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Abstract. An effective nature disaster early warning system often relies 
on widely deployed sensors, simulation based predicting components, 
and a decision making system. In many cases, the simulation components 
require advanced infrastructures such as Cloud for performing the com-
puting tasks. However, effectively customizing the virtualized infrastruc-
ture from Cloud based time critical constraints and locations of the sen-
sors, and scaling it based on dynamic loads of the computation at runtime 
is still difficult. The suitability of a Dynamic Real-time Infrastructure 
Planner (DRIP) that handles the provisioning within cloud environments 
of the virtual infrastructure for time-critical applications is demonstrated 
with respect to disaster early warning systems. The DRIP system is part 
of the SWITCH project (Software Workbench for Interactive, Time Crit-
ical and Highly self-adaptive Cloud applications). 
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1 Introduction 

An elastic early warning system enables people and authorities to save lives and prop-
erty in case of disasters. In case of floods, a warning issued with enough time before 
the event will allow for reservoir operators to gradually reduce water levels, people to 
reinforce their homes, hospitals be prepared to receive more patients, authorities to pre-
pare and provide help [3-5]. An early warning system often collects data from sensors, 
processes the information using tools such as predictive simulation, and provides warn-
ing services or interactive facilities for the public to obtain more information [1].  

Depending on factors like the spatial and temporal scale of a specific environmental 
degradation, early warning systems are often highly distributed [8-10]. An ideal disaster 
early warning system needs to minimize prevention costs and increase prevention effi-
ciency in case of flood and other possible disaster events. But there is a trade-off be-
tween timeliness, warning reliability, the cost of a false alert, and damage avoided as a 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51


2 

function of lead time, which must be modelled to determine the cost efficiency of the 
outcome [6,7]. 
 In this paper we focus on supporting disaster early warning systems using Cloud, 
and specifically highlight the challenges of customizing, provisioning, and runtime 
managing virtual infrastructure based on the time critical constraints from early warn-
ing systems. The research is performed in the context of EU H2020 SWITCH project. 
An automated infrastructure planning and provisioning tool called Dynamic Real-time 
infrastructure planner (DRIP) will be presented. In the rest of the paper, we will first 
discuss the requirement challenges of the an early warning system, and then present the 
basic architecture of DRIP. After that a use case is used to demonstrate the current 
implementation.  

2 Early warning systems and challenges 

2.1 A use case of early warning system  

The essential structure of any early warning systems depends on the objectives of the 
system to provide important, timely information on specific phenomena to end-users 
and decision-makers, thereby enabling effective response [6].  

 

 
Fig. 1. Functional diagram for elastic early warning system 
 
Fig. 1 presents a typical use case scenario. Sensors in the field transmit information to 
the IP Gateway. This gateway transmits the data collected to the database server. The 
notification server (Interactive Voice Response + Contact Center) periodically checks 
the data from the database, and, if they exceed certain values set, then on different com-
munications channels, notifications are sent to an available operator that is scheduled 
to process the event. The operator checks statistics data received from sensors and trans-
mits the decision whether or not to alert Unique National System for Emergency Calls 
(112). 

2.2 Requirements and problems 

The implementation of this kind of system faces several challenges, as the system must:  
1. collect and process the sensor data in nearly real time; 
2. detect and respond to urgent events very rapidly (i.e. this is a time-critical sce-

nario); 
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3. predict the potential increase of load on the warning system when public users 
(customers) increase; 

4. operate reliably and robustly throughout its life time; 
5. be scalable when the deployment of sensors increases. 
The development of such applications is usually difficult and costly, because of the 
high requirements for the runtime environment, and in particular the sophisticated op-
timisation mechanisms needed for developing and integrating the system components. 
In the meantime, a Cloud environment provides virtualised, elastic, controllable and 
quality on demand services for supporting systems like time critical applications. How-
ever, the engineering method and software tools for developing, deploying and execut-
ing classical time critical applications have not yet included the programmability and 
controllability provided by the Clouds; and the time critical applications cannot yet get 
the full potential benefits which Cloud technologies could provide. 

