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Abstract 

Probability of detection (POD) is used for reliability analysis in nondestructive testing 

(NDT) area. Traditionally, it is determined by experimental tests, while it can be enhanced 

by physics-based simulation models, which is called model-assisted probability of 

detection (MAPOD). However, accurate physics-based models are usually expensive in 

time. In this paper, we implement a type of stochastic polynomial chaos expansions 

(PCE), as alternative of actual physics-based model for the MAPOD calculation. State-

of-the-art least-angle regression method and hyperbolic sparse technique are integrated 

within PCE construction. The proposed method is tested on a spherically-void-defect 

benchmark problem, developed by the World Federal Nondestructive Evaluation Center. 

The benchmark problem is added with two uncertainty parameters, where the PCE model 

usually requires about 100 sample points for the convergence on statistical moments, 

while direct Monte Carlo method needs more than 10000 samples, and Kriging based 

Monte Carlo method is oscillating. With about 100 sample points, PCE model can reduce 

root mean square error to be within 1% standard deviation of test points, while Kriging 

model cannot reach that level of accuracy even with 200 sample points. 

Keywords: spherically-void-defect, nondestructive evaluation, model-assisted probability of detection, 

Monte Carlo sampling, surrogate modeling. 
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1 Introduction 

The concept of probability of detection (POD) (Sarkar et al., 1998) was initially developed to 

quantitatively describe the detection capabilities of nondestructive testing (NDT) systems (Jack Blitz et 

al., 1996). A commonly used term is “90% POD” and “90% POD with 95% confidence interval”, which 

are written as a90 and a90/95, respectively. POD curves were initially only based on experiments. The 

POD can be enhanced by utilizing physics-based computational models, such as the full wave ultrasonic 

testing simulation model (Gurrala et al., 2017), and the model-assisted probability of detection 

(MAPOD) methodology (Thompson et al., 2009; Aldrin et al., 2009, 2010, 2011). MAPOD can be 

performed using the hit/miss method (MIL-HDBK-1823), linear regression method (MIL-HDBK-1823, 

2009), or the Bayesian inference method (Aldrin et al., 2013; Jenson et al., 2013). Typically, the true 

physics-based simulation models are directly employed in the analysis.  

Unfortunately, evaluating the simulation models can be time-consuming. Moreover, the MAPOD 

analysis process requires multiple evaluations. Consequently, the use of MAPOD with computationally 

expensive physics-based simulation models can be challenging to complete in a timely fashion. This has 

motivated the use of surrogate models (Aldrin et al., 2009, 2010, 2011; Miorelli et al., 2016; Siegler et 

al., 2016; Ribay et at., 2016) to alieve the computational burden. Deterministic surrogate models, such 

as Kriging interpolation (Aldrin et al., 2009, 2010, 2011; Du et al., 2016) and support vector regression 

(SVR) (Miorelli et al., 2016), have been successfully applied in this area. Stochastic surrogate models, 

such as polynomial chaos expansions (PCE) (Knopp et al., 2011; Sabbagh et al., 2013), are another 

option and have recently been utilized for MAPOD analysis (Du et al., 2017). 

In this work, we integrate PCE models with least-angle regression (LAR) and hyperbolic sparse 

truncation schemes (Blatman et al., 2009, 2010, 2011), which can solve efficiently for the coefficients 

of PCE models. The proposed method is demonstrated on a spherically-void-defect NDT case, which is 

a benchmark case developed by the World Federal Nondestructive Evaluation Center (WFNDEC). For 

the purpose of this work, we use the Thompson-Gray analytical model (Gray, 2012) for the ultrasonic 

testing simulation. The results of the MAPOD analysis using the PCE-based surrogate models are 

compared with direct Monte Carlo sampling (MCS) and the true model, and with MCS and deterministic 

Kriging surrogate models. 

The paper is organized as follows. Next section gives a description of the analytical ultrasonic testing 

simulation model. The MAPOD analysis process is given in Section 3. Section 4 describes the 

deterministic and stochastic surrogate models. The numerical results are presented in Section 5. Finally, 

the paper ends with conclusion. 

