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Abstract. The prize-collecting Steiner tree problem (PCSTP) is one of
the important topics in computational science and operations research.
The vertex-swap operation, which involves removal and addition of a
pair of vertices based on a given minimum spanning tree (MST), has
been proven very effective for some particular PCSTP instances with
uniform edge costs. This paper extends the vertex-swap operator to make
it applicable for solving more general PCSTP instances with varied edge
costs. Furthermore, we adopt multiple dynamic data structures, which
guarantee that the total time complexity for evaluating all the O(n2)
possible vertex-swap moves is bounded by O(n) · O(m·logn), where n
and m denote the number of vertices and edges respectively (if we run
Kruskal’s algorithm with a Fibonacci heap from scratch after swapping
any pair of vertices, the total time complexity would reach O(n2) ·O(m+
n·logn)). We also prove that after applying the vertex-swap operation,
the resulting solutions are necessarily MSTs (unless infeasible).

Keywords: Computational complexity, network design, prize-collecting
Steiner tree, vertex-swap operator, dynamic data structures.

1 Introduction

The prize-collecting Steiner tree problem (PCSTP) has a wide range of appli-
cations, e.g., design of utility network, telecommunication network, signal pro-
cessing. As a variant of the classic Steiner tree problem in graphs, the PCSTP
is NP-hard, thus being important in the field of computational science.

Given an undirected graph G = (V,E) with a set V (|V | = n) of vertices and
a set E (|E| = m) of edges, where each edge e ∈ E is associated with a non-
negative edge cost ce, and each vertex v ∈ V is associated with a non-negative
prize pv (vertex v is a customer vertex if pv > 0 and a non-customer vertex
otherwise), the goal of the PCSTP is to find a subtree T = (VT , ET ) of G in
which the total cost of edges in the tree plus the total prize of vertices not in
the tree is minimized, i.e., [1]:

Minimize f(T ) =
∑
e∈ET

ce +
∑
v/∈VT

pv. (1)
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Many algorithms have been proposed to solve the PCSTP, including several
heuristics, such as multi-start local-search algorithm combined with perturba-
tion [2], trans-genetic hybrid algorithm [3], divide-and-conquer meta-heuristic
method [4], knowledge-guided tabu search [5], etc. Among various heuristics
for solving the PCSTP, local search enjoys popularity in the literature, which
commonly relies on two basic move operators, i.e., vertex addition and vertex
deletion. Typically, the vertex addition (deletion) operator tries to add (delete)
a vertex v /∈ VT (v

′ ∈ VT ) to (from) an original minimum spanning tree (MST)
and then tries to reconstruct a new MST, leading to a neighboring solution.
Though these two basic move operators are generally effective, improvements
could be achieved by introducing a new vertex-swap operator, which substitutes
one vertex in the original MST with another one out of the original MST, and
then reconstructs a new MST as the neighboring solution.

Unfortunately, although the basic idea of the vertex-swap operator is natural,
it has not been widely employed in the existing PCSTP heuristics, possibly due to
its unaffordable complexity: if we choose to reconstruct an MST using Kruskal’s
algorithm (with the aid of a Fibonacci heap) from scratch after swapping any
pair of vertices, the overall time complexity for evaluating all the O(n2) possible
vertex-swap moves would reach O(n2) · O(m+ n· logn), being unaffordable for
large-sized (even mid-sized) instances.

During the 11th DIMACS Implementation Challenge, Zhang-Hua Fu (corre-
sponding author of this paper) and Jin-Kao Hao implemented a dynamic vertex-
swap operator [6], based on which they proposed a local-search heuristic [5],
which won three out of the eight PCSTP competing sub-categories of the DI-
MACS challenge. Actually, the vertex-swap operator contributed significantly to
the outstanding performance of the proposed algorithm. However, its applica-
tion was limited to a number of particular PCSTP instances with uniform edge
costs. In this paper, we extend the previous work in order to develop an efficient
vertex-swap operator which is suitable for more general PCSTP instances, not
only limited to the ones with uniform edge costs. With the aid of dynamic data
structures, the time complexity for evaluating all the O(n2) possible vertex-swap
moves could be reduced from O(n2) ·O(m+n· logn) to O(n) ·O(m· log n). The
details as well as proof of complexity and correctness are given below.

