
Enabling machine learning on resource
constrained devices by source code generation of

the learned models

Tomasz Szydlo1, Joanna Sendorek1, and Robert Brzoza-Woch1

AGH University of Science and Technology,
Department of Computer Science, Krakow, Poland

Abstract. Due to the development of IoT solutions, we can observe the
constantly growing number of these devices in almost every aspect of
our lives. The machine learning may improve increase their intelligence
and smartness. Unfortunately, the highly regarded programming libraries
consume to much resources to be ported to the embedded processors.
Thus, in the paper the concept of source code generation of machine
learning models is presented as well as the generation algorithms for
commonly used machine learning methods. The concept has been proven
in the use cases.

Keywords: IoT, Edge Computing, Machine Learning

1 Introduction

Due to the development of IoT solutions, we can observe the constantly growing
number of network enabled devices in almost every aspect of our lives. It includes
smart homes, factories, cars, devices and others. They are sources of large amount
of data that can be analyzed in order to discover the relations between them.
As a result, they can provide functionalities better suited to the needs, predict
failures and increase their reliability.

The data generated by the devices can be used by machine learning algo-
rithms to learn and then make predictions. For example, the historical informa-
tion of engine behaviors may lead to the machine learning models that can be
used to predict in advance failures of other engines and be used to plan appro-
priate repairing actions. Such an approach is possible because of the virtually
unlimited resources in the computational clouds to store and process the data
from large number of devices.

Such a concept is extremely important in the industry which is facing the
revolution termed Industry 4.0. The main concept is focused on including cyber-
physical systems, IoT and cognitive systems in the manufacturing. In the so-called
smart factories, every aspect of the manufacturing process will be monitored in
real-time and then gathered information will be used by the cooperating systems

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

2 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

and humans to work coherently. At the same time, the machine learning algo-
rithms may gain the quality of the final products and decrease the production
costs.

One of the important aspects in the industrial IoT is the response time of the
systems. For example, in the factory automation, motion control and tactile In-
ternet the acceptable latency is less then 10ms[8]. It means that the IoT systems
using machine learning algorithms in the cloud for that kind of applications are
not sufficient due to the fact that Internet routing to the worldwide datacenters
introduces significant delays[12].

One of the solutions to circumvent that drawback is to move machine learning
algorithms to the edge of the network [10] e.g. to the data center located in the
factory and learn only on the local data. As a result, the latency introduced by
the communication protocol would be significantly smaller because limited to the
local networks, but the gained knowledge would be incomplete. The promising
improvement would be to perform machine learning in the cloud environments
on a large volume of data and then send learned models to the edge datacenters
in order to make predictions locally e.g. in the factories. That approach would
increase the accuracy of the predictions due to the variety of sources that data
came from in the learning process.

Nevertheless, even with that approach, the devices have to be constantly
connected to the local computer network in order to use the machine learn-
ing models. Thus, in the research we are moving machine learning models to
the embedded devices itself. In our concept, instead of implementing machine
learning libraries for embedded devices that can read and interpret the learned
models, they are converted to the source code that can be compiled in the de-
vice firmware. This enables possibility to embed the these models into embedded
processors that may have sporadic access to the network.

The concept presented in the paper can be used to design e.g. smart tools
in which machine learning models are used to prevent their damages by modify-
ing internal characteristics according to the usage. Such devices during charging
could synchronize itself with a cloud by sending the historical usage logs from
their memory and download new firmware with updated machine learning mod-
els. The process can be automated using mechanisms presented in the paper.

The scientific contribution of the paper is (i) the concept of source code
generation of machine learning models (ii) the generation algorithms for com-
monly used machine learning methods and finally (iii) practical verification of
the method.

