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Abstract. Deep Convolutional Neural Network (CNN), which is one of
the prominent deep learning methods, has shown a remarkable success in
a variety of computer vision tasks, especially image classification. How-
ever, tuning CNN hyper-parameters requires expert knowledge and a
large amount of manual effort of trial and error. In this work, we present
the use of CNN on classifying good quality images versus bad quality
images without understanding the image content. The well known data-
sets were used for performance evaluation. More importantly we propose
a hyper-heuristic approach for tuning CNN hyper-parameters. The pro-
posed hyper-heuristic encompasses of a high level strategy and various
low level heuristics. The high level strategy utilises search performance
to determine how to apply low level heuristics to automatically find an
appropriate set of CNN hyper-parameters. Our experiments show the ef-
fectiveness of this hyper-heuristic approach which can achieve high accu-
racy even when the training size is significantly reduced and conventional
CNNs can no longer perform well. In short the proposed hyper-heuristic
approach does enhance CNN deep learning.

Keywords: Hyper-Heuristics · Deep Learning · CNN · Optimisation.

1 Introduction

Deep learning is a fast growing area in Artificial Intelligence as it has achieved
remarkable success in many fields apart from the well publicised Go player - Al-
phaGo [1]. These fields include real time object detection [2], image classification
[3] and video classification [4]. It also performed well in speech recognition [5]
and natural language processing [6]. Major deep learning methods are Convo-
lutional Neural Network, Deep Belief Network and Recurrent Neural Network.
One of the problems of these deep learning methods is the configuration of the
learning process because these learning algorithms are sensitive to parameters
and a good performance is often the result of a good parameter combination.
However finding a good combination is not a trivial task. For example the pa-
rameters in Convolutional Neural Network typically involve batch size, drop out
rate, learning rate and training duration. They all can significantly impact the
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learning performance of deep learning on a particular task. In this study we will
address this issue by introducing a hyper-heuristic approach to automatically
tune these parameters. The particular problem in this study is image classifica-
tion. We would like to train a deep network classifier to differentiate good quality
images versus bad ones regardless the image content. The problem itself is novel.

Image Classification has been studied of many decades and is one of the
key areas in computer vision. The task of image classification is to differentiate
between images according to their categories. Image classification usually has
a set of targets for example handwritten digits in images[7], human faces ap-
peared on photos [8], various human behaviours captured in video image frames
[9] and target objects like cars and books. However, in many real world scenar-
ios, image quality, which is independent of image content, is also of significant
importance. It is highly desirable that good photos can be separated from bad
photos automatically. Bad images then could be improved or rejected from an
image collection so less resources would be consumed. An extension on this is
to even automatically select aesthetic images. The aim of this study is the first
step, utilising deep learning to differentiate good images from images of obvious
poor quality such as blurred images and noisy images. In particular the research
goal of this study is to answer the following questions:

1. How to formulate deep learning to differentiate between images of good
quality and images of bad quality without understanding the image content?

2. To what extend the training samples can be reduced while still maintaining
good accuracy in classifying good vs bad images?

3. How to automatically tune the deep learning parameters to achieve good
classification results?

Hence our investigation is also organised in three components. The first part
is try to determine a suitable convolutional network structure as a classifier for
good and bad images. Secondly, we study the impact of the training size on the
classification performance. Thirdly, a hyper-heuristic approach is introduced to
evolve the appropriate parameter combinations.

In Section 2 the image datasets are introduced. Section 3 describes the deep
learning methodology while Section 4 describes the hyper-heuristic methodology.
Section 5 shows the experiments with results. The conclusion is presented in
Section 6.

2 Image Data Sets

In this study the well know image classification benchmark, the MNIST dataset is
used to represent the good images [7]. MNIST is a standardized image collection
which consists of handwritten digits from 0 to 9. Each digit is a 28x28 pixel
gray scale image. MNIST comes with a training set which consists of 60000 such
images of digits and a test set which contains 10000 similar images.

A variation of MNIST dataset which is called noisy MNIST or n-MNIST, is
used to represent the bad images [10]. There are three subsets of n-MNIST:
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1. MNIST with motion blur

2. MNIST with additive white gaussian noise(awgn)

3. MNIST with AWGN and reduced contrast.

These datasets are the exact replicas of original MNIST but with additional
noise. Each image in n-MNIST is also 28x28 gray scale. There are 60000 training
examples and 10000 test examples. The labels in training and test data-sets are
hard encoded, e.g. each label is a 1× 10 vector.

Fig. 1. Example of images from
MNIST Dataset[11]

Fig. 2. Example of images from
Motion Blur Dataset.

Fig. 3. Example of images from
AWGN Dataset

Fig. 4. Example of images from
Additive White AWGN Dataset.

The MNIST with motion blur filter is created by imitating a motion of came
by 5 pixels with an angle of 15 degrees which makes the filter a vector for hori-
zontal and vertical motions. The MNIST with AWGN is created by introducing
additive white Gaussian noise with signal to noise ratio of 9.5. The MNIST
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with reduced contrast and AWGN is created by introducing contrast range with
AWGN with signal to noise ratio of 12 [10].

