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Abstract 

The paper presents a computational framework for assessing quantitatively the 

detection capability of structural health monitoring (SHM) systems for flat plates. The 

detection capability is quantified using the probability of detection (POD) metric, 

developed within the area of nondestructive testing, which accounts for the variability of 

the uncertain system parameters and describes the detection accuracy using confidence 

bounds. SHM provides the capability of continuously monitoring the structural integrity 

using multiple sensors placed sensibly on the structure. It is important that the SHM can 

reliably and accurately detect damage when it occurs. The proposed computational 

framework models the structural behavior of flat plate using a spring-mass system with a 

lumped mass at each sensor location. The quantity of interest is the degree of damage of 

the plate, which is defined in this work as the difference in the strain field of a damaged 

plate with respect to the strain field of the healthy plate. The computational framework 

determines the POD based on the degree of damage of the plate for a given loading 

condition. The proposed approach is demonstrated on a numerical example of a flat plate 

with two sides fixed and a load acting normal to the surface. The POD is estimated for 

two uncertain parameters, the plate thickness and the modulus of elasticity of the material, 

and a damage located in one spot of the plate. The results show that the POD is close to 

zero for small loads, but increases quickly with increasing loads. 
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1 Introduction 

Structural health monitoring (SHM) is used for the diagnosis and localization of damage existing in 

large-scale infrastructures (Laflamme, et al., 2010, 2013). The increased utilization and insufficient 

maintenance of these infrastructures usually lead to high risks associated with their failures (Karbhhari, 

2009; Harms et al., 2010). Due to the expensive costs on repairs, timely inspection and maintenance are 

essential in improving health and ensuring safety of civil infrastructures (Brownjohn, 2007), in turn to 

lengthen the sustainability. 

Probability of detection (POD) (Sarkar et al, 1998) was developed to provide a quantitative 

assessment of the detection capability of nondestructive testing (NDT) systems (Blitz et al., 1996; Mix, 

2005). POD can be used for various purposes, for example, it can be used to demonstrate compliance 

with standard requirements for inspection qualification, such as “90% POD with 95% confidence”. It 

can also be used as input to probabilistic safety assessment (Spitzer et al., 2004; Chapman et al., 1999) 

and risk-based inspection (RBI) (Zhang et al., 2017; DET NORSKE VERITAS, 2009). Because of these 

wide applications, POD is selected as an important metric in many industrial areas to detect defects or 

flaws, such as cracks inside parts or structures during manufacturing or for products in service. 

Traditional POD determination relies on experimental information (Generazio, 2008; Bozorgnia et al., 

2014). However, experiments can be time-consuming and expensive. 

To reduce the experimental information needed for determining the POD, model-assisted probability 

of detection (MAPOD) methods have been developed (Thompson et al., 2009). MAPOD has been 

successfully applied to various NDT systems and modalities, such as eddy current simulations (Aldrin, 

et al., 2009), ultrasonic testing simulations (Smith, et al., 2007), and SHM models (Aldrin et al., 2010, 

2011). Due to the economic benefits of MAPOD in the SHM area, several approaches have been 

developed, such as the uniformed approach (Thompson, 2008), advanced numerical simulations (Buethe 

et al., 2016; Aldrin et al., 2016; Lindgren, et al., 2009), and have applied those on guided wave models 

(Jarmer et al., 2015; Memmolo, et al., 2016). 

In this paper, a MAPOD framework for SHM of flat plates is proposed. The approach determines 

the POD of damage of flat plates based on the loading and the degree of damage, which depends on the 

change in strain field of the damaged plate relative to the healthy one. The structural behavior is modeled 

with a simple spring-mass system to estimate the strain field. To demonstrate the effectiveness of the 

proposed framework, a flat plate with fixed ends and a normal load, as well as one damaged location is 

investigated. The uncertain parameters used in the study are plate thickness and the material modulus 

of elasticity. The results show that the framework can determine the POD as a function of the load and 

the degree of damage. 