Organization of the paper is as follows. Section 2 describes the related work in
the field of machine learning for constrained devices. Section 3 discuses concept
of the proposed method and the algorithms for commonly used ML algorithms.
Section 4 describes the evaluation, while section 5 concludes the paper.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 3

2 Related work

At the time of writing, numerous machine learning programming libraries are
available on the market. They offer a number of algorithms to enable learning
with and without supervision. They can be divided into dedicated applications
for individual computing nodes (for example Weka, SMILE, scikit-learn, Lib-
SVM) and for high performance computers (cluster/cloud computing e.g. Spark,
FlinkML, TensorFlow, AlchemyAPI, PredictionIO). Many large companies offer
services which rely on machine learning in public cloud infrastructures. The most
popular services of this type are BigML, Amazon Machine Learning, Google Pre-
diction, IBM Watson and Microsoft Azure Machine Learning and the dedicated
for IoT such as ThingWorx. These solutions analyze data mostly in the cloud
and role of IoT devices comes down to software agents providing data for analy-
sis. Solutions categorized as Big Data Machine Learning and dedicated for cloud
computing are a fast-growing branch of machine learning[2].

In the domain of resource-constrained systems we can find many implemen-
tations of ML algorithms on mobile and embedded devices that cooperate with
the cloud computing. The work of Liu et al. [7] describes an approach to image
recognition in which the process is split into two layers: local edge layer con-
structed with mobile devices and remote server (cloud) layer. In [6] the authors
present a software accelerator that enhances deep learning execution on hetero-
geneous hardware, including mobile devices. In the edge, i.e. on a mobile devices,
an acquired image is preprocessed and a segmentation is performed. Then the
image is classified on a remote server running pre-trained convolutional neural
network (CNN). In [9] the authors propose the utilization of Support Vector Ma-
chine (SVM) running on networked mobile devices to detect malware. A more
general survey on employing networked mobile devices for edge computing is
presented in [11].

There are also implementation of algorithms related to machine learning
domain on extremely resource-constrained devices with a few kB of RAM. In
[4][5] authors develop extremely efficient machine learning algorithms that can
learn on such devices. The problem presented in the paper addresses the same
group of devices but is not related to the performing learning process on them but
is related to the usage of the models learned elsewhere and used on the devices.
It enables possibility to design systems that can perform machine learning in
the clouds on a large volume of data and then use the results in the resource-
constrained devices.

3 Concept of the method

In the IoT domain there are several hardware architectures and sets of periph-
erals in the processors used in the devices[1]. Generally, they can be classified
into two categories - application processors that can run Linux and the em-
bedded ones that can run real-time operating systems such as FreeRTOS or be
programmed directly on the bare-metal.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

4 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

On the devices with application processors such as RaspberryPi, the tuned
versions of machine learning libraries such as Tensorflow or scikit-learn can
be executed due to the availability of Java, Python and other programming
languages. This means that machine learning models can be directly copied
between the cloud environment and the device only if the same libraries are
used in both places.

The other approach assumes that the models can be moved between various
ML libraries. For that purpose, description languages such PMML[3] has been
developed. For example, models can be learned in the cloud using Big Data tools
then after export/import operation used by the libraries ported to the embedded
devices.

The problem is more complex with the second group of embedded devices
such as Arduino with resources constrained embedded microcontrollers (MCUs).
In this case, porting the high-level and general purpose machine learning libraries
is not possible. In this situation, the implementation of description languages
such as aforementioned PMML may consume significant device resources. Thus,
the authors propose the approach in which source code of the estimator that
expresses the learned model is generated and then compiled into the device
firmware. The presented concept of the machine learning model source code
generation requires three steps to be performed:

1. analysis of the machine-learning algorithm and the way how it can be ex-
pressed in the source code,

2. analysis on how to get details of machine-learning model from the ones gen-
erated by the particular software or library,

3. analysis on how the final code can be optimized for the target embedded
architecture regarding its resource constraints.

In the next subsections, the source code generation algorithms for the com-
monly used machine learning methods for the classification problem are pre-
sented. Additionally the technical details on how to generate the source code
based on the popular scikit-learn library is discussed. We have also analyzed
how the final code should be generated for AVR and ARM embedded processors.

