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Abstract. As the mobile device gaining increasing popularity, Acous-
tic Speech Recognition on it is becoming a leading application. Unfor-
tunately, the limited battery and computational resources on a mobile
device highly restrict the potential of Speech Recognition systems, most
of which have to resort to a remote server for better performance. To
improve the performance of local Speech Recognition, we propose C-1-
G-2-Blstm. This model shares Convolutional Neural Network’s ability of
learning local feature and Recurrent Neural Network’s ability of learning
sequence data’s long dependence. Furthermore, by adopting the Gated
Convolutional Neural Network instead of a traditional CNN, we manage
to greatly improve the models capacity. Our tests demonstrate that C-1-
G-2-Blstm can achieve a high accuracy at 90.6% on the Google Speech
Commands data set, which is 6.4% higher than the state-of-art methods.

Keywords: Acoustic Speech Recognition - localize - Gated Convolu-
tional Neural Network - Long Short Time Memory

1 Introduction

With the fast advancement of intelligent devices such as robots and smart
phones, Acoustic Speech Recognition is becoming more and more popular in
human-machine interaction. Speech assistants such as Google Now, Apple Siri,
Microsoft Cortana are widely used around the world. To recognize the human
speech accurately, most of these systems use a Client-Server (C/S) structure,
where the speech recognition models with complex structure and high comput-
ing cost are put on cloud servers. The speech data is usually first collected on the
mobile devices, then sent to the remote server. After the speech is processed and
recognized, the result is then sent back to the mobile devices. Systems using this
C/S can achieve good performance, but faces the following limitations. First,

* This work was supported by National Natural Science Foundation of China
No0.61472434, Science and Technology on Parallel and Distributed Laboratoratory
Foundation No.9140C810109150C81002, National University of Defense Technology.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:
DOI] 10.1007/978-3-319-93701-4_53 |



https://dx.doi.org/10.1007/978-3-319-93701-4_53

2 Dong Wang®™, Shaohe Lv, Xiaodong Wang, and Xinye Lin

they depend heavily on a stable Internet connection, without which the system
can’t work. Second, sending data to a remote server introduces risks of privacy
leak[3]. To circumvent these limitations, a speech recognition system that works
completely locally is much in demand.

In practice, a few local speech recognition systems are already in deployment.
For example, “Google Now” uses a local system to recognize a simple "OK
Google” comamnd to wake up the main service. However, due to the limitation
of hardware resources, mobile devices can only run relatively simple models,
which have limited recognition capabilities. Therefore, most current local speech
recognition systems only serve as a wake-up watchdog for more powerful online
speech recognition services.

In order to improve the accuracy of local speech recognition systems, we
design a deep neural network model based on Gated CNN (Convolutional Neural
Network) and RNN (Recurrent Neural Network). The model combines CNN’s
ability of learning local features and RNN’s ability of learning the long-distance
dependence features of sequential data. Our experiements show that the model
achieves a high accuracy of 90.6% on the Google Speech commands dataset,
outperforming the state-of-art work by 6.2%.

Our contribution is two-fold.

— First, we design an efficient model wich combines CNN and RNN. Compared
with the existing CNN + RNN work[2, 23], our model uses fewer layers and
a simpler neural network structure while achieving much higher recognition
accuracy.

— Our model adopts the Gated CNN network structure. Compared with con-
ventional CNN, Gated CNN uses self-attention-like operations and more
nonlinear transformations, which effectively enhance the model’s ability of
selecting important features.

2 Related Work

CNN is originally designed for image identification, classification, etc. Since Le-
Cun sucessfully trained a multi-layer net using CNN in LeNet[10], Deep Nerual
Nets based on CNN achieve great success in image related tasks[6,9, 15, 16]. By
adopting the local receptive field, weight sharing, sub-sampling and other tech-
nologies, CNN is very robust with the translation and transformation in the
data. It also has a strong ability to learn data’s local patterns. These features
make CNN a great tool in speech processing and natural language processing as
well.