It is still an open question whether disaster early warning systems, like the one out-
lined above, are suited to run in one or more private or public cloud environments. To 
deploy and control such time-critical systems asks for a workbench of dedicated tools 
each having its well defined task. 

2.3 Time critical challenges 

Laplante and Ovaska [11] define a real-time system as "a computer system that must 
satisfy bounded response-time constraints or risk severe consequences". The actual na-
ture of individual response-time constraints varies. For example, often time constraints 
imposed on the acquisition, processing and publishing of real-time observations, not 
least in scenarios such as weather prediction or disaster early warning [12]. The ability 
to handle such scenarios is predicated on the time needed for customisation of the 
runtime environment and the scheduling of workflows [13, 23], while the steering of 
applications during complex experiments is also temporally bounded [14]. Time con-
straints are imposed on the scheduling and execution of tasks that require high perfor-
mance or high throughput computing (HPC/HTC), on the customisation, reservation 
and provisioning of suitable infrastructure, on the monitoring of runtime application 
and infrastructure behaviour, and on runtime controls.  

Disaster early systems we are concerned with often have multiple overlapping re-
sponse-time constraints on different parts of the application workflow. Note that our 
concern of “time critical” constraints is not only with executing applications as quickly 
as possible, but also with ensuring stable performance within strict boundaries in the 
most cost-effective manner feasible (where ‘cost’, particularly in private Clouds, might 
be measured in terms of metrics other than money, such as energy consumption). 
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3 Dynamic real-time infrastructure planner 

The Dynamic Real-time Infrastructure Planner (DRIP) is a system developed in the 
SWITCH project for the planning, validation and provisioning of the virtual infrastruc-
ture enlisted to support an application with time critical constraints. It is part of the 
SWITCH workbench, which includes two other subsystems i) GUI for composing, ex-
ecuting and managing applications, namely The SWITCH Interactive Development En-
vironment (SIDE), and ii) a runtime monitoring and adaptation sub system, namely The 
Autonomous System Adaptation Platform (ASAP) [22]. 

3.1 Architecture and components 

The  key features are modelled as a number of micro services, which are coupled via 
message brokers of DRIP manager. It provide a unified interface for clients such as 
SIDE or ASAP, as shown in Fig. 2.  

 
Fig. 2. DRIP implementation architecture. 
 

1. The infrastructure planner uses an adapted partial critical path algorithm to pro-
duce efficient infrastructure topologies based on application workflows and con-
straints by selecting cost-effective virtual machines, customising the network to-
pology among VMs, and placing network controllers for the networked VMs. 

2. The performance modeller allows for testing of different cloud resources against 
different kinds of application component in order to provide performance data for 
use by the infrastructure planner and other components inside and outside of DRIP. 

3. The infrastructure provisioner can automate the provisioning of infrastructure 
plans produced by the planner onto underlying infrastructure services. The provi-
sioner can decompose the infrastructure description and provision it across multi-
ple data centres (possibly from different providers) with transparent network con-
figuration. 

4. The deployment agent installs application components onto provisioned infra-
structure. The deployment agent is able to schedule based on network bottlenecks, 
and maximize the satisfaction of deployment deadlines. 
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5. The infrastructure control agents are a set of APIs that DRIP provides to appli-
cations to control the scaling containers or VMs and for adapting network flows. 
They provide access to the underlying programmability provided by the virtual 
infrastructures, e.g., horizontal and vertical scaling of virtual machines, by provid-
ing interfaces by which the infrastructure hosting an application can be dynami-
cally manipulated at runtime. 

6. The DRIP manager is implemented as a web service that allows DRIP functions 
to be invoked by outside clients as services. Each request is directed to the appro-
priate component by the manager, which is responsible for coordinating the indi-
vidual components and scaling them if necessary. The manager also maintains a 
database containing user accounts. 

7. The communication between the manager and the individual components is facili-
tated by a message broker. Message brokering is an architectural pattern for mes-
sage validation, transformation and routing, helping compose asynchronous, 
loosely coupled applications by providing transparent communication to independ-
ent components. 

