
Optimization of Resources Selection for Jobs
Scheduling in Heterogeneous Distributed

Computing Environments?

Victor Toporkov[0000−0002−1484−2255] and Dmitry
Yemelyanov[0000−0002−9359−8245]

National Research University “Moscow Power Engineering Institute”,
ul. Krasnokazarmennaya, 14, Moscow, 111250, Russia,

{ToporkovVV, YemelyanovDM}@mpei.ru

Abstract. In this work, we introduce slot selection and co-allocation
algorithms for parallel jobs in distributed computing with non-dedicated
and heterogeneous resources (clusters, CPU nodes equipped with multi-
core processors, networks etc.). A single slot is a time span that can be
assigned to a task, which is a part of a parallel job. The job launch re-
quires a co-allocation of a specified number of slots starting and finishing
synchronously. The challenge is that slots associated with different het-
erogeneous resources of distributed computing environments may have
arbitrary start and finish points, different pricing policies. Some existing
algorithms assign a job to the first set of slots matching the resource
request without any optimization (the first fit type), while other algo-
rithms are based on an exhaustive search. In this paper, algorithms for
effective slot selection are studied and compared with known approaches.
The novelty of the proposed approach is in a general algorithm selecting
a set of slots efficient according to the specified criterion.

Keywords: Distributed computing, economic scheduling, resource man-
agement, slot, job, allocation, optimization

1 Introduction

Modern high-performance distributed computing systems (HPCS), including
Grid, cloud and hybrid infrastructures provide access to large amounts of re-
sources [1, 2]. These resources are typically required to execute parallel jobs
submitted by HPCS users and include computing nodes, data storages, network
channels, software, etc. The actual requirements for resources amount and types
needed to execute a job are defined in resource requests and specifications pro-
vided by users.

? This work was partially supported by the Council on Grants of the President of
the Russian Federation for State Support of Young Scientists (YPhD-2297.2017.9),
RFBR (grants 18-07-00456 and 18-07-00534) and by the Ministry on Education and
Science of the Russian Federation (project no. 2.9606.2017/8.9).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


2 Toporkov V.V., Yemelyanov D.M.

HPCS organization and support bring certain economical expenses: purchase
and installation of machinery equipment, power supplies, user support, etc. As
a rule, HPCS users and service providers interact in economic terms and the
resources are provided for a certain payment. Thus, as total user job execution
budget is usually limited, we elaborate an actual task to optimize suitable re-
sources selection in accordance with a job specification and a restriction to a
total resources cost.

Economic mechanisms are used to solve problems like resource management
and scheduling of jobs in a transparent and efficient way in distributed envi-
ronments such as cloud computing and utility Grid. In [3], we elaborate a hi-
erarchical model of resource management system which is functioning within
a VO. Resource management is implemented using a structure consisting of a
metascheduler and subordinate job schedulers that interact with batch job pro-
cessing systems. The significant and important feature for approach proposed in
[3] as well as for well-known scheduling solutions for distributed environments
such as Grids [1, 2, 4–6], is the fact that the scheduling strategy is formed on
a basis of efficiency criteria. The metascheduler [3, 6] implements the economic
policy of a VO based on local resource schedules. The schedules are defined as
sets of slots coming from resource managers or schedulers in the resource do-
mains, i.e. time intervals when individual nodes are available to perform a part of
a parallel job. In order to implement such scheduling schemes and policies, first
of all, one needs an algorithm for finding sets of simultaneously available slots
required for each job execution. Further we shall call such set of simultaneously
available slots with the same start and finish times as execution window.

In this paper we study algorithms for optimal or near-optimal resources se-
lection by a given criterion with the restriction to a total cost. Additionally we
consider solutions to overcome complications with different resources types, their
heterogeneity, pre-known reservations and maintenance works.

