
Dynamic real-time infrastructure planning and
deployment for disaster early warning systems

Huan Zhou1, Arie Taal1, Spiros Koulouzis1, Junchao Wang1, Yang Hu1,

George Suciu Jr. 2, Vlad Poenaru2, Cees de Laat1, Zhiming Zhao1[0000-0002-6717-9418]

1 University of Amsterdam, 1098XH, Amsterdam, the Netherlands
{h.zhou|a.taal|j.wang2|y.hu|delaat|z.zhao}@uva.nl

2 BEIA consultant, Romania
{george.suciu|vlad.poenaru}@beia.ro

Abstract. An effective nature disaster early warning system often relies
on widely deployed sensors, simulation based predicting components,
and a decision making system. In many cases, the simulation components
require advanced infrastructures such as Cloud for performing the com-
puting tasks. However, effectively customizing the virtualized infrastruc-
ture from Cloud based time critical constraints and locations of the sen-
sors, and scaling it based on dynamic loads of the computation at runtime
is still difficult. The suitability of a Dynamic Real-time Infrastructure
Planner (DRIP) that handles the provisioning within cloud environments
of the virtual infrastructure for time-critical applications is demonstrated
with respect to disaster early warning systems. The DRIP system is part
of the SWITCH project (Software Workbench for Interactive, Time Crit-
ical and Highly self-adaptive Cloud applications).

Keywords: Cloud, disaster early warning, time critical systems.

1 Introduction

An elastic early warning system enables people and authorities to save lives and prop-
erty in case of disasters. In case of floods, a warning issued with enough time before
the event will allow for reservoir operators to gradually reduce water levels, people to
reinforce their homes, hospitals be prepared to receive more patients, authorities to pre-
pare and provide help [3-5]. An early warning system often collects data from sensors,
processes the information using tools such as predictive simulation, and provides warn-
ing services or interactive facilities for the public to obtain more information [1].

Depending on factors like the spatial and temporal scale of a specific environmental
degradation, early warning systems are often highly distributed [8-10]. An ideal disaster
early warning system needs to minimize prevention costs and increase prevention effi-
ciency in case of flood and other possible disaster events. But there is a trade-off be-
tween timeliness, warning reliability, the cost of a false alert, and damage avoided as a

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

2

function of lead time, which must be modelled to determine the cost efficiency of the
outcome [6,7].
 In this paper we focus on supporting disaster early warning systems using Cloud,
and specifically highlight the challenges of customizing, provisioning, and runtime
managing virtual infrastructure based on the time critical constraints from early warn-
ing systems. The research is performed in the context of EU H2020 SWITCH project.
An automated infrastructure planning and provisioning tool called Dynamic Real-time
infrastructure planner (DRIP) will be presented. In the rest of the paper, we will first
discuss the requirement challenges of the an early warning system, and then present the
basic architecture of DRIP. After that a use case is used to demonstrate the current
implementation.

2 Early warning systems and challenges

2.1 A use case of early warning system

The essential structure of any early warning systems depends on the objectives of the
system to provide important, timely information on specific phenomena to end-users
and decision-makers, thereby enabling effective response [6].

Fig. 1. Functional diagram for elastic early warning system

Fig. 1 presents a typical use case scenario. Sensors in the field transmit information to
the IP Gateway. This gateway transmits the data collected to the database server. The
notification server (Interactive Voice Response + Contact Center) periodically checks
the data from the database, and, if they exceed certain values set, then on different com-
munications channels, notifications are sent to an available operator that is scheduled
to process the event. The operator checks statistics data received from sensors and trans-
mits the decision whether or not to alert Unique National System for Emergency Calls
(112).

2.2 Requirements and problems

The implementation of this kind of system faces several challenges, as the system must:
1. collect and process the sensor data in nearly real time;
2. detect and respond to urgent events very rapidly (i.e. this is a time-critical sce-

nario);

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

3

3. predict the potential increase of load on the warning system when public users
(customers) increase;

4. operate reliably and robustly throughout its life time;
5. be scalable when the deployment of sensors increases.
The development of such applications is usually difficult and costly, because of the
high requirements for the runtime environment, and in particular the sophisticated op-
timisation mechanisms needed for developing and integrating the system components.
In the meantime, a Cloud environment provides virtualised, elastic, controllable and
quality on demand services for supporting systems like time critical applications. How-
ever, the engineering method and software tools for developing, deploying and execut-
ing classical time critical applications have not yet included the programmability and
controllability provided by the Clouds; and the time critical applications cannot yet get
the full potential benefits which Cloud technologies could provide.