As a structure for handling time-sequence data, RNN focuses too much on
the last input signals, and suffers from gradient explosion and the vanishing
problem. As a result, RNN usually does not work well at its early stage. The
proposal of Long-Short Time Memory (LSTM)[8] provides a good solution for
these problems and greatly improves RNN’s ability of learning long distance
dependence. Benefited from LSTM, Gated Recurrent Unit (GRU)[4] and other
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structures, RNN has achieved a great breakthrough in natural language process-
ing, translation and speech recognition.

In recent years, lots of works are using neural net to fulfill the speech pro-
cessing task. Google Now[3] uses a fully connected Deep Neural Network (DNN)
model to recognize the wake-up command “ok google”. Compared with the Key-
Word/Filter Hidden Markov Model, which is commonly used in existing Key-
word Spotting system, this DNN model achieves 39% performance improvement.
However, fully connected DNN ignores the structural patterns of the input data.
No matter in what order is the input data organized, the fully connected DNN
model will reach the same performance in the end, This will cause problems for
speech recognition as the context of speech heavily relies on the speech data’s
structual feature in both the time and frequency domain. Besides, fully connect-
ed DNN methods cannot handle the translation invariance in the data. Different
speakers or speaking styles can cause the formats translating in frequency do-
main, hence can hardly be processed with a fully connected DNN. Although
theoretically full connected DNN can be trained with translation invariance, it
requires lots of training data[14].

CNN’s success in image domain demonstrates its ability to fix the disadvan-
tages of fully connected DNN’s. Inspired by this, CNN is more and more used in
speech recognition[1, 5,7, 22,19]. [14] designs a CNN-based neural model, which
achieves better recognition results than [3] while reducing the model’s scale. [11]
uses the CNN neural model and transfer learning, combined with Dilated Kernels
for Multi-scale Inputs[21] to recognize speech commands. It builds a 121-layer
neural net, pre-trains it on the UrbanSound8K dataset and achieves an accuracy
of 84.35% on the Google Speech Commands dataset[20]. On the same data set,
[17] designs a 15-layer deep residual net[6] combined with Dilated Kernels for
Multi-scale Inputs. In the task of recognizing 12 commands selected from all 30
in Google Speech Commands, the model achieves an accuracy of 95.8%.

Although CNN outperforms fully connected DNN greatly in terms of recogni-
tion performance, it also has some disadvantages. The features learned by CNN
are just local. Its scope is limited by the filter’s shape and CNN’s layer number,
hence the features cannot cover the entire speech on either the time or frequency
domain. To make the featurse cover a larger scope, the model has to be much
deeper. Relatively, RNN shows much better performance in learning long dis-
tance dependence of sequential data. [2] proposes a CRNN neural model with 32
CNN layers and 1 RNN layer. Combining CNN’s ability of learning local features
and RNN’s ability of learning long distance dependence, the CRNN neural mod-
el achieves an accuracy of 97.7% for detecting the occurrence of “TalkType”. To
solve the task of translating speech to text, [23] designs a 15-layer neural model
based on ConvLSTM (one kind of LSTM which merges CNN inside) and CNN,
in combination with many other technologies such as network-in-network, batch
normalization, and residual connection. The model achieves a word error rate of
10.5% on the WSJ ASR dataset. However, all these models combining CNN and
RNN have the problem of being too deep and complex.
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Based on these work and aimed at improving the accuracy of local speech
commands recognition, we propose a Gated Convolutional Recurrent Neural
Network model. This model combines the advantages of Gated CNN and RNN
networks and ultimately achieves a recognition accuracy of 90.6% on the Google
Speech Commands dataset.

3 Model Design

Fig. 1 shows the basic structure of the proposed model, referred to as C-1-
G-2-Blstm. The main part of the model is a multi-layer Gated CNN network
connected with a bi-directional RNN network.