3.1 Bayes Networks generator

Naive Bayes algorithm is the method which applies probability theorem to the
machine learning problems, treating input features and output classes as events.
The problem of classification - assigning class for the given input features - is re-
duced to finding output class event which has highest conditional probability, as-
suming that input features event has occurred. To calculate the conditional prob-
ability, Bayes theorem is applied. Therefore, definition for classification problem
can be written as:

argmax
y

(P (y|x1...xN))
Bayes th.

= argmax
y

P (y)P (x1...xN |y)

P (x1...xn)
, (1)

where:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 5

– x1...xN - input features;
– N - number of input features;
– P (x1...xN) - constant probability of input feature event which is the same

regardless of output class
– y - element of output classes events.

In order to calculate right side of equation (1), two assumptions are made:

1. Input features are pair-wise independent of each other which allows to cal-
culate probability P (x1...xN |y).

2. The probability distribution of P (xi|y) is normal distribution N (θ, σ).

After applying both of the assumptions to the equation (1) and natural log-
arithm function to the density function of normal distribution, problem of clas-
sifying the set of features can be written as:

argmax
y

(
logP (y) +

N∑
i=1

[
− 1

2
log2πσy,i −

(xi − θy,i)2

2σy,i

])
, (2)

where:

– M - number of output classes;
– σ, θ - matrices of size M × N calculated during the learning phase - those

relate to parameters of normal distribution;
– P (y) - prior probability for class y calculated as the proportionate part of a

class occurrences in the training set.

The necessity of calculating natural logarithm, the only part of equation
requiring math module in C, can be eliminated by introducing third matrix -
σlog containing element-wise logarithm function applied to matrix 2πσ.

Therefore, formula (2) can be reduced to:

argmax
y

(
logP (y)− 1

2

N∑
i=1

[
σlogy,i

+
(xi − θy,i)2

σy,i

])
, (3)

which equation will be the base for construction of program evaluating Bayes
model for new set of input features. Implementation of such evaluator in C in
presented on listing 1.1.

Listing 1.1: Naive Bayes model evaluation in C

double sigma [M] [N] = <l ea rned values >;
double theta [M] [N] = <l ea rned values >;
double log s igma [M] [N] = <l ea rned values >;
double p r i o r [M] = <c a l c u l a t e d values >;

double temp sum ;
double c l a s s e s t [1 0] ;

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

6 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

f o r (i n t i = 0 ; i < M; i++){
temp sum = 0 ;
f o r (i n t j = 0 ; j < N; j++){

temp sum += log s igma [i] [j] ;
temp sum += ((x [j] − theta [i] [j]) ∗ (x [j] −

theta [i] [j])) / (sigma [i] [j]) ;
}

c l a s s e s t [i] = p r i o r [i] − 0 .5 ∗ temp sum ;
}

re turn get max index (c l a s s e s t) ;

It can be observed that the evaluator code remains the same as to the struc-
ture, regardless of specific learned Naive Bayes model. The program has a struc-
ture with declaration part, where matrices σ, θ and σlog are defined, and instruc-
tion part which implements formula (3). In case of specific trained model only
matrices values has to be set, altogether with M and N constants. Therefore,
generation process for naive Bayes algorithm may be reduced to using evalua-
tor template and filling it accordingly with trained values. The other approach
to generation will be presented in sections 3.2 and 3.3, where not only data
declarations but whole program structure relies on trained model.

In scikit-learn, class sklearn.naive bayes.GaussianNB implements afore-
mentioned classifier. Trained instance of model stores values of matrices σ and
θ in fields sigma and theta respectively and values of prior probabilities for
classes in array class prior . In result, demanded values for theta and sigma

can be retrieved directly from trained model and values for prior and log sigma

can be calculated.

3.2 Decision Trees generator

Decision Tree classifier is based on the algorithm which recursively tries to split
training dataset based on the value of one chosen input feature.