2 Method and complexity
Given a solution T = (VT , ET ) of the PCSTP, two basic move operators (vertex-
addition and vertex-deletion) are commonly used, which adds a vertex v′ /∈ VT to
(respectively, removes a vertex v ∈ VT from) VT , and then tries to reconstruct an
MST denoted by MST(VT ∪ {v′}) (respectively, MST(VT \{v})). Corresponding
to these two move operators, two sub-neighborhoods are defined as follows:

N1(T ) = MST (VT ∪ {v′}),∀v′ /∈ VT ,
N2(T ) = MST (VT \{v}),∀v ∈ VT .

(2)

Based on the above two basic operators, the vertex-swap operator consists of
the following two phases (outlined in Algorithm 1). The solutions are represented
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as dynamic data structures such as ST-trees [7, 8], which takes O(logn) time to
perform basic operations, i.e., searching, removing and inserting an edge.

Algorithm 1 Procedure of evaluating all the O(n2) possible vertex-swap moves.

Input: An MST T = (VT , ET )
Output: Cost difference ∆(v, v′) after swapping any vertices v ∈ VT and v′ /∈ VT

T ∗ ← T //T ∗ always denotes the incumbent solution
for each vertex v ∈ VT (processed in post order) do

T ∗ ← Deletion(T ∗, v) //apply the deletion phase to T ∗ relative to v
TDel ← T ∗

for each vertex v′ /∈ VT do
T ∗ ← Addition(T ∗, v′) //apply the addition phase to T ∗ relative to v′

if T ∗ is a tree then
∆(v, v′)← f(T ∗)− f(T )

else
∆(v, v′)← Null

end if
T ∗ ← TDel //restore the solution before addition (only restore the changes)

end for
T ∗ ← T //restore the original solution (only restore the changes)

end for

Vertex deletion phase: Given an original MST T = (VT , ET ), for a chosen
vertex v ∈ VT , we first remove it from T , together with the edges incident to
v. This operation leads to an minimum spanning forest (MSF) consisting of a
number of sub-trees (consider an MST as a special case of MSF with only one
sub-tree, so as follows), where each sub-tree is an MST. After that, we try to
reconnect the remaining sub-trees as far as possible. To do this, it suffices to
compact each sub-tree into a super-vertex, and then run Kruskal’s algorithm
on the subgraph consisting of all the super-vertices along with edges between
different super-vertices (if there are multiple edges between two super-vertices,
just retain the one with the lowest cost). After this process, we get an MSF
consisting of k (k ≥ 1) sub-trees: T1, T2, · · · , Tk, where each sub-tree is an MST
and there is no edge between any two different sub-trees.

Complexity: As illustrated in Algorithm 1, given an original MST T =
(VT , ET ), each vertex v ∈ VT should be deleted only once. Using the dynamic
data structures slightly adapted from the vertex-elimination operator detailed
in [9], which process the vertices of VT in post order and classify the edges of ET

into horizontal edges (stored in lists) and vertical edges (stored in logarithmic-
time heaps and updated dynamically), the total time complexity of this phase
is bounded by O(m·logn) (proven in [9]).

Vertex addition phase: For a chosen vertex v′ /∈ VT , add it to each sub-
tree Ti (1 ≤ i ≤ k) of the above MSF, to form a new MST. To do this, Spira and
Pan [10] showed that for one sub-tree Ti = (VTi

, ETi
), it is enough to determine
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the MST on sub-graph G′ = (VTi
∪ {v′}, ETi

∪ EN (Ti, v
′)), where EN (Ti, v

′)
denotes the collection of edges connecting v′ to Ti. For each edge e incident to
v′, if e ∈ EN (Ti, v

′), insert e into Ti at first and then check if a cycle is formed.
If so, remove the edge with the highest cost on the cycle [9]. After repeating this
process for every edge e, a new MST is reconstructed (unless infeasible).

Complexity: After performing the vertex deletion phase for each vertex
v ∈ VT , we try to add every vertex out of VT (added one by one) into the
resulting MSF and then eliminate cycles. During this process, at most m edges
would be inserted or removed in total. With the help of ST tree, it takes O(logn)
to insert/remove one edge to/from a sub-tree [7, 8]. Therefore, after deleting each
vertex v ∈ VT , the complexity of adding all the vertices is O(m) ·O(log n). Since
at most O(|VT |) ≤ O(n) vertices should be deleted, the total complexity of the
vertex addition phase is bounded by O(n) ·O(m · log n).