2 Related Works

The scheduling problem in Grid is NP-hard due to its combinatorial nature and
many heuristic-based solutions have been proposed. In [5] heuristic algorithms
for slot selection, based on user-defined utility functions, are introduced. NWIRE
system [5] performs a slot window allocation based on the user defined efficiency
criterion under the maximum total execution cost constraint. However, the op-
timization occurs only on the stage of the best found offer selection. First fit
slot selection algorithms (backtrack [7] and NorduGrid [8] approaches) assign
any job to the first set of slots matching the resource request conditions, while
other algorithms use an exhaustive search [2, 9, 10] and some of them are based
on a linear integer programming (IP) [2, 9] or mixed-integer programming (MIP)
model [10]. Moab scheduler [11] implements the backfilling algorithm and during
a slot window search does not take into account any additive constraints such as
the minimum required storage volume or the maximum allowed total allocation
cost. Moreover, it does not support environments with non-dedicated resources.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


Title Suppressed Due to Excessive Length 3

Modern distributed and cloud computing simulators GridSim and CloudSim
[12, 13] provide tools for jobs execution and co-allocation of simultaneously avail-
able computing resources. Base simulator distributions perform First Fit alloca-
tion algorithms without any specific optimization. CloudAuction extension [13]
of CloudSim implements a double auction to distribute datacenters’ resources
between a job flow with a fair allocation policy. All these algorithms consider
price constraints on individual nodes and not on a total window allocation cost.
However, as we showed in [14], algorithms with a total cost constraint are able
to perform the search among a wider set of resources and increase the overall
scheduling efficiency.

GrAS [15] is a Grid job-flow management system built over Maui sched-
uler [11]. In order to co-allocate already partially utilized and reserved resources
GrAS operates on a set of slots preliminary sorted by their start time. Resources
co-allocation algorithm retrieves a set of simultaneously available slots (a win-
dow) with the same start and finish times even in heterogeneous environments.
However the algorithm stops after finding the first suitable window and, thus,
doesn’t perform any optimization except for window start time minimization.

Algorithm [16] performs job’s response and finish time minimization and
doesn’t take into account constraint on a total allocation budget. [17] performs
window search on a list of slots sorted by their start time, implements algo-
rithms for window shifting and finish time minimization, doesn’t support other
optimization criteria and the overall job execution cost constraint.

AEP algorithm [18] performs window search with constraint on a total re-
sources allocation cost, implements optimization according to a number of cri-
teria, but doesn’t support a general case optimization. Besides AEP doesn’t
guarantee same finish time for the window slots in heterogeneous environments
and, thus, has limited practical applicability.

In this paper, we propose algorithms for effective slot selection based on user
defined criteria that feature linear complexity on the number of the available
slots during the job batch scheduling cycle. The novelty of the proposed ap-
proach consists in allocating a set of simultaneously available slots. The paper
is organized as follows. Section 3 introduces a general scheme for searching slot
sets efficient by the specified criterion. Then several implementations are pro-
posed and considered. Section 4 contains simulation results for comparison of
proposed and known algorithms. Section 5 summarizes the paper and describes
further research topics.

3 Resource Selection Algorithm

3.1 Problem Statement

We consider a set R of heterogeneous computing nodes with different perfor-
mance pi and price ci characteristics. Each node has a local utilization schedule
known in advance for a considered scheduling horizon time L. A node may be
turned off or on by the provider, transfered to a maintenance state, reserved to

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


4 Toporkov V.V., Yemelyanov D.M.

perform computational jobs. Thus, it’s convenient to represent all available re-
sources as a set of slots. Each slot corresponds to one computing node on which
it’s allocated and may be characterized by its performance and price.

In order to execute a parallel job one needs to allocate the specified num-
ber of simultaneously idle nodes ensuring user requirements from the resource
request. The resource request specifies number n of nodes required simultane-
ously, their minimum applicable performance p, job’s computational volume V
and a maximum available resources allocation budget C. The required window
length is defined based on a slot with the minimum performance. For exam-
ple, if a window consists of slots with performances p ∈ {pi, pj} and pi < pj ,
then we need to allocate all the slots for a time T = V

pi
. In this way V really

defines a computational volume for each single node subtask. Common start
and finish times ensure the possibility of inter-node communications during the
whole job execution. The total cost of a window allocation is then calculated as
CW =

∑n
i=1 T ∗ ci.

These parameters constitute a formal generalization for resource requests
common among distributed computing systems and simulators.