This paper is organized as follows. Next section describes the SHM structural model. Section 3 

outlines the MAPOD framework used in this work. Section 4 presents results of a numerical example 

on the plate model. The paper ends with conclusion and plans of future work. 

2 Structural Health Monitoring Model 

SHM techniques use arrays of large-area electronics measuring strain to detect local faults. In 

Downey et al. (2017), a fully integrated dense sensor network (DSN) for the real-time SHM of wind 

turbine blades was proposed and experimentally validated on a prototype skin. The sensor, called soft 

elastomeric capacitor (SEC), is customizable in shape and size. The SEC’s unique attribute is its 

capability to measure additive in-plane strain. It follows that the signal needs to be decomposed into 

orthogonal directions in order to obtained unidirectional strain maps. The SEC based sensing skin is 

illustrated in Fig. 1, with the sketch Fig. 1a showing an individual SEC, and Fig. 1b showing the fully 

integrated DSN system. 
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(a)       (b) 

Figure 1: Conceptual layout of a fully integrated SEC-based sensing skin for a wind turbine blade: (a) SEC with 

connectors and annotated axis; (b) deployment inside a wind turbine blade (Downey et al., 2017). 

 

Inspired by the completed experimental work and SEC, a simulation model, developed as a matrix 

of discrete mass and stiffness elements, was constructed linking the strain to exist condition of the 

structures. A spring-mass system is used to represent the system being monitored, with a lumped mass 

at each sensor location. This model is based on the stiffness relationship between force vector F and 

measured displacement vector U. The additive strain is related to displacement by a transformation 

matrix D. Then, a static strain error function was defined to find the stiffness K by taking the difference 

between the predicted additive strain and field additive strain measurements. 

Mindlin plate theory is used in this work to implement the plate model. In particular, the plate is 

divided by rectangular elements with SEC in the center for computational efficiency. On each element, 

the displacements in each node parallel to the undeformed middle plane, u and v, as a distance z from 

the centroidal axis can be expressed by 
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where 
x and 

y  are the rotations of the normal to the middle plane with respect to axes y and x, 

respectively as illustrated in Fig. 2. 

In this work, a fixed-ends plate is tested under a SHM system, containing 40 sensors, as shown in 

Fig. 3. Red regions represent the boundaries, which are fixed, so they are not considered in calculation. 

Cells containing blue numbers have sensors set up at centers, and strain field within the same cell is 

assumed to be uniform. Black numbers are computational nodes, where the calculation of strain is made. 

  

Figure 2:Free-body diagram of a flat plate showing the stress distributions. 
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Figure 3: SHM system setup. 

  
(a)     (b) 

Figure 4: Contours of deflection of the healthy plate for a force of 1 N. 

 

The red circle at node # 33 shows the location where the load is applied, pointing normal to the plate. 

The green cell, #30, will be used to add artificial damage at its center. Contours of the deflection field 

contours for a healthy plate are shown in Fig. 4. 

3 MAPOD Framework 

POD is essentially the quantification of inspection capability starting from the distributions of 

variability, and describes its accuracy with confidence bounds, also known as uncertain bounds (Spall, 

1997). In many cases, the final product of a POD curve is the flaw size, a, for which there is a 90% 

probability of detection. This flaw size is denoted a90. The 95% upper confidence bound on a90 is denoted 

as a90/95. The POD is typically determined through experiments which are both time-consuming and 

costly. This motivated the development of the MAPOD methods with the aim for reducing the number 

of experimental sample points by introducing insights physics-based simulations (Thompson et al., 

2009). 

 

30 
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The main elements of the proposed MAPOD framework is shown in Fig. 5. The process starts by 

defining the random inputs with specific statistical distributions (Fig. 5a). Next, the random inputs are 

propagated through the simulation model (Fig. 5b). For this step of the process, we use latin hypercube 

sampling (LHS) (Haddad, 2013) to obtain identically independent samples from the input parameter 

distributions. 

