.

RHS, = [g:h, gyhl, (9)

it is the gravitational force term, it has the same formulation in all models.
The formula of basal friction force RH S> depends on the model:

RHS, = — hg. tan(épeq) [“

U
— in MC del.
E |9|1 A et

_ U v .
RHS; = — hg. w(||all,h) [lm, ||u||] , in PF model. (10)
RHS5; =—hg.pu i, 4 , in VS model.
[[afl” [l

The formula of the force related to the topography curvature, RH S3,
also depends on the model:

s Ok

RHS3 = — htan(¢dpeq) l ] , in MC model.

rol[ul "yl

_ e :
RHS3 = — h (|||, h) [rﬁ”’ r||1_1||] , in PF model. (11)
z|| Y yll Y
ullal ofal
RHS3 =— hu , , in VS model.
Te Ty
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All the three models have an additional force term, having a different formula
and meaning in the three models:

) ou, 0(g.h 0v . 0(g,h .
RHS4 = — hkap sin(pint) [Sgn(aZ) ((gy ), Sgn(a%) (g;v ) , in MC model.
Oh Oh
H = - — in PF 1. 12
RHS, =g.h {ax’ ay] , in mode (12)
B 1.
RHS,=—- —ua|?| = ,:=|, in VS model.
&0 |l "l

These latent variables can be analyzed locally and globally for discriminating
among the different modeling assumption.

2.2 Monte Carlo Process and Statistical Analysis

For our study, the flow range is defined by establishing boundaries for inputs like
flow volume and rheology coefficients. Optionally, these could include also flow
initiation site and geometry, and the digital elevation map. The Latin Hypercube
Sampling is performed over [0, 1]? for the MC and VS input parameters, and
[0, 1]* for PF input parameters. Those dimensionless samples are linearly mapped
to fill the required intervals.

Following the simulations, we generate data for each sample run and each
outcome and latent variable f(x,t) calculated as a function of time on the el-
ements of the computational grid. This analysis generates tremendous volume
of data which must then be analyzed using statistical methods for summative
impact. The latent variables in this case are the mass and force terms in the
conservation laws defined above.

We devise many statistical measures for analyzing the data. For instance,
let (F;(z,t))i=1... 4 be an array of force components, where € R? is a spatial
location, and ¢ € T is a time instant. The degree of contribution of those force
terms can be significantly variable in space and time, and we define the dom-
inance factors (pj)j=1,. k, i.€., the probability of each F; to be the dominant
force at (z,t). Those probabilities provide insight into the dominance of a par-
ticular source or dissipation (identified with a particular modeling assumption)
term on the model dynamics.

2.3 Overview of the case studies

The first case study assumes very simple boundary conditions, and corresponds
to an experiment fully described in [16]. It is a classical flow down an inclined
plane set-up, including a change in slope to an horizontal plane (Fig. 2 Left).
Four locations are selected among the center line of the flow to accomplish local
testing. These are: the initial pile location L; = (—0.7,0) m, the middle of the
inclined plane Ly = (—0.35,0) m, the change in slope L3z = (0,0) m, the middle
of the flat plane L, = (0.15,0) m.
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(a)
Inclined Plane Setting

Fig. 2. [Left] Inclined plane description, including local samples sites (red stars). Pile
location is marked by a blue dot. [Right] (a) Volcdn de Colima (México) overview,
including 51 numbered local sample sites (stars) and four labeled major ravines chan-
neling the flow. Pile location is marked by a blue dot. Reported coordinates are in
UTM zone 13N. Background is a satellite photo. (b) Regional geology map. (c) Digital
elevation map. Six points that are adopted as preferred locations are highlighted in
yellow. Elevation isolines are included in blue, elevation values in red.

The second case study is a block and ash flow down the slope of Volcan
de Colima (MX) - an andesitic stratovolcano that rises to 3,860 m above sea
level, situated in the western portion of the Trans-Mexican Volcanic Belt (Fig.
2 Right). The modeling of pyroclastic flows generated by explosive eruptions
and lava dome collapses of Volcén de Colima is a well studied problem [4,14,
11,10, 12]. The volcano has been already used as a case study in several studies
involving the Titan2D code [8]. We select 51 locations along the flow inundated
area to observe model outputs with six of them as preferred locations being
representative of different flow regimes.

3 Sample Results

Figure 3 shows the flow height, h(L,t), at the points (L;);=1,... 4, for the three
rheology models. Parameter ranges — outcome of Stage 1 analysis — come from
literature and past work in our laboratory. Plot 3 clearly shows the differences
in the statistics of the flow outcomes induced by the different choices of rheology
at different locations in the plane. Availability of data allows us to subject the
data to tests of of reasonability both for the means and extremal values. Given a
particular type of flow and collected data we can clearly distinguish model skill
in capturing not only that flow but also possible flows. Past work [16] allows
us to conclude that MC rheology is adequate for modeling simple dry granular
flows.

While, the above analysis is interesting in helping us accept or reject partic-
ular models a lot of insight can be obtained by examining the behavior of latent
variables. Figure 4 shows the spatial average of speed and Froude Number, for
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0.08 (a) Ly = (=0.7,0.0) (m) - x10% (b) Ly = (—0.35,0.0) (m)
g T T T T 5
= MC - mean value
A - - - - MC - 5 95" Percentiles
0.06 ‘\ PF - mean value -
. ' - 5% 95t Percentiles =)
§/ L = VS - mean value £
—am R VS - 5 95 Percentiles (-:E
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Fig. 3. Records of flow height at four spatial locations of interest. Bold line is mean
value, dashed/dotted lines are 5" and 95'® percentile bounds. Different rheology models
are displayed with different colors. Plots are at different scale, for simplification.
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the three rheology models for flows at Volcan Colima. Ranges of parameters etc
are obtained from our past work at this site [1]. It also shows the inundated
area of flow, as a function of time. Similar analysis of model suitability can be
conducted here given recorded deposits. In past work [5], we have tuned MC
rheology to match deposits for known block and ash flows but a priori predic-
tive ability was limited by inability to tune without knowledge of flow character.