Additionally we introduce criterion f as a user preference for the particular
job execution during the scheduling horizon L. f can take a form of any additive
function and vary from a simple window start time or cost minimization to
a general independent parameter maximization with the restriction to a total
resources allocation cost C. As an example, one may want to allocate suitable
resources with the maximum possible total data storage available before the
specified deadline.

3.2 General Window Search Procedure

For a general window search procedure for the problem statement presented
in Section 3.1, we combined core ideas and solutions from algorithm AEP [18]
and systems [15, 17]. Both related algorithms perform window search procedure
based on a list of slots retrieved from a heterogeneous computing environment.

Following is the general square window search algorithm. It allocates a set of
n simultaneously available slots with performance pi > p, for a time, required to
compute V instructions on each node, with a restriction C on a total allocation
cost and performs optimization according to criterion f . It takes a list of available
slots ordered by their non-decreasing start time as input.

1. Initializing variables for the best criterion value and corresponding best win-
dow: fmax = 0, Wmax = {}.

2. From the slots available we select different groups by node performance pi.
For example, group Pk contains resources allocated on nodes with perfor-
mance pi ≥ Pk. Thus, one slot may be included in several groups.

3. Next is a cycle for all retrieved groups Pi starting from the max performance
Pmax. All the sub-items represent a cycle body.

(a) The resources reservation time required to compute V instructions on a
node with performance Pi is Ti = V

Pi
.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


Title Suppressed Due to Excessive Length 5

(b) Initializing variable for a window candidates list SW = {}.
(c) Next is a cycle for all slots si in group Pi starting from the slot with the

minimum start time. The slots of group Pi should be ordered by their
non-decreasing start time. All the sub-items represent a cycle body.

i. If slot si doesn’t satisfy user requirements (hardware, software, etc.)
then continue to the next slot (3c).

ii. If slot length l(si) < Ti then continue to the next slot (3c).
iii. Set the new window start time Wi.start = si.start.
iv. Add slot si to the current window slot list SW .
v. Next a cycle to check all slots sj inside SW .

A. If there are no slots in SW with performance P (sj) == Pi then
continue to the next slot (3c), as current slots combination in
SW was already considered for previous group Pi−1.

B. If Wi.start+Ti > sj .end then remove slot sj from SW as it can’t
consist in a window with the new start time Wi.start.

vi. If SW size is greater or equal to n, then allocate from SW a window
Wi (a subset of n slots with start time Wi.start and length Ti) with
a maximum criterion value fi and a total cost Ci < C. If fi > fmax

then reassign fmax = fi and Wmax = Wi.

4. End of algorithm. At the output variable Wmax contains the resulting win-
dow with the maximum criterion value fmax.

In this algorithm a list of slots-candidates SW moves through the ordered list
of all slots from each performance group Pi. During each iteration, when a new
slot is added to the list (step 3(c)vi), any combination of n slots from SW can
form a suitable window if satisfy a restriction on the maximum allocation cost.
In (3(c)vi) an optimal subset of n slots is allocated from SW according to the
criterion f with a restriction on the total cost . If this intermediate window Wi

provides better criterion value compared to the currently best value (fi > fmax)
then we reassign variables Wmax and fmax with new values. In this a way the
presented algorithm is similar to the maximum value search in an array of fi
values.

3.3 Optimal Slot Subset Allocation

Let us discuss in more details the procedure which allocates an optimal (accord-
ing to a criterion f) subset of n slots out of SW list (algorithm step 3(c)vi).

For some particular criterion functions f a straightforward subset allocation
solution may be offered. For example for a window finish time minimization it
is reasonable to return at step 3(c)vi the first n cheapest slots of SW provided
that they satisfy the restriction on the total cost. These n slots (as any other n
slots from SW at the current step) will provide Wi.finish = Wi.start + Ti, so
we need to set fi = −(Wi.start + Ti) to minimize the finish time. And at the
end of the algorithm variable Wmax will represent a window with the minimum
possible finish time Wmax.finish = −fmax.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


6 Toporkov V.V., Yemelyanov D.M.

The same logic applies for a number of other important criteria, including
window start time, finish time and a total cost minimization.