In this work, the simulation model is calculated using an analytical model (described in Sect. 2), to 

obtain the quantity of interest (Fig. 5c). In this work, the quantity of interest is the sum of the difference 

between current strain field and mean of healthy-plate strain field, in other words we are interested in 

(S  S*) where S is the current strain field and is the mean of the healthy plate strain field. 

The stiffness and strain within each cell are assumed to be the same in the structural model. 

Therefore, to describe the damage of the cells, we introduce a reduction parameter, α, ranging between 

0 and 1. If the reduction parameter is equal to 1 there is no damage, while a value of 0 indicates total 

damage. We also introduce a parameter representing the degree of damage as γ = 1 – α (which ranges 

between 0 and 1). Values close to 1 indicate high degree of damage, and values close to 0 indicate low 

degree of damage. 

The next step in the MAPOD process is to construct the so-called “𝑎̂ vs. 𝑎” plot (Fig. 5d) by drawing 

from the samples obtained in the last step and using linear regression to plot the quantity of interest ((S 

 S*)) versus the degree of damage (γ). With this information, the POD at each degree of damage is 

determined and the POD curves are generated (Fig. 5e). 

 

 

 
                                (d)                       (e)    

 

Figure 5: Overview of model-assisted probability of detection for structural health monitoring: (a) probabilistic 

inputs, (b) simulation model, (c) response (strain field in this work), (d) “𝑎̂ vs. a” plot, (e) POD curves. 

  

(a)             (b)         (c) 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_49

https://dx.doi.org/10.1007/978-3-319-93701-4_49


 

 

4 Results 

In this study, two random input parameters are considered, the thickness of the plate and the modulus 

of elasticity. The thickness distribution is assumed to have an uniform distribution of U(1.3mm, 

1.35mm) and the modulus of elasticity is assumed to have a Gaussian distribution of N(7e4, 1e3). The 

distributions are shown in Fig. 6. The distributions are sampled one hundred times using latin hypercube 

sampling (LHS) (see Fig. 7). The LHS samples are propagated through the structural model with a force 

of F = 1N without any damage. The mean strain field of those runs, μS*, is shown Fig. 8. This term is 

used as a reference vector, and POD curves can be generated through comparing the sum of the 

difference between this mean strain field and current strain field with detection threshold of system. 

 

 
(a)                  (b) 

Figure 6: Statistical distribution on uncertainty parameters: (a) thickness of plate; (b) modulus of elasticty. 

 

 

  
(a)             (b) 

Figure 7: Latin hyper cube (LHS) sampling: (a) thickness of plate; (b) elastic modulus. 
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(a)                                    (b) 

Figure 8: Mean strain field of healthy plate: (a) F = 1N; (b) F = 4N. 

 

To determine the POD of the SHM system the following computational experiments are performed 

using the proposed MAPOD framework (Fig. 5). An artificial damage is introduced by parametrically 

varying the degree of damage parameter at cell number 30 (see Fig. 3), γ30, with the values of 0.1, 0.3, 

0.5, 0.7, and 0.9. In each case, we take 1,000 LHS samples and propagate them through structural model 

to obtain the output strain fields. From those results, we take the sum of the difference between each of 

those strain fields and the mean strain field of the healthy plate. With the “𝑎̂ vs. 𝑎” plots generated, we 

set the detection threshold as 0.85 and determine the POD curves. The process is repeated for loads, F, 

ranging from low to medium to high. In this case, we use values of F of 0.1 N, 1 N, and 4 N. 

The results of the MAPOD analysis giving the POD curves for the SHM system as a function of the 

load F and the degree of damage γ are presented in Figs. 9 to 11. It can be seen that for low loads, the 

POD is very low, and the POD increases as the load increases. In particular, for F = 0.1 N, the POD is 

close to zero even when the damage is large. For the higher loads, the SHM system is capable of 

detecting the damage. More specifically, for F = 1 N the 50% POD, a50, 90% POD, a90, and 90% POD 

with 95% confidence, a90/95, are 0.3078, 0.5581, and 0.5776, respectively, whereas for F = 4 N, we have 

those metrics at 0.0619, 0.1157, and 0.1199, respectively. Thus, we can see that the larger load, the 

smaller the damage is needed to be detected, which in turn means that the detection capability is 

improving with increasing loads.  