The model outputs the probabilities of the input speech being each com-
mand. For each speech, the input data firstly passes through a conventional
two-dimensional convolution to increase feature maps, and then passes through
multi-layer Gated CNN to extract local features on different scope scales. Af-
ter local feature extraction, the model uses a bi-directional RNN to learn long
distance dependence and obtains feature vector of the input speech. Finally,
according to the feature vector, the model gives the prediction.

command

’ Full Connect + softmax ‘

Bi-LSTM

Conv2d

MFCCs

Fig. 1. Model Structure

3.1 Speech Preprocessing

For every speech fragment, its corresponding input to the model is the Mel-
Frequency Cepstrum Coefficient (MFCC). In our test, we extract the MFCC
with a frame window of 128 milliseconds, a frame offset of 31.25 milliseconds,
and 20 filters. Finally, for each speech fragment, we get ¢ MFCC frames with
f = 20 dimensions, where ¢ depends on the speech’s duration.
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3.2 CNN Net

CNN has shown a huge advantage in learning the data’s local feature. Its suc-
cessful application in image field inspired us that CNN can also be used to learn
speech’s time-local feature.

A nice feature of CNN is: as the number of CNN layer increases, the up-
per layer can have a larger receptive field, thereby extracting the feature of a
larger local scope. Therefore, multi-layer CNN networks can help to analyze the
speech’s features at different scales.

The input of the CNN part is the MFCC frames x, where 2 € R?***/. Most
of the existing work treat MFCC as a two-dimension feature map with shape
t x f. Instead, in this paper we treat MFCC as f feature maps with dimension of
1 x t. This better coresponds to MFCC’s physical meaning: different frequencies
are different features. F € R™*"*"X" denotes the kernel of two-dimensional
convolution, where m and n denote the kernel’s height and width, & denotes
the number of input feature maps, and r denotes the number of output feature
maps.

Conv2d. The first layer in our CNN part is a conventional 2-dimension convo-
lution. In this layer the parameters are: m = 1,h = ¢ and r > f. Using these
parameters has the following effects. First, with a m X n convolution in time
domain, this layer can learn feature in local time. Second, h = f makes different
frequencies treated as different feature map. Third, by set r» > f, this layer can
recombine frequencies and produce more feature maps.

Gated CNN. The second and third CNN layer use Gated Convolution to
further learn the local feature of the speech.

Gated convolutional layer is proposed in [12], its structure is shown in Fig. 2.
Equtation (1) gives the definition of Gated Convolution, which is inspired by the
multiplication gate in LSTM.

|

’ convld ‘ ’ convld ‘

Fig. 2. Gated CNN
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y = tanh(Fy xx) © o(F, * x) (1)

In (1),  is the convolution operation, o is the sigmoid operation, ® denotes
multiplication between corresponding elements, and FY, F; are the convolution
kernels of two convolutions respectively.

Compared with conventional CNN, Gated Convolution introduces more non-
linear operations and multiplication, which can improve the model’s learning and
expressing capacity. In addition, Self-Attention [18] is also obtained by multi-
plying the corresponding elements of tanh and o.

3.3 RNN Net

CNN network can learn local features in different time periods. However, as
time-series signal, speech’s characteristics and contents are heavily related to its
time order. The same local features appear at different time may have different
meanings. This time-related feature can not be learned through CNN or full
connected layer.

The successful application of RNN in natural language processing demon-
strates its advantages in learning sequence features and long-range dependencies.
Some work[1, 5] have recently applied RNN in speech recognition with a large
vocabulary. In order to characterize the timing feature of the speech, we connect
an Bi-directional LSTM network after CNN net. Fig. 3 shows the RNN network
diagram.