It is still an open question whether disaster early warning systems, like the one out-
lined above, are suited to run in one or more private or public cloud environments. To
deploy and control such time-critical systems asks for a workbench of dedicated tools
each having its well defined task.

2.3 Time critical challenges

Laplante and Ovaska [11] define a real-time system as "a computer system that must
satisfy bounded response-time constraints or risk severe consequences". The actual na-
ture of individual response-time constraints varies. For example, often time constraints
imposed on the acquisition, processing and publishing of real-time observations, not
least in scenarios such as weather prediction or disaster early warning [12]. The ability
to handle such scenarios is predicated on the time needed for customisation of the
runtime environment and the scheduling of workflows [13, 23], while the steering of
applications during complex experiments is also temporally bounded [14]. Time con-
straints are imposed on the scheduling and execution of tasks that require high perfor-
mance or high throughput computing (HPC/HTC), on the customisation, reservation
and provisioning of suitable infrastructure, on the monitoring of runtime application
and infrastructure behaviour, and on runtime controls.

Disaster early systems we are concerned with often have multiple overlapping re-
sponse-time constraints on different parts of the application workflow. Note that our
concern of “time critical” constraints is not only with executing applications as quickly
as possible, but also with ensuring stable performance within strict boundaries in the
most cost-effective manner feasible (where ‘cost’, particularly in private Clouds, might
be measured in terms of metrics other than money, such as energy consumption).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

4

3 Dynamic real-time infrastructure planner

The Dynamic Real-time Infrastructure Planner (DRIP) is a system developed in the
SWITCH project for the planning, validation and provisioning of the virtual infrastruc-
ture enlisted to support an application with time critical constraints. It is part of the
SWITCH workbench, which includes two other subsystems i) GUI for composing, ex-
ecuting and managing applications, namely The SWITCH Interactive Development En-
vironment (SIDE), and ii) a runtime monitoring and adaptation sub system, namely The
Autonomous System Adaptation Platform (ASAP) [22].

3.1 Architecture and components

The key features are modelled as a number of micro services, which are coupled via
message brokers of DRIP manager. It provide a unified interface for clients such as
SIDE or ASAP, as shown in Fig. 2.

Fig. 2. DRIP implementation architecture.

1. The infrastructure planner uses an adapted partial critical path algorithm to pro-
duce efficient infrastructure topologies based on application workflows and con-
straints by selecting cost-effective virtual machines, customising the network to-
pology among VMs, and placing network controllers for the networked VMs.

2. The performance modeller allows for testing of different cloud resources against
different kinds of application component in order to provide performance data for
use by the infrastructure planner and other components inside and outside of DRIP.

3. The infrastructure provisioner can automate the provisioning of infrastructure
plans produced by the planner onto underlying infrastructure services. The provi-
sioner can decompose the infrastructure description and provision it across multi-
ple data centres (possibly from different providers) with transparent network con-
figuration.

4. The deployment agent installs application components onto provisioned infra-
structure. The deployment agent is able to schedule based on network bottlenecks,
and maximize the satisfaction of deployment deadlines.

27	27	

Clients	
(SIDE/ASAP	or	others)	

Restful interface

DRIP
Knowledge

base

Planner Provisioner	 Deployment	
agent	

Message	broker	

Q
ue

ue
	

Q
ue

ue
	

Q
ue

ue
	

DRIP	manager	

Q
ue

ue
	

Performance
modeller

Q
ue

ue
	

Cloud	

Control
agents

Control
agents

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

5

5. The infrastructure control agents are a set of APIs that DRIP provides to appli-
cations to control the scaling containers or VMs and for adapting network flows.
They provide access to the underlying programmability provided by the virtual
infrastructures, e.g., horizontal and vertical scaling of virtual machines, by provid-
ing interfaces by which the infrastructure hosting an application can be dynami-
cally manipulated at runtime.