 
 

Figure 9: Model responses at different degrees of damage, and linear regression, for various forces. 
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Figure 10: POD curves versus different degrees of damage, for various forces. 

 

   
Figure 11: POD surface with respect to degree of damage and force added, in 3D space 

5 Conclusion 

A framework for model-assisted probability of detection of structural health monitoring (SHM) 

systems of flat plates is proposed. Provided information on the uncertainties within the system and the 

sensor responses, the probability of detecting damage can be determined. The framework provided a 

quantitative capability to assess the reliability of SHM systems for flat plates. This capability is 

important when designing the SHM system. For example, answering the question of where to place the 

sensors. Future work will consider more complex cases, such as systems with larger numbers of 

uncertain parameters and damage locations. 

Acknowledgements 

This work was funded by the Center for Nondestructive Evaluation Industry/University Cooperative 

Research Program at Iowa State University. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_49

https://dx.doi.org/10.1007/978-3-319-93701-4_49


 

 

References 

Aldrin, J., Annis, C., Sabbagh, H., and Lindgren, E., “Best Practices for Evaluating the Capability of 

Nondestructive Evaluation (NDE) and Structural Health Monitoring (SHM) Techniques for Damage 

Characterization,” 42th Annual Review of Progress in Quantitative Nondestructive Evaluation, 2016, pp. 200002-

1 – 200002-10. 

Aldrin, J., Knopp, J., Lindgren, E., and Jata, K., “Model-Assisted Probability of Detection Evaluation for Eddy 

Current Inspection of Fastener Sites,” Review of Quantitative Nondestructive Evaluation, Vol. 28, 2009, pp. 1784-

1791. 

Aldrin, J., Medina, E., Lindgren, E., Buynak, C., and Knopp, J., “Case Studies for Model-Assisted Probabilistic 

Reliability Assessment for Structural Health Monitoring Systems,” Review of Progress in Nondestructive 

Evaluation, Vol. 30, 2011, pp. 1589-1596. 

Aldrin, J., Medina, E., Lindgren, E., Buynak, C., Steffes, G., and Derriso, M., “Model-Assisted Probabilistic 

Reliability Assessment for Structure Health Monitoring Systems,” Review of Quantitative Nondestructive 

Evaluation, Vol. 29, 2010, pp. 1965-1972. 

Anan, “Risk Based Inspection of Offshore Topsides Static Mechanical Equipment,” DET NORSKE VERITAS, 

April, 2009. 

Blitz, J., Simpson, G., “Ultrasonic Methods of Non-destructive Testing,” London Chapman & Hall, 1996. 

Bozorgnia, N., and Schwetz, T., “What is the Probability that Direct Detection Experiments Have Observed 

Dark Matter,” ArXiv ePrint: 1410.6160, 2014. 

Brownjohn, J., “Structural Health Monitoring of Civil Infrastructure,” Philosophical Transactions of the Royal 

Society A: Mathematical, Physical and Engineering Sciences, Vol. 365, No. 1851, 2007, pp. 589-622. 

Buethe, I., Dominguez, N., Jung, H., Fritzen, C., Segur, D., and Reverdy, F., “Path-Based MAPOD Using 

Numerical Simulations,” Springer International Publishing, Switzerland, 2016. 

Chapman, J., and Dimitrijevic, V., “Challenges in Using a Probabilistic Safety Assessment in a Risk Informed 

Process (Illustrated Using Risk Informed Inservice Inspection),” Reliability Engineering and System Safety, Vol 

63, 1999, pp. 251-255. 

Downey, A., Laflamme, S., and Ubertini, F., “Experimental Wind Tunnel Study of a Smart Sensing Skin for 

Condition Evaluation of a Wind Turbine Blade,” Smart Materials and Structures, Vol. 26, 2017. 