Figure 1 presents structure of example decision tree. Each node represents
one training data split which corresponds to different condition on chosen feature
value. The split condition is created in such a way as to minimize gini index in the
child nodes. Gini index is calculated as presented on equation (4) and describes
how well are output classes distributed through the dataset.

giniindex = 1−
M∑
i=1

p2i , (4)

where:

– M - number of output classes;
– p i - fraction of representatives of class i in the whole dataset.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 7

Fig. 1: Example decision tree structure.

Construction of tree is being conducted in learning phase of algorithm, based
on training set. Once the tree is constructed, the classification of the new input
sample is done by traversing the tree from top to bottom, evaluating conditions
in each node and choosing appropriate child of the node until leaf is reached.
Such a structure of trained model is equivalent to a set of hierarchical condition
instructions and can be unambiguously conversed to such a structure.

In scikit-learn library, tree structure of trained classifier is held in tree

property of the classifier object and consists of commonly used pointer repre-
sentation. Each node has an unique index used to reference its properties in
properties arrays:

– children left - array of left children indexes - index -1 means that there
is no left child;

– children right - array of right children indexes - index -1 means that there
is no right child;

– feature - array of input features on which splitting is conducted;
– threshold - array of values on which splitting condition is based;
– classes - array of arrays holding count for each output class on given data

subset.

Listing 1.2 presents pseudocode of algorithm which generates hierarchy of
condition clauses based on trained classifier. The tree structure is processed re-
cursively by pre-order traversal, using aforementioned properties arrays. Visiting
each node, appropriate if-else clause is created which represents one data split.

Listing 1.2: Tree code generation algorithm.

gene ra t e s ta t ement s (t r e e) :

r e c u r s e (node , depth) :

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

8 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

i f node i s not l e a f :
indent = get indent f o r depth
f e a t u r e = t r e e . f e a t u r e [node]
th r e sho ld = t r e e . th r e sho ld [node]
r e turn (

’ indent ’ +
’ i f c lause ’ f o r g iven f e a t u r e and thre sho ld +
r e c u r s e (t r e e . c h i l d r e n l e f t [node] , depth + 1) +
’ ending i f c lause ’ +
opening o f ’ e l s e c lause ’ +
r e c u r s e (t r e e . c h i l d r e n r i g h t [node] , depth + 1) +
c l o s i n g o f ’ e l s e c lause ’)

e l s e :
r e s u l t = ’ most numerous c l a s s f o r l e a f ’
r e turn ’ indent ’ + r e s u l t

re turn r e c u r s e (0 , 1)

3.3 Neural Networks generator

For the purpose of the authors research and proving concept presented in the
article, one class of neural network algorithms has been examined - multilayer
perceptron (MLP) which is one of the less complicated neural network methods.
MLP aim is to learn the function f : IRN → IRM , where N is number of input
features and M is the number of output classes. The learning process of neural
network is out of scope of this paper, but understanding the model evaluation
process - execution of function f used in example - is essential to explain code
generation for MLP.

Equation (5) presents schema for function f execution. It consists of H + 1
consecutive layer transformations, where H is the number of hidden layers

and is the parameter of method, determined before training phase. Ith layer
transformation consists of the following steps:

1. linear transformation based on previous layer result multiplication by coef[i]
matrix;

2. addition of vector itc[i] to the result of previous step;
3. application of the activation function which introduces nonlinearity to

the method.

Initial vector for the first transformation is the vector of input features. Acti-
vation function for each layer apart from last one - for all hidden layers - is
ReLU function defined as in equation (7). Last layer is activated by application
of softmax function which enables interpreting last hidden layer result as the
probability distribution over set of output classes. Classified output class is the
one under index of maximum element in last transformation result vector. In

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 9

the schema described, elements learned during training phase are lists coef and
itc holding parameters for steps 1 and 2 of the layer transformation.

x0
x1
...
xN

T

coef [0]︸ ︷︷ ︸
N × p0

+ itc[0]︸ ︷︷ ︸
1 × p0

ReLU−−−→
act.

· · ·

a0
a1
...

aH−2

T

coef [H − 1]︸ ︷︷ ︸
pH−2 × pH−1

+ itc[H − 1]︸ ︷︷ ︸
1 × pH−1

ReLU−−−→
act.