6. The DRIP manager is implemented as a web service that allows DRIP functions
to be invoked by outside clients as services. Each request is directed to the appro-
priate component by the manager, which is responsible for coordinating the indi-
vidual components and scaling them if necessary. The manager also maintains a
database containing user accounts.

7. The communication between the manager and the individual components is facili-
tated by a message broker. Message brokering is an architectural pattern for mes-
sage validation, transformation and routing, helping compose asynchronous,
loosely coupled applications by providing transparent communication to independ-
ent components.

8. Resource information, credentials, and application workflows are all internally
managed via a knowledge base. It maintains the descriptions of the cloud provid-
ers, resource types, performance characteristics, and other relevant information.
The knowledge base also provides an interface for these agents to look up provid-
ers, resources and runtime status data during the execution of an application.

Fig. 3 depicts how those micro services interact.

Fig. 3. Sequence diagram describing how DRIP plans and provisions virtual infrastructure and
how it deploys software.

3.2 Current prototype

The prototype of DRIP is based on industrial and community standards. The infrastruc-
ture planner is currently specified in YAML (formerly ‘Yet Another Markup Lan-
guage’ but now ‘YAML Ain’t a Markup Language’) in compliance with the Topology

:DripManager

:MessageBroker

:Planner

:Provisioner :CloudProvider

:User :KnowledgeBase :DeploymentAgent

upload(tosca:file):string

plan(tosca_UID:string):string

save_tosca(tosca:file):string

provision(plan_UID:string):string

deploy(provision_UID:string,
config_UI:string):string

read(UID:string):file

send(message:string, queue:string):file plan(tosca:file):file

save(plan:file):string

read(UID:string):file

send(message:string, queue:string):file provision(plan_file:file):file request_resources(resource_list:list)

read(UID:string):file

send(message:string, queue:string):file deploy_software(software_description:description, vm_description:list)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

6

and Orchestration Specification for Cloud Applications (TOSCA)1. The infrastructure
provisioner uses the Open Cloud Computing Interface (OCCI)2 as its default provision-
ing interface, and currently supports the Amazon EC23, European Grid Initiative (EGI)
FedCloud4 and ExoGeni5 Clouds. The deployment agent can deploy overlay Docker
clusters using Docker Swarm or Kubernetes6. It may also deploy any type of customised
distributed application based on Ansible playbooks7. The infrastructure control agents
are set of API that DRIP provides to applications to control the infrastructure for scaling
containers or VMs and adapting network flows. The manager provides a RESTful in-
terface. DRIP uses the Advanced Message Queuing Protocol (AMQP) and RabbitMQ
as its message broker where each process of each component is represented by a sepa-
rate queue; this scalable architecture allows DRIP to be extended with additional com-
ponents (e.g. planners) in order to handle larger workflows (e.g. in the case of a single
DRIP service being provided to a large organisation for several applications).

The DRIP components are made available as open source under the Apache License
Version 2.0; the software has been containerised and can be provisioned and deployed
on federated virtual infrastructures within minimal configuration. They can be obtained
either via the SWITCH release repository at https://github.com/switch-project or di-
rectly via the DRIP development repository at https://github.com/QCAPI-DRIP.

4 Experiments and performance characteristics

We will demonstrate how DRIP enhances the disaster early warning use case discussed
in section 2.

As the first step, the application logic should be modelled as a Direct Acyclic Graph
(DAG) with annotation of deadlines. Fig. 4 depicts the DAG of the scenario in Fig. 1.
It will then be used as input for DRIP to automate the planning, provisioning, deploy-
ment of the application. In the early warning system workflow, 3 different deadlines
can be defined as shown in Fig. 4. As the early warning system workflow is a service,
the individual deadlines can be interpreted as deadlines in case data of a disaster is
transmitted by the sensors in the field.