However in a general case we should consider a subset allocation problem
with some additive criterion: Z =

∑n
i=1 cz(si), where cz(si) = zi is a target

optimization characteristic value provided by a single slot si of Wi.
In this way we can state the following problem of an optimal n - size window

subset allocation out of m slots stored in SW :

Z = x1z1 + x2z2 + . . . + xmzm, (1)

with the following restrictions:

x1c1 + x2c2 + . . . + xmcm ≤ C

x1 + x2 + . . . + xm = n

xi ∈ {0, 1}, i = 1, . . . ,m,

where zi is a target characteristic value provided by slot si, ci is total cost
required to allocate slot si for a time Ti, xi - is a decision variable determining
whether to allocate slot si (xi = 1) or not (xi = 0) for a window Wi.

This problem relates to the class of integer linear programming problems,
which imposes obvious limitations on the practical methods to solve it. However
we used 0-1 knapsack problem as a base for our implementation. Indeed, the
classical 0-1 knapsack problem with a total weight C and items-slots with weights
ci and values zi have the same formal model (1) except for extra restriction on
the number of items required: x1 + x2 + . . .+ xm = n. To take this into account
we implemented the following dynamic programming recurrent scheme:

fi(Cj , nk) = max{fi−1(Cj , nk), fi−1(Cj − ci, nk − 1) + zi}, (2)

nk = 1, . . . , n, i = 1, . . . ,m,Cj = 1, . . . , C,

where fi(Cj , nk) defines the maximum Z criterion value for nk - size window
allocated out of first i slots from SW for a budget Cj . For the actual implemen-
tation we initialized fi(Cj , 0) = 0, meaning Z = 0 when we have no items in the
knapsack. Then we perform forward propagation and calculate fi(Cj , nk) values
for nk = 1, . . . , n. For example fi(Cj , 1) stands for Z → max problem when we
can have only one item in the knapsack. Based on fi(Cj , 1) we can calculate
fi(Cj , 2) using (2) and so on. So after the forward induction procedure (2) is
finished the maximum value Zmax = fm(C, n). xi values are then obtained by a
backward induction procedure.

An estimated computational complexity of the presented recurrent scheme
is O(m ∗ n ∗ C), which is n times harder compared to the original knapsack
problem (O(m ∗ C)). However in practical job resources allocation cases this
overhead doesn’t look very large as we may assume that n << m and n << C.
On the other hand, this subset allocation procedure (2) may be called multiple
times during the general square window search algorithm (step 3(c)vi).

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


Title Suppressed Due to Excessive Length 7

4 Simulation Study

4.1 Simulation Environment Setup

An experiment was prepared as follows using a custom distributed environment
simulator [3, 18]. For our purpose, it implements a heterogeneous resource do-
main model: nodes have different usage costs and performance levels. A space-
shared resources allocation policy simulates a local queuing system (like in Grid-
Sim or CloudSim [12]) and, thus, each node can process only one task at any
given simulation time.

During the experiment series we performed a window search operation for
a job requesting n = 7 nodes with performance level pi >= 1, computational
volume V = 800 and a maximum budget allowed is C = 644. The computing
environment includes 100 heterogeneous computational nodes. Each node per-
formance level is given as a uniformly distributed random value in the interval
[2, 10]. So the required window length may vary from 400 to 80 time units. The
scheduling interval length is 1200 time quanta which is enough to run the job on
nodes with the minimum performance. The additional resources load (advanced
reservations, maintenance windows) is distributed hyper-geometrically resulting
in up to 30% utilization for each node.

Additionally an independent value qi ∈ [0; 10] is randomly generated for each
computing node i to compare algorithms against Q =

∑n
i=1 qi window allocation

criterion.

4.2 Algorithms Comparison

We implemented the following window search algorithms based on the general
window search procedure introduced in Section 3.2.

1. FirstFit performs a square window allocation in accordance with a general
scheme described in Section 3.2. Returns first suitable and affordable window
found [15, 17].

2. MinFinish, MinRuntime and MinCost implements general scheme and re-
turns windows with a minimum finish time, runtime (the difference between
finish and start times) and execution cost correspondingly.

3. MaxQ implements a general square window search procedure with an opti-
mal slots subset allocation (2) to return a window with maximum total Q
value.