2 Ultrasonic Testing Simulation Model 

The spherically-void-defect benchmark problem (shown in Fig. 1) was proposed by the WFDEC in 

2004. The spherically void defect, whose radius is 0.34 mm, is included in a fused quartz block, which 

is surrounded by water. A spherically focused transducer, the radius of which is 6.23mm, is used to 

detect this defect. The frequency range is set to be [0, 10MHz]. 

The analytical model, used in this work, is known as the Thompson-Gray model (Gray, 2012). This 

model is based on paraxial approximation of the incident and scattered ultrasonic waves, computing the 

spectrum of voltage at the receiving transducer in terms of the velocity diffraction coefficients of the 

transmitting/receiving transducers, scattering amplitude of the defect and a frequency-dependent 

coefficient known as the system-efficiency function (Schmerr et al., 2007). In this work, velocity 

diffraction coefficients were calculated using the multi-Gaussian beam model and scattering amplitude 

of the spherical-void was calculated using the method of separation of variables (Schmerr, 2013). The 

system efficiency function, which is a function of the properties and settings of the transducers and the 

pulser, was taken from the WFNDEC archives. The time-domain pulse-echo waveforms are computed  
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Figure 1: Setup of the spherically-void-defect benchmark case (left) and results of comparison between 

experimental data (Exp) and the analytical solution (SOV). 

 

by performing FFT on the voltage spectrum. The foregoing system model was shown to be very accurate 

in predicting pulse-echo from the spherical void if the paraxial approximation is satisfied and radius of 

the void is small. To guarantee the effectiveness of this analytical model on the benchmark problem 

mentioned above, it is validated on this case with experimental data, given in Fig. 1, through which 

shows that the results match well. 

3 Framework for Model-Assisted Probability of Detection 

POD is essentially the quantification of inspection capability starting from the distributions of 

variability, and describes its accuracy with confidence bounds, also known as uncertain bounds (Spall, 

1997). In many cases, the final product of a POD curve is the flaw size, a, for which there is a 90% 

probability of detection. This flaw size is denoted a90. The 95% upper confidence bound on a90 is denoted 

as a90/95. The POD is typically determined through experiments which are both time-consuming and 

costly. This motivated the MAPOD methods with the aim for reducing the number of experimental 

sample points by introducing insights physics-based simulations (Thompson et al., 2009). 

The main elements for generating POD curves using simulations is shown in Fig. 3. The process 

starts by defining the random inputs with specific statistical distributions (Fig. 3a). Next, the inputs are 

propagated through the simulation model (Fig. 3b). In this work, the simulation model is calculated 

using an analytical model (described in Sect. 2), to obtain the quantity of interest, which is the maximum 

signal amplitude obtained from the signal envelope (Fig. 3c). When doing detection tests for the same 

defect size, the results vary due to uncertainty/noise existing within the system. Usually, arbitrary 

number of sample runs are taken for each defect size, then a linear regression is made based on the 

results to obtain the so-called “�̂� vs. a” plot (Fig. 3d). With this information, the POD at each defect size 

can be obtained, thereby, the POD curves are generated (Fig. 3e). 

4 Surrogate Modeling 

This section describes the surrogate models used in this work. In particular, we use the deterministic 

Kriging interpolation surrogate model (Du et al., 2016), and the stochastic PCE surrogate models. More 

specifically, we use the least-angle regression (LAR) method (Blatman et al., 2010, 2011) with the 

hyperbolic truncation technique (Blatman et al., 2009,). 

water focused transducer 

spherically void defect fused quartz block 
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                            (d)                            (e)    

Figure 3: General process of model-assisted probability of detection: (a) probabilistic inputs; (b) 

simulation model; (c) response (amplitude in this work); (d) “�̂� vs. 𝑎” plot, (e) POD curves. 

 

4.1 Deterministic Surrogate Models via Kriging 

Kriging (Ryu et al., 2002) model, also known as Gaussian process regression, is a type of 

interpolation method, taking all observed data as sample points and minimizing the mean square error 

(MSE) to reach the most appropriate model coefficients. It has the generalized formula as sum of the 

trend function, fT(x), and a Gaussian random function Z(x): 

 

( ) ( ) ( ),T my x Z  f x β x x ,                         (1) 

 

where f(x) = [f0(x), …, fp-1(x)]T  ℝp is defined with a set of the regression basis functions,  = [ꞵ0(x), 

…, ꞵp-1(x)]T  ℝp denotes the vector of the corresponding coefficients, and Z(x) denotes a stationary 

random process with zero mean, variance and nonzero covariance. In this work, Gaussian exponential 

correlation function is adopted, thus the nonzero covariance is of the form 
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where θ = [θ1, θ2, …, θm]T, p = [p1, p2, …, pm]T, denote the vectors of unknown hyper model parameters 

to be tuned. 