The planner in the DRIP system uses a ‘compress-relax’ Multi dEadline workflow
Planning Algorithm (MEPA) method to assign each task in the workflow to the best
performing VM possible such that multiple deadlines are met, as shown in Fig. 5. To
find the best combination of assignments to nodes that fulfil all deadlines a Genetic
Algorithm based Planning Algorithm is applied. The effectiveness of this approach is
compared to a modification of the IC_PCP algorithm, Abrishami et al. [15] that allows
IC-PCP to deal with multiple deadlines. Wang et al., 2017 [17] demonstrated the per-

1 https://www.oasis-open.org/committees/tosca/
2 http://occi-wg.org/
3 https://aws.amazon.com/cn/ec2
4 https://www.egi.eu/federation/egi-federated-cloud/
5 http://www.exogeni.net/
6 https://kubernetes.io/
7 https://www.ansible.com/

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

7

formance of both approaches for task graphs generated by the GGen package [16] ap-
plying the ‘fan-in/fan-out’ methods, showing that the MEPA method can successfully
cope with these kind of problems and allows for an easy adaptation in case more con-
straints play a role.

Fig. 4. Example of an abstract early warning system workflow with multiple deadlines. Global
deadline d1, and two intermediate deadlines d2 and d3 imposed on simulation and disaster assess-
ment respectively.

Fig. 5. Example of deadline-aware planning by DRIP. The blue nodes represent the workflow,

with the critical path outlined. For each parallel group of nodes, the earliest/latest start/finish
times can be extracted.

Planning heavily depends on the Performance modeler of the DRIP subsystem to
collect performance information of cloud resources. It schedules on a regular basis
one or more benchmark scenarios for different cloud providers. Information on CPU,
memory, disk and network I/O are collected for different VMs offered by a cloud pro-
vider. The systematic collection and sharing of such information will allow the DRIP
planner to select the most suitable resources for mission-critical applications. Elzinga
et al. [19] showed the functionality of this collector using the ExoGENI infrastructure
platform.

Once the planner is finished, the provision agent provides a flexible inter-locale
Cloud infrastructure provisioning mechanism to satisfy time-critical requirements. It
is able to provision a networked infrastructure, recover from sudden failures quickly,
and scale across data centers or Clouds automatically [20, 24]. This Cloud engine is

S	
E	

a1	

a2	

a3	

b1	

b2	

b3	

p1	

p2	

p3	

d	

w	

c	

0	 EFTa1	

LSTa1	 LFTa1	

ESTb1	 EFTb1	
LSTb1	 LFTb1	

Earliest	Start	Time	(EST)	 Earliest	Finish	Time	(EFT)	

Latest	Start	Time	(LST)	 Latest	Finish	Time	(LFT)	

Cri;cal	path:	nodei	(ESTi=LSTi	and	EFTi=LFTi)	

ESTc	 EFTc	
LSTc	 LFTd	

ESTp1	 EFTp1	
LSTp1	 LFTp1	

ESTe	 EFTe	
LSTe	 LFTe	

ESTd	 EFTd	
LSTd	 LFTd	

0	 0	
0	 0	

Deadline=	Td1	
Deadline=	Td2	

Deadline=	Td	

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

8

able to set up a networked virtual Cloud across even public Clouds which do not ex-
plicitly support network topology, like EC2 or EGI FedCloud. For fast failure recov-
ery the interplay of two agents, the provisioning agent and the monitoring agent.
When some data center is down or inaccessible, a probe previously installed on the
node can detect this. The monitoring agent can then invoke the provisioning agent to
perform recovery. This is of importance in case sensors are geographically separated
and data collections occurs in different cloud locations. The provisioning engine just
needs to provision the specific part of the application hosted on the failed infrastruc-
ture. As the infrastructure description is already partitioned, it is easy for the agent to
provision the same topology in another data center. Primary tests have been per-
formed using the ExoGENI infrastructure platform; an example scenario is shown in
Fig. 6.

Fig. 6. Fast failure recovery.

Finally, the deployment agent provide a deadline aware deployment scheduling for
time-critical applications in clouds comes into action, which accounts for deadlines on
the actual deployment time of application components [21]. This is of special im-
portance after fast failure recovery.

After the those steps, the application can be in operation for early warning, as
shown in Fig. 7.