In addition to above two phases, we further analyze the complexity of storage
and restoration. As illustrated in Algorithm 1, we only store and restore the
changed vertices and edges whenever needed, instead of the whole tree. During
the whole procedure, every edge belonging to ET is deleted twice by the vertex
deletion phase, and at most 2|ET | edges are added to connect the sub-trees.
Furthermore, during the vertex addition phase, each edge (in total m edges)
is added at most n times (at most once after deleting each vertex of VT ), and
at most m · n edges are deleted (totally no more than added edges) to eliminate
cycles. It means at most O(m ·n) changes in total should be stored and restored.
Since the complexity for storing or restoring a change is O(1) and O(log n)
respectively, the total complexity of these steps is O(n) ·O(m · log n).

Summary: Given an original MST T = (VT , ET ), the total complexity for
evaluating all the O(n2) vertex-swap based neighboring solutions (Algorithm 1)
is bounded by O(n) ·O(m · log n).

Fig.1 gives an example, where sub-figure (a) is the original graph consisting of
4 customer vertices (drawn in boxes, each with a prize of 1) and 2 non-customer
vertices (drawn in circles). Sub-figure (b) is an initial solution (MST) with an
objective value of 6. Now we show how to swap vertex 2 with vertices 4 and 6
(similar for others). At first, we remove vertex 2 and its incident edges, leading
to a MSF shown in sub-figure (c). Then we run Kruskal’s algorithm to reconnect
these sub-trees (regarding each sub-tree as a super-vertex), leading to the MSF
shown in sub-figure (d), where vertex 1 is reconnected to vertex 5. Furthermore,
to add vertex 4, we add the edge between vertex 1 and vertex 4 first, and add
the edge between vertex 4 and vertex 5, which leads to a cycle. To eliminate
the cycle, we remove the edge between vertex 1 and vertex 5, leading to the
solution shown in sub-figure (e), which is infeasible. Similarly, for vertex 6, we
at first restore the solution before addition of vertex 4, and insert in sequence
three edges (between vertex 6 and vertices 1, 3, 5 respectively), then we remove
the edge between vertex 1 and vertex 5 to eliminate cycle, resulting a MST with
an objective value of 5 (∆(2, 6) = −1), as shown in sub-figure (f).
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(a) the original graph (b) the initial solution (c) remove vertex 2

(d) reconnect the forest (e) add vertex 4 (infea-
sible)

(f) add vertex 6 (feasi-
ble)

Fig. 1: Example showing how to apply the swap-vertex move operator

3 Proof of correctness

Now we prove that using above dynamic techniques, the final solution after
swapping any pair of vertices is necessarily an MST (unless being a forest).

Lemma 1. Given an MST T = (VT , ET ), performing the vertex deletion
phase with respect to vertex v ∈ VT would lead to an minimal spanning forest
(MSF), consisting of k ≥ 1 sub-trees (denoted by T1, T2, · · ·Tk respectively, and
each is an MST).

Proof: Proven in [11]. ■

Lemma 2. For any vertex v′ /∈ VT , if v′ can be connected to sub-tree
Ti(1 ≤ i ≤ k), after performing the vertex addition phase, Ti would become a
new MST denoted by T ′

i (VT ′
i
= VTi ∪ {v′}).

Proof: Proven in [9]. ■

For lemma 3 to lemma 5, we consider two trees (unnecessarily MSTs) T ′
i =

(VT ′
i
, ET ′

i
) and T ′

j = (VT ′
j
, ET ′

j
), which satisfy the following two conditions:

(1) v′ is the only common vertex between VT ′
i

and VT ′
j
, i.e., VT ′

i
∩VT ′

j
= {v′}.

(2) there is no direct edge between VT ′
i
\{v′} and VT ′

j
\{v′}.

Lemma 3. By merging T ′
i and T ′

j , the resulting graph G′ = (VG′ , EG′) =
(VT ′

i
∪ VT ′

j
, ET ′

i
∪ ET ′

j
) is a tree.

