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Abstract. Very large climate data repositories provide a consistent view
of weather conditions over long time periods. In some applications and
studies, given a current weather pattern (e.g. today’s weather), it is use-
ful to identify similar ones (weather analogues) in the past. Looking for
similar patterns in an archive using a brute force approach requires data
to be retrieved from the archive and then compared to the query, us-
ing a chosen similarity measure. Such operation would be very long and
costly. In this work, a wavelet-based fingerprinting scheme is proposed
to index all weather patterns from the archive. The scheme allows to
answer queries by computing the fingerprint of the query pattern, then
comparing them to the index of all fingerprints more efficiently, in order
to then retrieve only the corresponding selected data from the archive.
The experimental analysis is carried out on the ECMWF’s ERA-Interim
reanalyses data representing the global state of the atmosphere over sev-
eral decades. Results shows that 32 bits fingerprints are sufficient to rep-
resent meteorological fields over a 1700 km×1700 km region and allow
the quasi instantaneous retrieval of weather analogues.

Keywords: climate data repositories, weather analogues, information retrieval.

1 Introduction

Weather analogues is the term used by meteorologists to referrer to similar
weather situations. Usually an analogue for a given location or area and forecast
lead time is defined as a past prediction, from the same model, that has simi-
lar values for selected features of the current model forecast. Before computer
simulations were available, weather analogues were the main tool available to
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forecasters, which is still a usage today [1]. Analogues can be useful on smaller
scale (≈ 900 km in radius, [2]) as it is otherwise impossible to identify sim-
ilar patterns in the past given a limited temporal record e.g. at hemispheric
scale, similar states the atmosphere would only be observed every 1030 years [3].
Usually the maximum record length available is restricted to under 100 years.
Weather analogues have many usages. They are used for downscaling model out-
puts [4], to assess risks of severe weather [5] or managing weather impacts on
railway networks [6].

Analogues require comparison of fields and looking for similar patterns in
an archive using a brute force approach requires data to be retrieved from the
archive and the compared to the query, using a chosen similarity measure. Such
operation would be very long and costly on large archive systems as data will
typically have to be recalled a tape system.

The aim of this research is to consider an algorithm to index all weather
patterns from the archive using a fingerprinting scheme. Queries would be done
by computing the fingerprint of the query pattern, then comparing them to the
index of all fingerprints, in order to then retrieve the corresponding data from
the archive. The main user requirements of such system are:

– the system should be queryable: given a user provided query, the system
should return the most similar weather situation from the archive;

– the system should be fast: replies should be perceived by users as “instanta-
neous”, allowing interactive use;

– newly archived data should be added to the index, without the need to
retune/retrain the system.

Wavelet fingerprinting has been successfully used to retrieve images [7] and
sounds [8]. The objectives of this paper are therefore to introduce an efficient
wavelet fingerprinting system for the retrieval of weather analogues. Efficiency
here means that the computation of fingerprint is fast, that the resulting fin-
gerprint is small, that fingerprints can be compared quickly and that they can
be stored in an efficient data structure. The fingerprinting method has to be
accurate as possible, i.e. that returns the “closest” matching weather according
to some agreed similarity measure.

2 Related work

As the world is generating more and more data, efficient information retrieval
has become a major challenge, and is therefore a very active field of research.
Information is not only limited to text, but also comprises images, movies and
sound. There are many methods available to implement such systems [9, 10].

The retrieval system proposed in this work is based on wavelets [11, 12], which
are expected to capture well the wave-like nature of the weather phenomenon.
Wavelets are traditionally use for imagery [13–15], in particular compression
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[16–20] and image retrieval [7, 21, 22]. Wavelets have also been used to retrieve
medical images [23, 24], proteins [25], power management [26–28], time-series
analysis [29, 30] and image similarity [23, 22].

This work builds on the results presented by [7] and [8], which use wavelets-
based algorithms for multi-resolution image querying and audio fingerprinting
respectively.

3 The ECMWF Data Archive

The European Centre for Medium-Range Weather Forecasts (ECMWF) has been
collecting meteorological information since 1980 and its archive has recently
reach over 260 petabytes of primary data. ECMWF’s archive is referred to as the
Meteorological Archiving and Retrieval System (MARS) [31, 32]. This archive
provides datasets that covers several decades at hourly temporal resolutions.
Because of the size of the archive, most of the data is held on tape, therefore
only solutions that do not require access to the data are considered.