After further derivation (Sacks, 1989), the Kriging predictor �̂�(𝐱) for any untried x can be written as 
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0 0
ˆ( ) ( ) ( )T
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(a)             (b)   (c) 
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where ꞵ0 comes from generalized least squares estimation. 

A unique feature of Kriging model is that it provides an uncertainty estimation (or MSE) for the 

prediction, which is very useful for sample-points refinement. Further details are beyond the scope of 

this paper, readers who have interests are suggested to go through Forrester et al. (2008). 

4.2  Stochastic Surrogate Models via Polynomial Chaos Expansions 

 In this work, the stochastic expansions are generated using non-intrusive PCE (Xiong et al., 2010, 

2011). PCE theory enables the fast construction of surrogate models, as well as an efficient statistical 

analysis of the model responses. More specifically, to the calculate coefficients more efficiently and 

accurately, we use the LAR algorithms (Blatman et al., 2010, 2011) and the hyperbolic truncation 

scheme (Blatman et al., 2009). 

4.2.1 Generalized Polynomial Chaos Expansions 

 PCE is a type of stochastic surrogate model, having the generalized formulation of (Wiener, 1938) 

 

1

( ) ( ),i i

i

Y M 




 X Ψ X               (4) 

 

where, X∈ℝM is a vector with random independent components, described by a probability density 

function fX, Y ≡ M(X) is a map of X, i is the index of ith polynomial term, Ψ is multivariate polynomial 

basis, and α is corresponding coefficient of basis function. In practice, the total number of sample points 

needed does not have to be infinite, instead, a truncated form of the PCE is used 
 

1
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P
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where, MPC(X) is the approximate truncated PCE model, P is the total number of required sample points 

and can be calculated as 

 

( )!
,

! !

p n
P

p n


      (6) 

 

where, p is the required order of PCE, and n is the total number of random variables. 

4.2.2 Least-Angle Regression 

 When solving for coefficients of the PCE, this works selects state-of-the-art LAR method, which 

treats the observed data of actual model as a summation of PCE predictions at the same design points 

and corresponding residual (Efron et al., 2004) 

 

1

( ) ( ) ( ) ( ) ,
P

PC T

P i i P P

i

M M    


     X X Ψ X α Ψ X  (7) 

 

where εp is the residual between M(X) and MPC(X), which is to be minimized in least-squares methods. 

Then the initial problem can be converted to a least-squares minimization problem 

 

ˆ argmin [ ( ) ( )].TE M  α α X X                       (8) 

 

 Adding one more regularization term to favor low-rank solution (Udell et al., 2016) 
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1
ˆ arg min [ ( ) ( )] || ||TE M   α α ψ x x α ,                                           (9) 

 

where λ is a penalty factor, ||α||1 is L1 norm of the coefficients of PCE. The LAR algorithm, solving for 

the least-squares minimization problem (Eqn. (9) in this work), is very efficient in calculation, and can 

accept an arbitrary number of sample points. 

4.2.3 Hyperbolic Truncation Technique 

 Commonly used basic truncation scheme has been applied to PCE as shown in Eqns. (5) and (6) to 

make it in a summation of finite number of terms. In order to reduce the number of sample points needed 

for coefficient regression, the hyperbolic truncation technique, also known as q-norm method (Blatman 

et al., 2009), is applied here. The main idea is to reduce the interaction terms, since they do not have 

much effect on the PCE prediction due to the sparsity-of-effect principle (Blatman et al., 2009). 

The hyperbolic truncation technique follows the formula (Blatman et al., 2009) 

 
1/

, , ,
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M
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         (10) 

 

 Here, when q = 1, it is the same as basic truncation scheme, while q < 1, it can reduce the interactive 

terms further based on basic truncation schemes. 

4.2.4 Calculation of Statistical Moments 

 After solving for the coefficients, statistical moments can be obtained from those coefficients 

directly, due to the orthonormal characteristics of PCE basis. 