Proof: (1) T ′
i and T ′

j are both trees, thus any vertex h ∈ VT ′
i
\{v′} (g ∈

VT ′
j
\{v′}) is connected to v′, implying that any two vertices of VT ′

i
∪ VT ′

j
are

connected. (2) T ′
i and T ′

j are both trees, and v′ is the only common vertex, so:
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|VG′ | = |VT ′
i
|+ |VT ′

j
| − 1,

|EG′ | = |ET ′
i
|+ |ET ′

j
|

= |VT ′
i
| − 1 + |VT ′

j
| − 1

= |VG′ | − 1

Above information indicates that G′ is a tree. ■

Lemma 4. Any tree Tany based on vertex set VT ′
i
∪ VT ′

j
can be exactly

partitioned into two sub-trees based on vertex set VT ′
i

and VT ′
j

respectively.
Proof: (1) Tany is a tree, thus no cycle exists among VT ′

i
∪ VT ′

j
, so no cycle

exists among VT ′
i

and VT ′
j
. (2) Now we prove that any two vertices h, g ∈ VT ′

i

can be connected only via vertices of VT ′
i
. Since Tany is a tree, there must be

one and only one path connecting h and g. Assume another vertex l ∈ VT ′
j
\{v′}

appears on this path, since there is no edge between VT ′
i
\{v′} and VT ′

j
\{v′}, v′

must appear on the path from h to l, so does on the path from l to g, leading
to a cycle (v′ appears twice), contradicting to the statement that Tany is a tree,
indicating VT ′

i
is internally connected. Similarly, VT ′

j
is internally connected. ■

Lemma 5. If T ′
i and T ′

j are both MSTs with cost CT ′
i
=

∑
e∈ET ′

i

ce = Cmin
T ′
i

and CT ′
j
=

∑
e∈ET ′

j

ce = Cmin
T ′
j

respectively, the graph G′ formed by merging T ′
i

and T ′
j is also an MST with cost CG′ =

∑
e∈EG′ ce = Cmin

T ′
i

+ Cmin
T ′
j

.

Proof: (1) According to lemma 3, G′ is a tree with cost CG′ = Cmin
T ′
i

+Cmin
T ′
j

.
(2) According to lemma 4, any solution Tany based on vertex set VT ′

i
∪ VT ′

j
can

be exactly partitioned into two sub-trees based on vertex set VT ′
i

and VT ′
j
, so its

cost Cany ≥ Cmin
T ′
i

+ Cmin
T ′
j

= CG′ , implying that the cost of G′ is minimized. ■

Theorem 1. Given an initial MST T = (VT , ET ), after performing the
procedure illustrated in Algorithm 1, the final solution after swapping a pair of
vertices v ∈ VT and v′ /∈ VT is necessarily an MST (unless infeasible).

Proof: (1) According to lemma 1, applying the vertex deletion phase respect
to vertex v ∈ VT leads to a MSF consisting of k ≥ 1 sub-trees T1, T2, · · · , Tk

(each is an MST). (2) Assume v′ /∈ VT can be connected to every sub-tree
obtained above (otherwise, the solution after swapping v with v′ is a forest,
being infeasible), according to lemma 2, after applying the vertex addition phase
with respect to vertex v′, each sub-tree Ti(1 ≤ i ≤ k) becomes a new MST T ′

i .
(3) Note that any two sub-trees T ′

i and T ′
j (1 ≤ i ̸= j ≤ k) satisfy the two

conditions mentioned before lemma 3. According to lemma 5, the graph formed
by combining T ′

i and T ′
j is an MST. By induction, the whole graph formed by

combining T ′
1, T

′
2, · · · , T ′

k is an MST (unless infeasible). ■
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4 Conclusion

This paper develops an efficient vertex-swap operator for the prize-collecting
Steiner tree problem (PCSTP), which is applicable to general PCSTP instances
with varied edge costs, not only limited to instances with uniform edge costs. A
series of dynamic data structures are integrated to guarantee that the total time
complexity for evaluating all the O(n2) possible vertex-swap moves is bounded
by O(n) · (m·logn), instead of the complexity O(n2) ·O(m+n·logn) by running
Kruskal’s algorithm from scratch after swapping any pair of vertices (with the
aid of a Fibonacci heap). We also prove that using the developed techniques, the
resulting solutions are necessarily minimum spanning trees (unless infeasible).
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