The MARS archive contains fields, that are the typical output of numeri-
cal weather prediction systems. These are usually gridded data, either global or
regional. The grids are sets of regularly distributed points (e.g. one grid point
every 5 km) over a given area. Model outputs are collections of fields, one for
each variable represented, for a given time and horizontal layer: at large scales
(greater than 10 km), the interactions between the different layers of the atmo-
sphere are small compared to the effects of large structures and can be ignored.
This is why traditionally meteorologists tend to consider fields are being 2D,
their vertical coordinate being an attribute of the field, as is time. Fields are
therefore a collection of floating point values geographically distributed accord-
ing to a mesh (called grid). Most of the grids are regularly spaced.

This research will make use of a particular subset of fields so called reanalysis
data: a reanalysis is a process by which the same data assimilation system is run
on past observations (e.g. over one hundred years), and produces a consistent
dataset representing the state of the atmosphere over long periods. This is used
for studies linked to climate change [33, 34]. These datasets are very well struc-
tured and can be easily processed. The data used in this work are selected from
the ERA-Interim dataset [35, 36], a reanalysis covering the period 1979 to 2014,
at 0 UTC (13,149 fields per variable).

Meteorological fields are multidimensional fields, with grid points regularly
distributed on the surfaces following the shape Earth: at the surface or at set
levels (usually isobaric surface). The fields also vary in time. Although these
fields are 4D, they are archived as 2D slices (latitude/longitude), so that users
can access long time series of a given surface, or a stack of levels. Fields represent
one variable (temperature, pressure, precipitations, etc.), with the value of the
variable provided at each grid points.
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In the case of regular grids, in which grid points can be organised in a 2D
matrix (Figure 1a), one can see the that this fields can easily be considered as
a greyscale image (Figure 1c, assuming values are normalised to the interval
0-255), although they are traditionally plotted using contours (Figure 1b).

Four surface variables are selected: 2 metre temperature, mean sea level sur-
face pressure (or MSL pressure), 10 metre wind speed and total precipitations
accumulated over 6 hours.

The initial work presented here is limited to a square grid 0.5◦×0.5◦(≈
55 km×55 km) on the domain 60◦N 14◦W 44.5◦N 1.5◦E that covers the British
Isles (≈ 1700 km×1700 km, see Figure 1), which agrees with the radius of 900 km
presented in [2]. The size of the domain will capture synoptic scales weather pat-
terns.

(a) Geographical distribu-
tion of the grid points.

(b) Field of total precipi-
tations over 6 hours.

(c) Same field plotted over
a gray map.

Fig. 1: Nature of the meteorological field used in this research. In the middle
panel, the total precipitation field is plotted using the traditional methods: con-
touring and shading (isoline are spaced logarithmically from 0.4mm to 100mm.

4 Definition of a fingerprinting scheme

4.1 Fingerprinting

The method proposed is to define the fingerprint F of a meteorological field f
as:

F (f) = ⟨s, r⟩

where:

– s is a bit vector, representing the shape of f , and
– r is a reference value, capturing the intensity of the field f .
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The fingerprinting method proposed is as follows:
1. the meteorological field is considered as a 2D grayscale image;
2. a reference value is selected (for example the mean, or the median of the

field);
3. the field is compressed using wavelet compression;
4. the reference value is used as a threshold to convert the compressed image

into a bitmap;
5. the bits that make the bitmap are extracted and form the shape part of the

fingerprint.
The first step is only described here to stress that the algorithm expects the
actual values of the field as input, and not a graphical representation (fields are
not images). In the case of this research, fields are already available in a binary
form, so the first step is not necessary. The method is illustrated in Figure 2.
In that example, the fingerprint is a tuple consisting of a 64 bits vector and a
floating-point value. In a modern computer, this would use 128 bits of memory.

F (f) = ⟨00000001 · · · 11110001, 0.003⟩

Gray scale

Wavelet
compress

ion

Threshold

Enc
od

e

Fig. 2: Algorithm: field fingerprints are computed using wavelet compression and
thresholding. In this example, 0.003 is the average value of the field.
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4.2 Wavelet compression

A Discrete Wavelet Transform (DWT) decomposes a signal into approximation
and details coefficients; the approximation is a smoothing of the signal, and cap-
ture large scale features, while details represent smaller variations around the
approximation. The original signal can we reconstructed from all coefficients.
Wavelet compression is performed by selecting the approximation coefficient of
a given stage of the DWT and discarding the detail coefficients.

We will define the compression factor C as the level of the DWT. As C
increases, the number values in the compressed field is divided by 4 (Figure 3).