Y1 [ye+2 | [e+3 |

AW,

[oena]  [oe]  [ours]

Fig. 3. RNN structure

For the RNN model, the critical point is how to establish the link between the
previous information and the current state. As a classic RNN structure, LSTM
performs the following steps on the input data. First, calculate the forgotten
gate (2), the input gate (3), and the input information (4), second, update the
hidden state (5), then the output gate (6), and finally calculate the current step’s
output according to the output gate and the hidden state (7).

fe=0(Wy - [hea, 2] + by) (2)
ip =0 (Wi - [he1, 2] 4 by) (3)
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C; = tanh(W, - [hy-1, 4] + be) (4)
Cy=fi ©Cia +it®6t (5)
or = (W - [hi-1, 4] + bo) (6)
ht = o; © tanh(C}) (7)

4 Experiments and Analysis

4.1 Dataset

In this paper we use the Google Speech Commands dataset. This dataset was
released by Google in August 2017. It includes 65,000 speech data, covering
thousands of people reading 30 commands, as well as some background noises.
Most of these speech audios are mono, and last for a second, with a sampling
rate of 16KHz, sampling resolution of 16bit. The division of training, validation
and test set is shown in Tab. 1.

Table 1. Statistics of Google Speech Commands

Set Train Valid Test
Scale 51,088 6,798 6,835

4.2 Experiment settings

To analyze the model from different aspects such as CNN network structure,
network depth, the combination of CNN and RNN, and compare it with exist-
ing work, we design a variety of models with different structures and conduct
extensive experiments. These models are as follows.

— C-p-G-@-Blstm/FullConnect: The model consists of p conventional 2-dimension
CNN, ¢ Gated CNN and a bidirectional LSTM (or fully connected layer).
By adjusting the values of p, ¢, and choosing Blstm or FullConnect, we build
a variety of different models for speech commands recognition.

— Transfer Learning Network [11]: This model pre-trains a 121-layer net on
the UrbanSound8K dataset, and then transfers to recognize Google Speech
Commands dataset.

In our experiments, each model is trained for specified epochs (it is found
that most models can converge to their best performance in 100 epochs) on
the training set, then select the best-performing model for evaluation. In order
to accurately evaluate the model’s performance and eliminate the influence of
random factors, the experiment of each model is repeated 10 times. The average
of these 10 results is taken as the final evaluation criterion.

For the model Transfer Learning Network, we use the result in [11] instead
of reproducing it ourselves.
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4.3 Experiment Results

Impact of Gated CNN’s Depth. To explore the impact of Gated CNN’s
depth on speech recognition results, by using different number of Gated CNN
layers(which means setting different value for ¢) in model C-p-G-q-Blstm, we get
model C-1-G-2-Blstm, C-1-G-5-Blstm, C-1-G-7-Blstm, C-1-G-9-Blstm, C-1-G-
10-Blstm, C-1-G-20-Blstm, C-1-G-50-Blstm. Table 2 gives the final recognition
accuracy of these models.

Table 2. The impact of Gated CNN’s Depth

model Valid Accuracy(%) Test Accuracy(%)
C-1-G-2-Blstm 90.9 90.6
C-1-G-5-Blstm 90.4 90.0
C-1-G-7-Blstm 89.7 89.5
C-1-G-9-Blstm 88.7 88.2
C-1-G-10-Blstm 88.2 87.9
C-1-G-20-Blstm diverge diverge
C-1-G-50-Blstm diverge diverge

Valid Accuracy and Test Accuracy represent the best model’s recognition
accuracy on the validation set and test set. Experiment results in Table 2 show
that, for the Google Speech Commands dataset, deeper Gated CNN network
does not necessarily have a better recognition performance. We can see that as
the number of Gated CNN layer increases, the model’s recognition performance
firstly increases and then decreases, and when it reaches a certern number, the
model does not converge.

This phenomenon may be caused by the limited amount of the data. A net
with too many layers is too large and have too many parameters, which make
it difficult to train the net effectively, so it can not achieve good results, or even
fails to converge.

Experiment results show that the model C-1-G-2-Blstm with 2-layer Gated
CNN achieves the best performance. In the follow-up experiments, this paper
will use the model C-1-G-2-Blstm as the evaluation benchmark.