︸ ︷︷ ︸
H transformations for each hidden layer

b0
b1
...
bN

T

coef [H]︸ ︷︷ ︸
pH−1 × M

+ itc[H]︸ ︷︷ ︸
1 × M

softmax−−−−−−→
activation

y0
y1
...
yM

T

argmax−−−−−→
k

yk

(5)

– H - number of hidden layers (indexed as 0...H-1)
– coef - matrix of coefficients used to transform layers to different sizes
– itc - intercepts matrix
– yk - result of classification

softmax(v)i =
evi∑K−1

j=0 evj
for i = 0, · · · ,K − 1; (6)

where: K - size of vector v

ReLU(x) = max(0, x) (7)

From the description above it follows that model evaluation code for trained
classifier could be implemented as a sequence of matrix operations on consecutive
layers. Code for generation algorithm is presented on listing 1.3.

Listing 1.3: Multiple layer network evaluator generation.

generate appropr ia t e headers
f o r i in l aye r count − 1 :

generate c o e f matrix f o r l a y e r i

f o r each hidden l a y e r :
generate l a y e r t rans fo rmat ion :

1 . d e c l a r a t i o n f o r new r e s u l t vec to r
2 . loop o f matrix m u l t i p l i c a t i o n
3 . generate ve c t o r s add i t i on sequence

generate ReLU a c t i v a t i o n on r e s u l t vec to r

generate l a y e r t rans fo rmat ion

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

10 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

generate softmax a c t i v a t i o n on r e s u l t vec to r

generate loop f o r max index search

3.4 Source code optimization for embedded processors

Resource constrained embedded microcontrollers (MCUs) may be equipped with
different microprocessor cores and peripheral sets. From a software engineer
point of view, the main difficulties in programming such MCUs are low com-
puting power and small amount of available memories: both operating and for
executable firmware storage. In typical MCUs, the non-volatile flash memory is
much larger in storage size then the operating memory, because the latter one
generates a higher production cost per storage unit.

The computational performance of resource-constrained embedded platforms
is generally low when compared to general-purpose application units. There are
only a few methods to increase the performance. For example, depending on
a software developers skills, the code can be manually optimized or partially
implemented in a low level language. That option may be difficult to imple-
ment in automated code generating software and the resulting code may not be
easily portable between different MCU architectures. A relatively easy way of
controlling a balance between code size and execution speed is to find a correct
optimization level. GNU C compilers (GCC) offer various standard optimization
levels. Below we list the selected ones.

– With O0 the optimization is disabled,
– With O1 the compiler tries to reduce the execution time and the output

code size.
– With O2 the compiler optimizes the code as much as possible without in-

troducing a trade-off between the execution time and the output code size.
– With O3 the compiler optimizes as in O2 with a set of additional flags.
– The Os is referred to as optimization for size. It makes the compiler optimize

the code similarly to O2 but without increasing the output code size.

Usually embedded microcontrollers may run a relatively simple scheduler or
a real-time operating system (RTOS), but do not run an application operat-
ing system. In those cases, the memory management relies partly on a software
developer. As an example, the AVR 8-bit MCU family has the Harvard architec-
ture in which program and data address spaces are separate. This makes it less
convenient to declare read-only variables stored in the microcontrollers program
memory. Therefore, the code generator should consider the target MCU architec-
ture. For example, when writing and compiling code for AVR MCUs, a variable
with the const modifier will be placed in the operating memory. In the case
of generating code for previously trained models, we often need a large num-
ber of constant values. Storing them in operating memory may quickly cause
a shortage of that resource. To store read-only data in the program memory
and to retrieve their values the software developer must use a special-purpose

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 11

macros which work as additional declaration modifiers or access functions, e.g.
PROGMEM or pgm read float near. That problem is non-existent in newer and
more advanced microcontrollers which implement a single and unified address
space. Those units do not need additional modifiers for objects in code to store
and retrieve them to and from the MCU non-volatile memory. Usually, thanks
to their more modern design, they are also equipped with more resources than
8-bit AVR.