4. MultipleBest algorithm searches for multiple non-intersecting alternative
windows using FirstFit algorithm. When all possible window allocations are
retrieved the algorithm searches among them for alternatives with the mini-
mum start time, finish time, runtime, cost and the maximum Q. In this way
MultipleBest is similar to [5] approach.

Fig. 1 presents average window start time, runtime and finish time obtained
by these algorithms based on 3000 independent simulation experiments. As ex-
pected, FirstFit, MinFinish and MultipleBest have the same minimum window

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


8 Toporkov V.V., Yemelyanov D.M.

finish time. Furthermore, they were able to start window at the beginning of the
scheduling interval during each experiment(tstart = 0). This is quite a probable
event, since we are allocating 7 nodes out of 100 available, however partially
utilized, nodes.

Fig. 1. Simulation results: average start time, runtime and finish time in computing
environment with 100 nodes

Under such conditions FirstFit and MinFinish become practically the same
algorithm: general window allocation scheme starts search among nodes with
maximum performance. Thereby FirstFit combines minimum start time criterion
with the maximum performance nodes. MinRuntime was able to slightly decrease
runtime compared to FirstFit by using nodes with even higher performance, but
starting a little later.

Windows allocated by MinCost and MaxQ are usually started closer to the
middle of the scheduling interval. Late start time allowed these algorithms to
perform a window search optimization among a wider variety of available nodes
combinations. For example, average window allocation cost with the minimum
value CW = 477 is provided by MinCost (remember that we set C = 644 as
a window allocation cost limit).MinCost advantage over MultipleBest approach
is almost 17%. The advantage over other considered algorithms, not performing
any cost optimization, reaches 24%.

Finally fig. 2 shows average Q =
∑n

i=1 qi value obtained during the simula-
tion. Parameter qi was generated randomly for each node i and is independent
from node’s cost, performance and slots start times. Thereby we use it to eval-
uate the general scheme (2) efficiency against optimization problem where no
simple and accurate solution could possibly exist. Note that as qi was generated
randomly on a [0; 10] interval and a single window should consist of 7 slots, we
had the following practical limits specific for our experiment: Q ∈ [0; 70].

As can be seen from fig. 2, MaxQ is indeed provided the maximum average
value Q = 61.8, which is quite close to the practical maximum, especially com-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


Title Suppressed Due to Excessive Length 9

Fig. 2. Simulation results: average window Q value

pared to other algorithms. MaxQ advantage over MultipleBest is 18%. Other
algorithms provided average Q value exactly in the middle of [0; 70] interval and
MaxQ advantage over them is almost 44%.

5 Conclusion and Future Work

In this work, we address the problem of slot selection and co-allocation for paral-
lel jobs in distributed computing with non-dedicated resources. For this purpose
a general square window allocation algorithm was proposed and considered. A
special slots subset allocation procedure is implemented to support a general
case optimization problem.

Simulation study proved algorithms’ optimization efficiency according to
their target criteria. A general case implementation showed 44% advantage over
First Fit algorithms and 18% over a simplified MultipleBest optimization heuris-
tic. As a drawback, the general case algorithm has a high computational com-
plexity compared to FirstFit.

In our further work, we will refine resource co-allocation algorithms in order
to decrease their computational complexity. Another research direction will be
focused on a practical resources allocation tasks implementation based on the
proposed general case approach.

References

1. Lee, Y.C., Wang C., Zomaya, A.Y., Zhou, B.B.: Profit-driven Scheduling for Cloud
Services with Data Access Awareness. J. of Parallel and Distributed Computing 72
(4), 591-602 (2012)

2. Garg, S.K., Konugurthi, P., Buyya, R.: A Linear Programming-driven Genetic Al-
gorithm for Meta-scheduling on Utility Grids. Int. J. of Parallel, Emergent and
Distributed Systems 26, 493-517 (2011)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45


10 Toporkov V.V., Yemelyanov D.M.

3. Toporkov, V., Tselishchev, A., Yemelyanov, D., Bobchenkov, A.: Composite
Scheduling Strategies in Distributed Computing with Non-dedicated Resources.
Procedia Computer Science. Elsevier, vol. 9, pp. 176-185 (2012)