(a) Flow Speed - spatial average (b) Froude Number - spatial average

80 50
= MC - Mean value . - - - - MC - 95" Perc.
——PF - Mean value wl N - --- PF - 95" Perc.
60 — VS - Mean value - ! \ - === VS - 95" Perc.
. = A MC - 5" Perc.
= 2300 o\ -+ PF - 5 Perc.
= 40 E W A\ ————— VS - 5™ Perc.
El
20
0

2.0 —

N I B S SO U H R BRRR
400 600 800 1000 1200 1400 1600 1800
Time (s)

Fig. 4. Comparison between spatial averages of (a) flow speed, and (b) Froude Number,
in addition to the (¢) inundated area, as a function of time.

The plots ba,b,c and 5d,e,f are related to point Lg and L, respectively.
They are significantly similar. RH .S, related to the gravitational force is the
dominant force with a very high chance, P; > 90%. In MC and PF there is a
small probability, i.e., P = 5% — 30% at most, of RH S3 related to topographic
curvature effects being the dominant force for a short amount of time, i.e. ~ 5s.
This occurs in the middle of the time interval in which the flow is almost surely
inundating the points being observed. In VS it is observed a Py = 5% chance of
RH S, related to the turbulent dissipation being dominant, for a few seconds,
anticipating the minimum of no-flow probability. Plots 5g,h,i, are related to
point Ly7, and the plots are split in two sub-frames, following different temporal
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scales. In all the models, RH S5 is the most probable dominant force, and its
dominance factor has a bell-shaped profile, similar to the complementary of
no-flow probability. In all the models, RHS; has a small chance of being the
dominant force. In MC, this is more significant, at most P; = 30%, for ~ 20s
after the flow arrival, and has again about P; = %2 chance to be dominant in
[100, 7200]s. In PF, the chance is P; = 15% at most, and has two maxima, one
short lasting at about 55s, and the second in [100, 500]s. Also in VS, the chance is
at most P; = 15%, reached at [300, 500]s, but its profile is unimodal in time, and
becomes lower than P; = 2% after 2000s. In MC and PF, RH S5 has a chance
of P3 = 10% of being the dominant force, for a short amount of time [30,50]s
and [40, 50]s, respectively. Figure 5 show the Dominance Factors (P;);=1,... 4, for
the three rheology models and focusing on the RHS terms moduli, at the three
selected points Lg, L1g, and L7, closer than 1 km to the initial pile (in horizontal
projection).

L (a) MC, Lg (9) MC, L7
1 " 1 1 1
I} \ "
0.8 T 0.8 0.8 0.8 .-
i< } 2 Prde RHS,
= 0.6 U 0.6 0.6 \ - —- 206 RIS,
~ =B 2
= = Basal RHS;
S 04 0.4 04 S 0.4 |lriction RHS;
£ N\ Gravity . Basal | A& — = NofF.
0.2 I 0.2 0.2 | Oravity friction 0.2
1 Curvature Gravity
ol 0 0 0
0 10 20 30 40 0 10 20 30 40 50 0 20 40 60 80 100 100 1800 3600 5400 7200
(b) PF, Ly (e) PF, Ly (h) PF, Ly
1 1 - 1 ~
1 4 1
0.8 ! 0.8 0.8 !
) | ] Basal
% 0.6 Gravity 0.6 0.6 friction
E
S 04 0.4 0.4
& b )
0.2 Ty 0.2 0.2 Uity 024" (o
Curval M hl Tavity
oltu/l 0 0 0 J
0 10 20 30 40 0 10 20 30 40 50 0 20 40 60 80 100 100 1800 3600 5400 7200
. (¢) VS, Lg ) () VS, Lo ) (i) VS, L7
| 4 - 1
. Gravity - )
P 2 ) -
>)0.8 3 0.8 - 08 Basal 08
£ Vs {riction £
Z 06 0.6 (X = 0.
__g Gravity \ §
S 04 ’ 0.4 0.4 S 0.
A 1 Y\ &
021 ISpeeddepmignt 02N A e depen 02 \ Grvity | 02Le -
0 4 friction 0 * fiction, 0 - 0 iravity
0 30 60 90 120 0 120 240 360 480 600 0 500 1000 1500 2000 2000 3600 5400 7200
Time (s) Time (s) Time (s)

Fig. 5. Records of dominance probabilities of RHS force moduli, at three spatial
locations of interest, in the first km of runout. Bold line is mean value, dashed/dotted
lines are 5% and 95" percentile bounds. Different rheology models are displayed with
different colors. No-flow probability is also displayed.
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Conclusions

In this study, we have introduced a simple, robust statistically driven method for
analyzing complex models. We have used 3 different models arising from different
rheology assumptions. The data shows unambiguously the performance of the
models across a wide range of possible flow regimes and topographies. We analyze
local and global quantities and latent variables. The analysis of latent variables
is particularly illustrative of the impact of modeling assumption. Knowledge of
which assumptions dominate, and, by how much, at the level of assumptions will
allow us to construct efficient models for desired inputs. Such model composition
is the subject of ongoing and future work.
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