4 Evaluation

In order to evaluate described code generation methods proposed in the paper,
authors have prepared use case demonstrating how trained model could be used
for classification on embedded device. The biggest the training set, the more
complex and time consuming learning phase is and therefore the advantage of
separating it from evaluation phase is the most evident.

For the evaluation purposes, two databases has been used. First one is the

mnist database of handwritten digits1 has been chosen. In order to re-
trieve dataset fetch mldata function from scikit-learn library has been used.
Dataset fetched this way consists of 70 000 samples, each being vector of length
784 representing one handwritten digit picture. Each picture has dimension of
28×28 pixels arranged in row-major order. After choosing and loading described
dataset, an instance of each classifier from section 3 has been created and trained
on the randomly chosen ninety percent of dataset. For each of them, source code
has been generated extracting model evaluation which has been used to classify
handwritten digits on touch screen attached to devices. For MLP classifier one
hidden layer with 15 neurons has been established.

Fig. 2: Digit recognition application for Arduino that uses generated source code of the
machine learning models for MNIST dataset

1 http://yann.lecun.com/exdb/mnist/ (access for 23 Feb 2018)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

12 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

As an additional dataset, for comparison purpose, the iris dataset has been
chosen which is much smaller than mnist one. The set contains of 150 samples
divided into three categories representing variations of iris flowers: setosa, vir-
ginica and versicolor. Input features of samples consists of five parameters of
iris flowers. Dataset has been divided into training and testing set similarly to
mnist - ninety percent assigned for the training and ten percent assigned for the
training. The exact same set of classifiers with parameters have been used for
this dataset as for the mnist.

Table 1 contains the size of pickled models from scikit-library for selected
classifiers. It is worth to notice, that to use that models, the appropriate Python
libraries are necessary thus the overall memory requirements are much larger.

The source code generators for machine learning models presented in the
paper has been implemented in Python2. Based on the aforementioned mod-
els learned for the selected databases appropriate source codes were generated.
Finally, the concept has been verified on two embedded platforms. First one, de-
picted in Fig.2 is based on Arduino Mega with ATmega2560 (8kB RAM, 256kB
flash) microcontroller and a simple touch screen display. The second platform
was STM32F4 Discovery board with ARM STM32F429 (256kB RAM, 512kB
flash) microcontroller. Table 1 contains the size of compiled source-code for the
learned models. For the Arduino platform, the Bayes model for mnist database
was too large to feet into the memory, thus was not evaluated. For the other
cases, the size of the memory footprint of the compiled classifiers was small
enough to fit in the microcontrollers memory.

Table 1: Size of the serialized scikit-learn model and the compiled source-code of the
classifier for the AVR and ARM processors

dataset method
size of models in bytes

score
scikit-learn AVR

ARM
O0 O1 O3 Os

iris

Bayes 771 2298 2352 2004 3440 2028 1.00
MLP 12247 2360 4768 4004 5184 3936 0.933

tree(float) 2501 272 592 512 16 480 0.933

mnist

Bayes 126164 — 190712 189980 190872 189956 0.556
MLP 292984 52000 54088 52444 54992 52280 0.919

tree
float 1051335 166476 158592 130336 132816 133200

0.874
integer 1051335 75776 72832 53264 55920 54768

5 Summary

In the paper we have presented the idea of how the machine learning models can
be executed on the embedded devices with constrained resources. This allows
2 https://github.com/tszydlo/FogML

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

Title Suppressed Due to Excessive Length 13

developers for example to embed sophisticated failure prediction ML models in
the home appliances such as toothbrushes, electric drills, kitchen mixers and
others increasing their smartness.

The concept presented in the paper can be extended. We are currently work-
ing on two problems. First one is related to the mechanisms of how to combine
incremental learning in the cloud from IoT sensors with automatic deployment of
the learned models to the devices located in the edge environments. The second
one is related to the development of the generator tools for Big Data ML such as
TensorFlow or Apache Flink. The latter one would give a greater applicability
and usefulness of the presented method.