(a) Precipitations field (b) C = 0, N = 322 =
1024

(c) C = 1, N = 162 = 256

(d) C = 2, N = 82 = 64 (e) C = 3, N = 42 = 16 (f) C = 4, N = 22 = 4

Fig. 3: Grey scale images showing the result of wavelet compression of a field
of precipitations. C is the compression factor, N is the number of data values
remaining after compression.
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4.3 Query

Looking up for analogues is done by solving the nearest neighbour problem in a
database of fingerprints. In that study, the fingerprints are held in a simple array
structure in memory, are they are small enough, and the lookup is implemented
as a linear scan. The performance of this setup is sufficient for interactive use.
More elaborate data structures and algorithm will be considered at a later stage.

To querying the database for analogues, the user needs to present a meteo-
rological field over a similar area and with the same number of grid points as
our current setup. This could be for example today’s weather, extracted from
the latest analysis from a NWP centre. The fingerprint of the query field is com-
puted and is compared to existing fingerprint. Fingerprints are considered close
if the Hamming distance [37] of their bit vectors are close, and their reference
values are also close.

4.4 Formal definition

The problem we are trying to address can be formalised as:

Let v be a meteorological variable (e.g. surface pressure, wind speed…).
Let Av be the set of all meteorological fields in the archive for this variable.

Assuming that all the fields are defined over the same grid (same geographical
coverage, same resolution), Av can be considered a subset of IRn, with n being
the number of grid points.

Let D be a distance function between the elements of Av (typically the L2-
norm).

Let F be the set of fingerprints.
Let δ be a distance function between the elements of F .

We are looking for a mapping Fv : Av 7→ F such that:

∀f1, f2, f3 ∈ Av, D(f1, f2) ≤ D(f1, f3)

⇐⇒ δ(Fv(f1), Fv(f2)) ≤ δ(Fv(f1), Fv(f3)) .
(1)

Intuitively, this means that Fv “preserves distances”, e.g. if fields are close
according to the distance D, their fingerprints must also be close according to
the distance δ. Similarly, fields that are far apart must have fingerprints that
are far apart. A study of distance preserving embeddings is available from [38].

The aim of this work is to find a mapping that mostly satisfy relation (1),
i.e. a mapping for which the relation is true for most elements of Av.

Traditionally, distance between meteorological fields is computed using the
root mean square deviation (RMSD), which is equivalent to the L2-norm. Other
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distances such as Pearson correlation coefficient (PCC) are also used. [39] show
the limitations of such metrics. In this study, we will use the L2-norm when
comparing field, as it is the most commonly used metric in meteorology.

4.5 Validation of the mapping

As we are considering various fingerprinting schemes, we will compare how “ef-
fective” they are. We define the effectiveness of a mapping is a measure of number
of elements of Av for which relation (1) hold.

A scheme is perfectly effective if for every query q, we always find the field
which is closest to q according to the distance D. This can also be stated as: if
m be the best match when querying the system with q, the scheme is perfectly
effective if there are no field closer to q than m according to the distance D.
Conversely, the more fields are closer to q than m, the less effective the method.
So, to measure the effectiveness of the fingerprinting scheme, we count how many
fields are closer to q than m. Instead of generating dummy query fields, we use
every fields from the archive to query a set composed of all other fields.

Using the definitions from section 4.4, for each field q in Av, let Aq
v = Av\{q}

be the dataset that excludes this field.
Let m be the best match when querying Aq

v with q.
Let ξD(q) be the query error, defined as the number of fields that are closer

to q than m according to a distance D, normalised by the total number of field
in Av:

ξD(q) =
|{f ∈ Aq

v | D(f, q) < D(m, q)}|
|Aq

v|
.

ξD(q) = 0 if the result of querying Aq
v with q returns the closest field to q

according to the distance D, and ξD(q) = 1 if the resulting field is the furthest
away according to D.

We consider the scheme to be validated if ξD(q) is negligibly small (e.g. less
that 0.05, i.e. 5%) for a large number of values of q (e.g. 80%). This means that
for 80% of the queries, less than 5% of all the fields in the dataset will considered
a better match than the closest field according to D.

4.6 Choice of the compression factor C

In order to select a value for the compression factor C, we compute ξL2(q) for
every field q of the dataset. We then consider the percentage of fields of the
dataset for which the ξL2(q) is below a given value.

Figure 4 shows, for two representative meteorological variables, the sorted
distribution of the values ξL2 against the queries, for various values of the com-
pression factor C. Figure 4b shows that for C = 3 and for 80% of the queries,
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less than 4% of the fields are actually closer than the best match. Plotting such
graphs for all selected meteorological variables shows that the best results are
obtained with the compression factor C = 3. This can be explained as follows:

For C = 1 and C = 2, the compressed field retain a lot of detail and the
resulting fingerprints retain many dimensions, and we are affected by the curse
of dimensionality.

For C = 4, too much information is lost, and dissimilar fields are more likely
to have similar fingerprints, thus increasing the probability of mismatching re-
sults.