Fig. 7. The GUI of the use case prototyped using Grafanai.

5 Summary

In this paper, we discussed the infrastructure challenges for meeting the time critical
constraints for disaster early warning systems, and present a software suite called Dy-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

9

namic Real-time Infrastructure Planner to automate the procedure for planning, provi-
sioning and deploying early warning systems based on their time constraints. In the
paper, the time critical constraints are not only referring to the as fast as possible but
also to the deadlines that application has to meet.

There exist similar cloud engines for automating infrastructure provisioning such as
Chef8, also cloud job scheduling work based on IC_PCP algorithms [15]. However,
compared to those existing work, DRIP shows the following unique features: 1) inte-
grate infrastructure customization, provisioning and deployment into one service, to
seamlessly bridge the gap between application and infrastructure, 2) time critical con-
straints are taken care of by different procedures.

We demonstrated the usage of DRIP in a specific type of application like early warn-
ing system; however, the purpose of DRIP meant to be generic. It has been used in
several other use cases such as business collaboration, live event broadcast, and big
data infrastructure.

One of the important future work will be further improve the optimization algorithm
across the three steps of planning, provisioning and deployment.
Acknowledgement
This research has received funding from the European Union’s Horizon 2020 research
and innovation program under grant agreements 643963 (SWITCH project), 654182
(ENVRIPLUS project) and 676247 (VRE4EIC project).

References.
1. George Suciu, Victor Suciu, Cristina Butca, Ciprian Dobre and Florin Pop. Elastic disaster

early warning system using a cloud-based communication center. Proceedings of the 13th
IEEE Int’l Conf. on Intelligent Computer Communication and Processing (2017).

2. Zhiming Zhao, Paul Martin, Junchao Wang, Ari Taal, Andrew Jones, IanTaylor, Vlado
Stankovski, Ignacio Garcia Vega, George Suciu, Alexandre Ulisses, Ceesde Laat, Develop-
ing and operating time critical applications in clouds: the state of the art and the SWITCH
approach, In the proceedings of HOLACONF - Cloud Forward: From Distributed to Com-
plete Computing, Elsevier, Procedia Computer Science, Vol (68) page (17-28) (2015)

3. Zschau J, Küppers AN, editors. Early warning systems for natural disaster reduction.
Springer Science & Business Media; (2013)

4. Glade T, Nadim F. Early warning systems for natural hazards and risks. Natural Hazards.
70(3), pp. 1669; (2014).

5. De Groot, William J., and Michael D. Flannigan. Climate change and early warning sys-
tems for wildland fire. In Reducing Disaster: Early Warning Systems for Climate Change,
pp. 127-151. Springer Netherlands, (2014).

6. Horita, F. E., Joaõ Porto de Albuquerque, Victor Marchezini, and Eduardo M. Mendiondo.
A qualitative analysis of the early warning process in disaster management. In Proceedings
of the ISCRAM2016 Conference–Rio de Janeiro, Brazil, (2016).

7. Cools, Jan, Demetrio Innocenti, and Sarah O’Brien. Lessons from flood early warning sys-
tems. Environmental Science & Policy 58, pp. 117-122, (2016).

8. Alhmoudi, A., and Z. U. H. Aziz. “Integrated framework for early warning system in
UAE.” International Journal of Disaster Resilience in the Built Environment, (2016).

9. Arcorace, Mauro, Francesco Silvestro, Roberto Rudari, Giorgio Boni, Luca Dell'Oro, and
Einar Bjorgo. Forecast-based Integrated Flood Detection System for Emergency Response

8 https://www.chef.io/chef/

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

10

and Disaster Risk Reduction (Flood-FINDER). In EGU General Assembly Conference
Abstracts, vol. 18, p. 8770, (2016).

10. Udo, Job, and Nicole Jungermann. Early Warning System Ghana: how to successfully im-
plement a disaster early warning system in a data scarce region. In EGU General Assem-
bly Conference Abstracts, vol. 18, p. 12819, (2016).