Impact of Gated Convolution. To analyze Gated CNN’s help for speech
commands recognition, we replace the Gated CNN in model C-1-G-2-Blstm,
C-1-G-5-Blstm, C-1-G-7-Blstm with conventional CNN, getting models C-3-G-
0-Blstm, C-6-G-0-Blstm, C-8-G-0-Blstm. Table 3 gives the comparison between
the results of models before and after the replacement. From the results we can
conclude that compared with the conventional CNN, Gated CNN can efficiently
improve the model’s prediction accuracy.
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Table 3. the impact of Gated CNN

model Valid Accuracy(%) Test Accuracy(%)
C-1-G-2-Blstm 90.9 90.6
C-3-G-0-Blstm 87.2 87.2
C-1-G-5-Blstm 90.4 90.0
C-6-G-0-Blstm 86.9 86.7
C-1-G-7-Blstm 89.7 89.5
C-8-G-0-Blstm 83.5 83.2

Impact of CNN and RNN. To evaluate whether the combination of CNN
and RNN could perform better than just CNN or just RNN, based on the model
C-1-G-2-Blstm, we design another two models:

— C-0-G-0-Blstm: delete the CNN structure in C-1-G-2-Blstm, just keep the
RNN structure.

— C-1-G-2-FullConnect: keep the CNN structure in C-1-G-2-Blstm, but replace
the RNN structure with full connected layer.

Table 4 gives these models’ experiment results. From the table we can see
that, compared with the model C-1-G-2-Blstm which combines CNN and RNN,
just using CNN or RNN results in a drastical decrease in recognition accuracy.
Therefore, we can get the conclusion that combining the advantage of CNN and
RNN is greatly helpful for speech command recognition.

Table 4. Comparison of CNN and RNNs Impact

model Valid Accuracy(%) Test Accuracy(%)
C-1-G-2-Blstm 90.9 90.6
C-0-G-0-Blstm 62.5 61.6
C-1-G-2-FullConnect 81.3 81.1

Comparison with Existing Works. In this paper we design two experi-
ments to compare with Transfer Learning Network [11], which is the state-of-art
work. Firstly, we compare the C-1-G-2-Blstm and Transfer Learning Network’s
recognition accuracy on all 30 commands in Google Speech Commands dataset.
Results are shown in the second column of Table 5. Secondly, we re-train a
new C-1-G-2-Blstm on the 20 commands selected in [11], and compare it with
Transfer Learning Network. Results are shown in the third column of Table 5.
From the results we can see that C-1-G-2-Blstm greatly outperforms Transfer
Learning Network, both on all 30 commands and on the selected 20 commands.
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Table 5. Comparison between C-1-G-2-Blstm and Transfer Learning Network

model Test Accuracy_30(%) Test Accuracy_20(%)
C-1-G-2-Blstm 90.6 90.6
Transfer Learning 84.4 82.1

Recognition Performance on Every Single Command. Table 6 gives C-
1-G-2-Blstm’s recognition accuracy on every command. The accuracy decreases
from left up to right down in turn. The command “happy” has the highest recog-
nition accuracy of 97.2%, while the command “no” has the lowest recognition
accuracy of 84.1%.

Table 6. Recognition Accuracy of Every Command

Comm® Acc®(%) Comm Acc(%) Comm Acc(%)
happy 97.2 five 92.6 bed 90.3
sheila 96.2 two 92.4 one 90.3

six 94.7 off 92.3 wow  90.2
house  94.7 marvin 91.4 dog 894
nine 94.2 up 91.2 bird 89.0
seven 94.1 stop 91.1 three 88.0
cat 94.0 right  91.1 g0 86.9
eight 93.8 four 90.9 tree 85.5
left 93.6 on 90.7 down 85.3
yes 93.4 Z€ero 90.4 no 84.1
#is abbreviation for “command”.
Pis abbreviation for “accuracy”.