Generazio, E., “Directed Design of Experiments for Validating Probability of Detection Capability of NDE 

Systems (DOEPOD),” Review of Quantitative Nondestructive Evaluation, Vol. 27, 2008. 

Haddad, R.E., Fakhereddine, R., Lécot, C., and Venkiteswaran, G., “Extended Latin Hypercube Sampling for 

Integration and Simulation,” Springer Proceedings in Mathematics & Statistics, Vol 65. Springer, Berlin, 

Heidelberg, 2013. 

Harms, T., Sedigh, S., and Bastinaini, F., “Structural Health Monitoring of Bridges Using Wireless Sensor 

Network,” IEEE Instrumentation & Measurement Magazine, Vol. 13, No. 6, 2010, pp. 14-18. 

Jarmer, G., and Kessler, S., “Probability of Detection Assessment of a Guided Wave Structural Health 

Monitoring System,” Structural Health Monitoring, 2015. 

Kabhari, V. M., “Design Principles for Civil Structures,” Encyclopedia of Structural Health Monitoring, Wiley, 

Hoboken, NJ, 2009, pp. 1467-1476. 

Laflamme, S., Kollosche, M., Connor, J., and Kofod, G., “Soft Capacitive Sensor for Structural Health 

Monitoring of Large-Scale Systems,” Journal of Structural Control, 2010, pp. 1-21. 

Laflamme, S., Kollosche M., Conor, J., and Kofod, G., “Robust Flexible Capacitive Surface Sensor for 

Structural Health Monitoring Applications,” Journal of Engineering Mehcanics, Vol. 139, No. 7, 2013, pp. 879-

885. 

Lindgren, E., Buynak, C., Aldrin, J., Medina, E., and Derriso, M., “Model-Assisted Methods for Validation of 

Structural Health Monitoring Systems,” 7th International Workshop on Structural Health Monitoring, Stanford, CA, 

2009. 

Memmolo, V., Ricci, F., Maio, L., and Monaco, E., “Model-Assisted Probability of Detection for a Guided-

Waves Based on SHM Technique,” SPIE Smart Structures and Materials & Nondestructive Evaluation and Health 

Monitoring, Vol. 9805, April 2016, pp. 980504-1 – 980504-12. 

Mix, P., “Introduction to Nondestructive Testing,” John Wiley & Sons Inc. 2005. 

Sarkar, P., Meeker, W., Thompson, R., Gray, T., and Junker, W., “Probability of Detection Modeling for 

Ultrasonic Testing,” Review of Progress in Quantitative Nondestructive Evaluation, Vol. 17, 1998, pp. 2045-2046. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_49

https://dx.doi.org/10.1007/978-3-319-93701-4_49


 

 

Smith, K., Thompson, B., Meeker, B., Gray, T., and Brasche, L., “Model-Assisted Probability of Detection 

Validation for Immersion Ultrasonic Application,” Review of Quantitative Nondestructive Evaluation, Vol. 26, 

2007, pp. 1816-1822. 

Spitzer, C., Schmocker, U., and Dang, V., “Probability Safety Assessment and Management,” International 

Conference on Probabilistic Safety Assessment, Berlin, Germany, 2004. 

Thompson, R. “A Unified Approach to the Model-Assisted Determination of Probability of Detection,” Review 

of Quantitative Nondestructive Nondestructive Evaluation, Vol. 27, 2008, pp. 1685-1692. 

Thompson, R., Brasche, L., Forsyth, D., Lindgren, E. and Swindell, P., “Recent Advances in Model-Assisted 

Probability of Detection”, 4th European-American Workshop on Reliability of NDE, Berlin, Germany, June 24-26, 

2009. 

Zhang, M., Liang, W., Qiu, Z., and Liu, Y., “Application of Risk-Based Inspection Method for Gas Compressor 

Station,” 12th International Conference on Damage Assessment of Structures, Series 842, 2017. 

 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_49

https://dx.doi.org/10.1007/978-3-319-93701-4_49