Acknowledgment

The research presented in this paper was supported by the National Centre
for Research and Development (NCBiR) under Grant No. LIDER/15/0144 /L-
7/15/NCBR/2016.

References

1. Al-Fuqaha, A., Guizani, M., Mohammadi, M., Aledhari, M., Ayyash, M.: Internet
of things: A survey on enabling technologies, protocols, and applications. IEEE
Communications Surveys & Tutorials 17(4), 2347–2376 (2015)

2. Al-Jarrah, O.Y., Yoo, P.D., Muhaidat, S., Karagiannidis, G.K., Taha, K.: Efficient
Machine Learning for Big Data: A Review. Big Data Research 2(3), 87 – 93 (2015),
big Data, Analytics, and High-Performance Computing

3. Grossman, R.L., Bailey, S., Ramu, A., Malhi, B., Hallstrom, P., Pulleyn, I., Qin,
X.: The management and mining of multiple predictive models using the predictive
modeling markup language. Information & Software Technology 41(9), 589–595
(1999)

4. Gupta, C., Suggala, A.S., Goyal, A., Simhadri, H.V., Paranjape, B., Kumar, A.,
Goyal, S., Udupa, R., Varma, M., Jain, P.: ProtoNN: Compressed and Accurate
kNN for Resource-scarce Devices. In: International Conference on Machine Learn-
ing. pp. 1331–1340 (2017)

5. Kumar, A., Goyal, S., Varma, M.: Resource-efficient Machine Learning in 2 KB
RAM for the Internet of Things. In: International Conference on Machine Learning.
pp. 1935–1944 (2017)

6. Lane, N.D., Bhattacharya, S., Georgiev, P., Forlivesi, C., Kawsar, F.: Accelerated
Deep Learning Inference for Embedded and Wearable Devices using DeepX. In:
Proceedings of the 14th Annual International Conference on Mobile Systems, Ap-
plications, and Services Companion. pp. 109–109. ACM (2016)

7. Liu, C., Cao, Y., Luo, Y., Chen, G., Vokkarane, V., Ma, Y., Chen, S., Hou, P.: A
New Deep Learning-based Food Recognition System for Dietary Assessment on An
Edge Computing Service Infrastructure. IEEE Transactions on Services Computing
(2017)

8. Schulz, P., Matthe, M., Klessig, H., Simsek, M., Fettweis, G., Ansari, J., Ali Ashraf,
S., Almeroth, B., Voigt, J., Riedel, I., Puschmann, A., Mitschele-Thiel, A., Mller,
M., Elste, T., Windisch, M.: Latency Critical IoT Applications in 5G: Perspective

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

14 Tomasz Szydlo, Joanna Sendorek, and Robert Brzoza-Woch

on the Design of Radio Interface and Network Architecture. IEEE communication
Magazine (02 2017)

9. Shamili, A.S., Bauckhage, C., Alpcan, T.: Malware detection on mobile devices
using distributed machine learning. In: Pattern Recognition (ICPR), 2010 20th
International Conference on. pp. 4348–4351. IEEE (2010)

10. Szydlo, T., Brzoza-Woch, R., Sendorek, J., Windak, M., Gniady, C.: Flow-Based
Programming for IoT Leveraging Fog Computing. In: 2017 IEEE 26th International
Conference on Enabling Technologies: Infrastructure for Collaborative Enterprises
(WETICE). vol. 00, pp. 74–79 (June 2017)

11. Tran, T.X., Hosseini, M.P., Pompili, D.: Mobile edge computing: Recent efforts
and five key research directions. MMTC Communications-Frontiers 12(4), 29–34
(2017)

12. Yi, S., Li, C., Li, Q.: A survey of fog computing: concepts, applications and issues.
In: Proceedings of the 2015 Workshop on Mobile Big Data. pp. 37–42. ACM (2015)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_54

https://dx.doi.org/10.1007/978-3-319-93701-4_54