After analyzing all the 30 commands we can find that the command “happy”
is special and different from other commands in pronunciation, so it’s recognition
accuracy is the highest. There are 7 commands whose recognition accuracy is
below 90%: “dog”, “bird”, “three”, “go”, “tree”, “down”, “no”. These commands
are easy to be confused with the others. For example, “bird” is similar with “bed”
in pronunciation. Main faults during recognizing these seven commands are given
in Table 7.

For these 7 commands, we select everyone’s most likely wrong recognition and
fault probability. The first row in table 7 gives the groundtruth label, the first
column gives the model’s recognized label, the values represent the probability.

Take the second column as an example. It shows the distribution of fault
recognition for command “no”. From this column we can see that when mis-
takingly recognized, “no” is mistaken for “go” with a probability of 40%, and
mistaken for “down” with a probability of 20%. In fact, “no”, “go” and “down”
do have similarities in pronunciation.
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Table 7. tab:Main Faults in Recognition

no go down tree three bird dog

no - 39.4 459 - - - 211

go 40.0 - 243 - 31 59 15.8

down 20.0 15.2 - - - 59 36.8
tree - - - - 53.1 - -
eight - 30 - 71 12,5 - -
right - 3.0 - - - 353 -
bed 50 - 54- - - 11.8 -
three - - 2.7 78.6 - - 53
two - 121 2.7 14.3 6.2 - -

From table 7 we can conclude that for those commands with low recognition
accuracy, it’s mainly because they are similar with some other commands in
pronunciation, making it more difficult to distinguish them. This phenomenon
shows us a new direction for future work: developing methods to distinguish
similar speech commands.

4.4 Model FootPrint

Most models that combine CNN and RNN have a problem of being too deep
and complex. For example, [2] proposes a CRNN neural model with 32 CNN
layers and 1 RNN layer, [23] designs a 15-layer neural model that contains 8
CNN layers and 7 ConvLSTM (one kind of LSTM which merges CNN inside)
layers. Comparing with these work, our C-1-G-2-Blstm only uses 3 CNN layers
and 1 LSTM layers, greatly reducing the model’s complexity. Parameters and
multiplications used for the C-1-G-2-Blstm is shown in table 8.

Table 8. Parameters and multiplications used for the C-1-G-2-Blstm

layer m n h r | Par. | Mult.
Conv2d 1 5 20 64(6.25K]| 200K
Gated-Conv2d| 1 5 64 64| 40K |1282K
Gated-Conv2d| 1 5 64 64| 40K |1282K
Bi-LSTM 1 64 - - |64.5K|2060K
FC 128 30 - - |3.78K|3.75K

In our experiments, every training epoch takes 15 seconds, while every testing
epoch takes 0.9 seconds. Considering that the test set contains 6,835 samples,
C-1-G-2-Blstm can recognize about 7,000 commands per second.

Based on our C-1-G-2-Blstm we build an apk for android cellphones. To build
the apk file, we first use TensorFlow’s tool to freeze our computing graph into a
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pb file, which is only 911kb. Then we build an android apk which use the frozen
graph to perform speech commands recognition, the apk is only 22M.

5 Summary and Future Works

For the task of speech command recognition on mobile device, this paper designs
a model C-1-G-2-Blstm based on Gated CNN and bidirectional LSTM. This
model uses CNN to learn the speech’s local features, RNN to learn sequence long-
distance dependence features, and Gated CNN to improve the model’ capacity.
Compared with existing work based on CNN and RNN, our model uses fewer
layers and simpler net structure. Finally C-1-G-2-Blstm achieves an accuracy
of 90.6% on the Google Speech Commands dataset, outperforming the existing
state-of-art work by 6.4%.

One of our future work is to further improve the model’s recognition perfor-
mance. [13] points out that the preprocessing methods of speech data, the usage
of batch normalization and other technologies such as dilated convolution will
affect the model’s performance. We are going to conduct experiments on more
datasets to evaluate these factors’ impact. On the other hand, because speech
recognition especially wakeup-word recognition is seriously limited by local hard-
ware resources, it is also a very important development direction to explore how
to minimize the model size and computational complexity while ensuring the
recognition accuracy.
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