The mean value of PCE is (Blatman et al., 2009) 

 

1[ ( )] ,PC PCE M  X               (11) 

 

where α1 is the coefficient of the constant basis term Ψ1 = 1. The standard deviation of PCE is 
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2
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  X          (12) 

 

where it is the summation on coefficients of non-constant basis terms only. 

5 Results 

 The proposed approach is illustrated on the spherically-void-defect benchmark problem with two 

uncertain parameters (see Fig. 1). In this work, the probe angle, θ, and the probe F-number, F, are 

considered as uncertain, with normal N(0 deg., 1 deg.) and uniform U(13, 15) distributions, respectively. 

The distributions are shown in Fig. 5.  

Figure 6 gives the results of the surrogate modeling construction. In particular, Fig. 6 shows the root 

mean square error (RMSE) as a function of the number of samples. From Fig. 6a, the LAR sparse 

(LARS) PCE model can reduce the RMSE value to less than 1% (also smaller than 1% σ of testing 

points) using 190 Latin hypercube sampling (LHS) random sample points. The Kriging interpolation 

model reaches the lowest RMSE value of around 10%. Figure 6b shows how the RMSE of the surrogate 

model varies with the defect size. 
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(a)           (b) 

Figure 5: Statistical distributions of uncertainty parameters: (a) F-number; (b) probe angle: θ. 

 

 

  
(a)        (b)  

Figure 6: RMSE for Kriging and LARS PCE: (a) RMSE for 0.5mm defect; (b) RMSE for various defect sizes. 

 

 

Statistical moments are always representative of a population of samples. Figure 7 compares the 

convergence on the statistical moments from the PCE model, Monte Carlo sampling (MCS) with the 

true model, and MCS based on the Kriging model. From the figure, it can be seen that LARS PCE 

method has a faster convergence rate than MCS with the true model and MCS with the Kriging model 

with a difference in the number of sample points of around 2 orders of magnitude. 

The LARS PCE models are used to generate the “�̂� vs. a” plot and the POD curves, as shown in 

Figs. 8a and 8b, respectively. Through the POD curves, we obtain the a50, a90, and a90/95 information to 

compare the results based on the LARS PCE models with those from using MCS with the Kriging model 

and true model (see Table 1). We can see that the important POD metrics from the LARS PCE model 

match well with those from true model. More specifically, the relative differences between the LARS 

PCE model and the true model on a50, a90, and a90/95 are 0.05%, 0.35%, and 0.39%, respectively. 

However, the relative differences between MCS with the Kriging model and MCS with the true model 

are -2.22%, -25.7%, -29.65%, respectively. 
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(a)             (b) 

Figure 7: Convergence on the statistical moments: (a) convergence on the mean; (b) convergence on the standard 

deviation. Here, MCSTrue model is MCS on true model, while MCSKriging is MCS on Kriging model. 

 
(a)        (b)  

Figure 8: POD generation using the LARS PCE model: (a) “�̂� vs. 𝑎” plots; (b) POD curves. 

 

Table 1. Comparison on the POD metrics obtained using MCS with the true model, MCS with the 

Kriging model, and the LARS PCE model. Here Δ is the relative difference with true model.  
a50 / Δ a90 / Δ a90/95 / Δ 

MCS-True 0.3747 / N/A 0.5951 / N/A 0.6395 / N/A 

MCS-Kriging 0.3831 / -2.22% 0.7484 / -25.76% 0.8291 / -29.65% 

LARS PCE 0.3745 / 0.05% 0.593 / 0.35% 0.637 / 0.39% 

6 Conclusion 

In this paper, POD curves are generated through MAPOD framework. Due to the expensive time 

costs of physics-based simulation model, a type of stochastic surrogate model, PCE surrogate model, is 

integrated with LAR method and hyperbolic sparse-grid scheme. The convergence on statistical 
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moments from PCE model is compared with actual model based Monte Carlo method, and Kriging 

based Monte Carlo, through which a two orders of magnitude faster convergence is obtained while 

Kriging based Monte Carlo is oscillating. Important metrics, namely, a50, a90, and a90/95, from PCE 

models, are also compared, and have good match with those from true model. 

In future work, the surrogate-based modeling framework can be applied to more complex and time-

consuming models, such as full wave model, through which the problem under test does not have to be 

limited as spherically void defect. 
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