11. P. A. Laplante, and S. J. Ovaska. Real-time systems design and analysis: tools for the
practitioner. John Wiley and Sons. (2011)

12. S. Poslad, S. E. Middleton, F. Chaves, R. Tao, O. Necmioglu, and U. Bügel. A semantic
IoT early warning system for natural environment crisis management. IEEE Transactions
on Emerging Topics in Computing, 3(2), 246-257 (2015).

13. Zhiming Zhao, Paola Grosso, Jeron van der Ham, Ralph Koning, and Cees de Laat. An
agent based network resource planner for workflow applications. Multiagent and Grid
Systems, 7(6), 187-202. (2011).

14. Kieran Evans, Andrew Jones, Alun Preece, Francisco Quevedo, David Rogers, Irena
Spasić, Ian Taylor, Vlado Stankovski, Salman Taherizadeh, Jernej Trnkoczy, George
Suciu, Victor Suciu, Paul Martin, Junchao Wang, Zhiming Zhao. Dynamically reconfigu-
rable workflows for time-critical applictions. In Proceedings of the 10th Workshop on
Workflows in Support of Large-Scale Science (p. 7). ACM. (2015).

15. S. Abrishami, M. Naghibzadeh, and D. Epema. Deadline-constrained work- flow schedul-
ing algorithms for infrastructure as a service clouds. Future Generation Computer Sys-
tems, 29(1):158–169, (2013).

16. D. Cordeiro, G. Mounié, S. Perarnau, D. Trystram, J. M. Vincent, and F. Wagner. Random
graph generation for scheduling simulations. In Proceedings of the 3rd international ICST
conference on simulation tools and techniques (p. 60). ICST (Institute for Computer Sci-
ences, Social-Informatics and Telecommunications Engineering). (2010).

17. Junchao Wang, Arie Taal, Paul Martin, Yang Hu, Huan Zhou, Jianming Pang, Cees de
Laat, and Zhiming Zhao, Planning virtual infrastructures for time critical applications with
multiple deadline constraints, Future Generation Computer Systems, (2017).

18. Junchao Wang, Cees de Laat, and Zhiming Zhao, Qos-aware virtual SDN network plan-
ning, in Proceedings of IFIP/IEEE International Symposium on Integrated Network Man-
agement. IEEE, (2017).

19. Olaf Elzinga, Spiros Koulouzis, Arie Taal, Junchao Wang, Yang Hu, Huan Zhou, Paul
Martin, Cees de Laat, Zhiming Zhao, Automatic collector for dynamic cloud performance
information, in Proceedings of 12th International Conference on Networking, Architec-
ture, and Storage (2017).

20. Huan Zhou, Junchao Wang, Yang Hu, Jinshu Su, Paul Martin, Cees De Laat, Zhiming
Zhao, Fast Resource Co-provisioning for Time Critical Application Based on Networked
Infrastructure, IEEE International Conference on CLOUD, San Francisco US (2016).

21. Yang Hu, Junchao Wang, Huan Zhou, Paul Martin, Arie Taal, Cees De Laat, and Zhiming
Zhao, Deadline-aware deployment for time critical applications in clouds, in 2017 Interna-
tional European Conference on Parallel and Distributed Computing, (2017).

22. Zhiming Zhao, Arie Taal, Andrew Jones, Ian Taylor, Vlado Stankovski, Ignacio Garcia
Vega, Francisco Jesus Hidalgo, George Suciu, Alexandre Ulisses, Pedro Ferreira, Cees de
Laat, A software workbench for interactive, time critical and highly self-adaptive cloud ap-
plications (SWITCH), In the proceedings of IEEE CCGrid (2015)

23. Zhiming Zhao, Dick van Albada, Peter Sloot. Agent-based flow control for HLA compo-
nents. International Journal of Simulation Transaction. 81(7), 487-501. (2005).

24. Huan Zhou, Yang Hu, Junchao Wang, Paul Martin, Cees De Laat, Zhiming Zhao, Fast and
Dynamic Resource Provisioning for Quality Critical Cloud Applications, IEEE International
Symposium On Real-time Computing (ISORC), York UK, (2016).

iGRAFANA: The open platform for beautiful analytics and monitoring: https://grafana.com/

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_51

https://dx.doi.org/10.1007/978-3-319-93701-4_51