We can see that for total precipitations (Figure 4a), the results are not as
good as for the surface air pressure. This is because this field is not as smooth
and continuous, and is by nature not easily captured by the multi-resolution
aspect of wavelets.

The value C = 3 provides enough information reduction so that generated
fingerprints are small, while having a high effectiveness so that matching of
fingerprints will provide good results.

4.7 Similarity measure between fingerprints

In 4.1, we define the fingerprint of f as F (f) = ⟨s, r⟩ where:

– s i a bit vector representing the shape of f , and
– r is a reference value, capturing the intensity of the field f .

We use the mean of the field for r. We then define the distance between the
fingerprints ⟨s1, r1⟩ and ⟨s2, r2⟩ as:

δ(⟨s1, r1⟩ , ⟨s2, r2⟩) =

{
hamming(s1, s2) ifs1 ̸= s2,

|r1 − r2| otherwise.

This means that we first compare the shapes, and if they are identical, we
then compare the intensities of the two fingerprints (lexical ordering).�. For this
method, we show the best results are for C = 3, as in paragraph  4.6.

This is an interesting result as it shows that a value of C = 3 is sufficient for
s to capture the shape of the field. In that case, s is 16 bits long. The mean r
can easily be encoded using 16 bits, without loss of effectiveness:

r16bits =

⌊
216

(r −minv)

(maxv −minv)

⌋
.

Where ⌊x⌋ is the nearest smaller integer from x (floor), and minv and maxv

are the minimum and maximum values possible for the meteorological variable v.
In this case, the fingerprint can be encoded over 32 bits.�Tests using the median
instead of the mean do not give better results.
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(a) Total precipitations
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Surface air temperature
C = 1
C = 2
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(b) Surface air temperature

Fig. 4: Choice of the compression factor C. The plots shown are sorted distri-
butions of ξL2 for various values of C. For Total precipitation, we see that for
C = 4, the value of ξL2 at 80% is 0.36. This means that for 20% of the queries,
there are more than 36% of all the fields in the dataset that are considered a
better match than the closest field according to L2. For C = 3, this value drops
to 18%. For Surface air temperature, we can see that the results are much better,
and that for C = 4, the value at 80% is 0.08 (8%) and for C = 3, the value at
80% is 0.04 (4%). In both cases, C = 3 gives the best results.
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5 Implementation and Results

The code implemented for this work is written in Python, using NumPy [40],
SciPy [41], Matplotlib [42], PyWavelet [43]. Bespoke Python module have been
developed to interface with ECMWF’s GRIB decoder [44], to decode the meteo-
rological fields, as well as ECMWF’s plotting package MAGICS [45, 32], to plot
maps. The various fingerprinting methods, as well as the code to estimate their
effectiveness. Experiments are run using Jupyter, previously known as iPython
notebook [46].

Several artificial patterns are used to query the system (see Figure 5). These
patterns do not represent realistic meteorological fields. They could nevertheless
be the kind of pattern that the user could query:

– Figure 5a: some heavy precipitations over Ireland only.
– Figure 5b: some snow in western France.
– Figure 5c: a system of high pressure over the British Isles.
– Figure 5d: a heat wave over the south east of England and France.

In each case, the system will return a field from the archive that matches the
query provided.

�
�
�
�

��
��

����

(a) Total precipita-
tions.

(b) Snow cover.

����

����

���
�

����

(c) Pressure. (d) Air tempera-
ture.

Fig. 5: Using artificial fields as queries (first row), and the corresponding best
matches (second row).
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6 Conclusion and future work

In this work the first wavelet base retrieval system for weather analogue has
been introduced. Results shows that 32 bits fingerprints are sufficient to rep-
resent meteorological fields over a 1700 km×1700 km region, and that distances
between fingerprints provide a realistic proxy to the distance between fields. The
small size of the fingerprint means that they can be stored in memory, leading
to very short lookup time, fast enough to allow for interactive queries.

As part of our future work, will be considering a method that allows users
to describe type of weathers in an interactive fashion. Users will be provided
with a tool to “draw” the field they are looking. The pattern drawn will be used
as a query to the system, and similar fields will be returned. One of the main
challenge of this method will be to ensure that the user’s input is realistic from
a meteorological point of view.

During our initial research, we have been focussing on weather patterns over
the British Isles. As part of the future work, we will consider extending the sys-
tem to the whole globe.

Weather situations are really similar if all of the parameters (temperature,
pressure, wind, etc.) are also similar. We will study how the fingerprinting scheme
implemented so far can be extended so that it takes into account several param-
eters and what are the implication on the index and the matching algorithms.
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