8. Resource information, credentials, and application workflows are all internally 
managed via a knowledge base. It maintains the descriptions of the cloud provid-
ers, resource types, performance characteristics, and other relevant information. 
The knowledge base also provides an interface for these agents to look up provid-
ers, resources and runtime status data during the execution of an application. 

Fig. 3 depicts how those micro services interact.  

 
Fig. 3. Sequence diagram describing how DRIP plans and provisions virtual infrastructure and 
how it deploys software. 

3.2 Current prototype  

The prototype of DRIP is based on industrial and community standards. The infrastruc-
ture planner is currently specified in YAML (formerly ‘Yet Another Markup Lan-
guage’ but now ‘YAML Ain’t a Markup Language’) in compliance with the Topology 

:DripManager

:MessageBroker

:Planner

:Provisioner :CloudProvider

:User :KnowledgeBase :DeploymentAgent

upload(tosca:file):string

plan(tosca_UID:string):string

save_tosca(tosca:file):string

provision(plan_UID:string):string

deploy(provision_UID:string,
config_UI:string):string

read(UID:string):file

send(message:string, queue:string):file plan(tosca:file):file

save(plan:file):string

read(UID:string):file

send(message:string, queue:string):file provision(plan_file:file):file request_resources(resource_list:list)

read(UID:string):file

send(message:string, queue:string):file deploy_software(software_description:description, vm_description:list)
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and Orchestration Specification for Cloud Applications (TOSCA)1. The infrastructure 
provisioner uses the Open Cloud Computing Interface (OCCI)2 as its default provision-
ing interface, and currently supports the Amazon EC23, European Grid Initiative (EGI) 
FedCloud4 and ExoGeni5 Clouds. The deployment agent can deploy overlay Docker 
clusters using Docker Swarm or Kubernetes6. It may also deploy any type of customised 
distributed application based on Ansible playbooks7. The infrastructure control agents 
are set of API that DRIP provides to applications to control the infrastructure for scaling 
containers or VMs and adapting network flows. The manager provides a RESTful in-
terface. DRIP uses the Advanced Message Queuing Protocol (AMQP) and RabbitMQ 
as its message broker where each process of each component is represented by a sepa-
rate queue; this scalable architecture allows DRIP to be extended with additional com-
ponents (e.g. planners) in order to handle larger workflows (e.g. in the case of a single 
DRIP service being provided to a large organisation for several applications).  

The DRIP components are made available as open source under the Apache License 
Version 2.0; the software has been containerised and can be provisioned and deployed 
on federated virtual infrastructures within minimal configuration. They can be obtained 
either via the SWITCH release repository at https://github.com/switch-project or di-
rectly via the DRIP development repository at https://github.com/QCAPI-DRIP. 

4 Experiments and performance characteristics 

We will demonstrate how DRIP enhances the disaster early warning use case discussed 
in section 2.  

As the first step, the application logic should be modelled as a Direct Acyclic Graph 
(DAG) with annotation of deadlines. Fig. 4 depicts the DAG of the scenario in Fig. 1. 
It will then be used as input for DRIP to automate the planning, provisioning, deploy-
ment of the application. In the early warning system workflow, 3 different deadlines 
can be defined as shown in Fig. 4. As the early warning system workflow is a service, 
the individual deadlines can be interpreted as deadlines in case data of a disaster is 
transmitted by the sensors in the field. 

The planner in the DRIP system uses a ‘compress-relax’ Multi dEadline workflow  
Planning Algorithm (MEPA) method to assign each task in the workflow to the best 
performing VM possible such that multiple deadlines are met, as shown in Fig. 5. To 
find the best combination of assignments to nodes that fulfil all deadlines a Genetic 
Algorithm based Planning Algorithm is applied. The effectiveness of this approach is 
compared to a modification of the IC_PCP algorithm, Abrishami et al. [15] that allows 
IC-PCP to deal with multiple deadlines. Wang et al., 2017 [17] demonstrated the per-

                                                        
1 https://www.oasis-open.org/committees/tosca/ 
2 http://occi-wg.org/ 
3 https://aws.amazon.com/cn/ec2 
4 https://www.egi.eu/federation/egi-federated-cloud/ 
5 http://www.exogeni.net/ 
6 https://kubernetes.io/ 
7 https://www.ansible.com/  
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formance of both approaches for task graphs generated by the GGen package [16] ap-
plying the ‘fan-in/fan-out’ methods, showing that the MEPA method can successfully 
cope with these kind of problems and allows for an easy adaptation in case more con-
straints play a role.  