4. Buyya, R., Abramson, D., Giddy, J.: Economic Models for Resource Management
and Scheduling in Grid Computing. J. of Concurrency and Computation: Practice
and Experience 5 (14), 1507-1542 (2002)

5. Ernemann, C., Hamscher, V., Yahyapour, R.: Economic Scheduling in Grid Com-
puting. In: Feitelson, D.G., Rudolph, L., Schwiegelshohn, U. (eds.) JSSPP 2002.
LNCS, vol. 2537, pp. 128-152. Springer, Heidelberg (2002)

6. Kurowski, K., Nabrzyski, J., Oleksiak, A., Weglarz, J.: Multicriteria Aspects of
Grid Re-source Management. In: Nabrzyski, J., Schopf, J.M., Weglarz J. (eds.)
Grid resource management. State of the art and future trends. Kluwer Academic
Publishers, pp. 271-293 (2003)

7. Aida, K., Casanova, H.: Scheduling Mixed-parallel Applications with Advance
Reservations. In: 17th IEEE Int. Symposium on HPDC, pp. 65-74. IEEE CS Press,
New York (2008)

8. Elmroth, E., Tordsson J.: A Standards-based Grid Resource Brokering Service Sup-
porting Advance Reservations, Coallocation and Cross-Grid Interoperability. J. of
Concurrency and Computation: Practice and Experience 25(18), 2298-2335 (2009)

9. Takefusa, A., Nakada, H., Kudoh, T., Tanaka, Y.: An Advance Reservation-based
Co-allocation Algorithm for Distributed Computers and Network Bandwidth on
QoS-guaranteed Grids. In: Frachtenberg E., Schwiegelshohn U. (eds.) JSSPP 2010.
LNCS, vol. 6253, pp. 16-34. Springer, Heidelberg (2010)

10. Blanco, H., Guirado, F., Lrida, J.L., Albornoz, V.M.: MIP Model Scheduling for
Multi-clusters. In: Euro-Par 2012. LNCS, vol. 7640, pp. 196-206. Springer, Heidel-
berg (2013)

11. Moab Adaptive Computing Suite, http://www.adaptivecomputing.com/
12. Calheiros, R. N., Ranjan, R., Beloglazov, A., De Rose, C. A. F., and Buyya,R.:

CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environ-
ments and Evaluation of Resource Provisioning Algorithms. J. Software: Practice
and Experience, 41(1),23-50 (2011)

13. Samimi, P., Teimouri, Y., Mukhtar M.: A combinatorial double auction resource
allocation model in cloud computing. J. Information Sciences, 357(C),201-216 (2016)

14. Toporkov, V., Toporkova, A., Bobchenkov, A., Yemelyanov, D.: Resource Selection
Algorithms for Economic Scheduling in Distributed Systems. In: Proc. International
Conference on Computational Science, ICCS 2011, June 1-3, 2011, Singapore, Pro-
cedia Computer Science. Elsevier, vol. 4. pp. 2267-2276 (2011)

15. Kovalenko, V.N., Kovalenko, E.I., Koryagin, D.A., et. al., Parallel Job Management
in the Grid with Non-Dedicated Resources, Preprint of Keldysh Inst. of Appl. Math.,
Russ. Acad. Sci., Moscow, no. 63, 2007.

16. Makhlouf, S., Yagoubi, B.: Resources Co-allocation Strategies in Grid Computing.
In: CIIA, vol. 825, CEUR Workshop Proceedings, 2011.

17. Netto, M. A. S., Buyya, R.: A Flexible Resource Co-Allocation Model based on
Advance Reservations with Rescheduling Support. In: Technical Report, GRIDS-
TR-2007-17, Grid Computing and Distributed Systems Laboratory, The University
of Melbourne, Australia, October 9, 2007.

18. Toporkov, V., Toporkova, A., Tselishchev, A., and Yemelyanov, D.: Slot Selection
Algorithms in Distributed Computing. J. of Supercomputing, 69 (1), 53-60 (2014)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_45

https://dx.doi.org/10.1007/978-3-319-93701-4_45