 

 
Fig. 4. Example of an abstract early warning system workflow with multiple deadlines. Global 
deadline d1, and two intermediate deadlines d2 and d3 imposed on simulation and disaster assess-
ment respectively. 

 
Fig. 5. Example of deadline-aware planning by DRIP. The blue nodes represent the workflow, 

with the critical path outlined. For each parallel group of nodes, the earliest/latest start/finish 
times can be extracted. 

Planning heavily depends on the Performance modeler of the DRIP subsystem to 
collect performance information of cloud resources. It schedules on a regular basis 
one or more benchmark scenarios for different cloud providers. Information on CPU, 
memory, disk and network I/O are collected for different VMs offered by a cloud pro-
vider. The systematic collection and sharing of such information will allow the DRIP 
planner to select the most suitable resources for mission-critical applications. Elzinga 
et al. [19] showed the functionality of this collector using the ExoGENI infrastructure 
platform. 

Once the planner is finished, the provision agent provides a flexible inter-locale 
Cloud infrastructure provisioning mechanism to satisfy time-critical requirements. It 
is able to provision a networked infrastructure, recover from sudden failures quickly, 
and scale across data centers or Clouds automatically [20, 24]. This Cloud engine is 
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able to set up a networked virtual Cloud across even public Clouds which do not ex-
plicitly support network topology, like EC2 or EGI FedCloud. For fast failure recov-
ery the interplay of two agents, the provisioning agent and the monitoring agent. 
When some data center is down or inaccessible, a probe previously installed on the 
node can detect this. The monitoring agent can then invoke the provisioning agent to 
perform recovery. This is of importance in case sensors are geographically separated 
and data collections occurs in different cloud locations. The provisioning engine just 
needs to provision the specific part of the application hosted on the failed infrastruc-
ture. As the infrastructure description is already partitioned, it is easy for the agent to 
provision the same topology in another data center. Primary tests have been per-
formed using the ExoGENI infrastructure platform; an example scenario is shown in 
Fig. 6. 

 
Fig. 6. Fast failure recovery. 

Finally, the deployment agent provide a deadline aware deployment scheduling  for 
time-critical applications in clouds comes into action, which accounts for deadlines on 
the actual deployment time of application components [21]. This is of special im-
portance after fast failure recovery.  

After the those steps, the application can be in operation for early warning, as 
shown in Fig. 7. 

 
Fig. 7. The GUI of the use case prototyped using Grafanai. 

5 Summary 

In this paper, we discussed the infrastructure challenges for meeting the time critical 
constraints for disaster early warning systems, and present a software suite called Dy-
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namic Real-time Infrastructure Planner to automate the procedure for planning, provi-
sioning and deploying early warning systems based on their time constraints. In the 
paper, the time critical constraints are not only referring to the as fast as possible but 
also to the deadlines that application has to meet.  

There exist similar cloud engines for automating infrastructure provisioning such as 
Chef8, also cloud job scheduling work based on IC_PCP algorithms [15]. However, 
compared to those existing work, DRIP shows the following unique features: 1) inte-
grate infrastructure customization, provisioning and deployment into one service, to 
seamlessly bridge the gap between application and infrastructure, 2) time critical con-
straints are taken care of by different procedures.  

We demonstrated the usage of DRIP in a specific type of application like early warn-
ing system; however, the purpose of DRIP meant to be generic. It has been used in 
several other use cases such as business collaboration, live event broadcast, and big 
data infrastructure.  

One of the important future work will be further improve the optimization algorithm 
across the three steps of planning, provisioning and deployment.  
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