3 Deep Learning Methodology

In this study, we use the well-know convolutional neural network (CNN) through
Keras and Tensorflow. Keras is a high-level neural network API which is built on
top of Tensorflow. With keras, we can define models with different standalone
configurable modules which then can be combined to form a neural network
model. Tensorflow is a deep learning library developed by Google [12]. Tensorflow
is a directed graph which consists of nodes and it also maintain and update the
state of the node. Every node has zero or more input and zero or more outputs.
Value flow among the node to node and values are arbitrary long arrays called
tensors. An example of a tensor graph is shown in figure 5. That is a simple
equation of cost computed as a function of rectified Linear Unit(ReLu) in which
the matrix of weights W and input x are multiplied then adding a bias b.

Fig. 5. A Tensorflow Computation Graph[13]

For our image classification tasks, we use two 2D convolution layers (convo-
lution2D), with a 2D max pooling layer (MaxPooling) placed after the second
convolution layer. The output of MaxPooling is flattened to a one dimensional
vector which will be passed through a fully connected dense layer. The dense
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layer and a drop out layer are introduced after the MaxPooling2D layer to pro-
duce better generalization. For all the layers the Rectified Linear Unit (ReLu)
activation is used. The output of dense layer uses the softmax activation for
probabilistic classification.

The hyper-parameters of the CNN learning are listed below. The optimization
target in this study is to find a good combination of these hyper-parameters and
ultimately lead to a better accuracy:

1. The batch size - the number of training examples used in one iteration.

2. The number of epochs - representing the number of iteration over the entire
data set.

3. The number of neurons in the fully connected layer.

4. Drop out probability

5. The learning rate

6. The Rho factor

7. The epsilon factor

During the learning, we split the training data into a training set and a
validation set. Validation data consist of 20% of the original training set and
the training set uses the rest. During training, the validation loss is monitored.
When it stops decreasing or starts increasing then the training will terminate to
avoid over-fitting.

Once the learning is terminated, the trained network will be applied on the
test image set to obtain test accuracy. The accuracy in this study is simply
classification accuracy which is calculated as

Accuracy =

∑
True Positive+

∑
True Negative

Total number of Images
(1)

There are other ways to evaluate the model, for example ROC, F-measure and
MSE. Only classification accuracy measure described above is used for simplicity
reason. Also our image datasets are quite balanced and true and false cases are
equally important. Hence training and test accuracies are sufficient to guide the
learning and to indicate the performance of learned models.

Our second aim is to see how training size would impact the learning. It
is obvious that the computational cost will be less if the training set is small.
However a data set, which is too small, would not be representative enough to
enable good learning. Therefore it is important to find the right balance between
good performance vs computational cost, especially in real world applications.
In this study we try to find minimum size for training which can still lead to
reasonable test performance. Logarithmic scale is used here, in the order of 2n,
2n−1, 2n−2, until 23 and 22.

Note the size reduction only applies on the training data. The test set, which
contains 10000 MNIST images (good) and 10000 n-MNIST images (bad), is
consistently used in all experiments. Only test accuracy is used to report the
learning performance unless specified otherwise.
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4 Hyper-heuristic Parameter Optimisation

hyper-heuristics have been proposed for selecting and generating heuristics to
solve a particular problem [14]. It has been successful in many different fields
[14], [15], [16], [17], [18], [19], [20]. The aim of hyper-heuristic is to find and
assemble good optimisation heuristics. Different operations or techniques can be
introduced as heuristics so the overall optimisation could be more effective and
more efficient.

Hyper-heuristic often begins from randomly generated initial solution and
then iteratively improve the solution. A traditional selection hyper-heuristic ap-
proach has two key components: low level heuristics and high level strategy. The
low level heuristics operate on the solution space. The quality of solution is be-
ing evaluated by the objective function from the domain. Whereas high level
strategy operate on the heuristic space. It will form heuristics to improve the
result and secondly it will also determine whether to accept or reject the gen-
erated solution by the acceptance criterion. The components of this framework
are briefly described below:

4.1 High Level Strategy

The high level strategy uses the past search performance of low level heuristics
to decide which heuristic should be applied at each decision point. It selects
one from a pool of heuristics in the low level. This work uses the Multi-Armed
Bandit(MAB) as an on-line heuristic selector [21], [22]. MAB is based on the
record of past performance, e.g. the performance in previous iterations. The
record stores an empirical reward and confidence level. The former is the average
rewards achieved by that heuristic. The confidence level is the number of times
that the heuristic has been selected. The higher values of these two scores indicate
better quality of the heuristic [23]. MAB goes through all heuristics one by one
and selects the one which returns the maximum value when applied Equation
(2).

arg max
i=LLH1...LLHn

qi(t) + c

√√√√2log
∑LLHn

i=LLH1
ni(t)

ni(t)

 (2)

where LLHn is the total number of heuristics in the low level, ni(t) is number

of times that ith heuristic has been applied up to time t and qi(t) is the empirical

reward of the ith heuristics up to time t which is calculated as follows: qi(t)=qi(t)
+ ∆, where ∆ is the difference between the quality of the old and new solutions.

4.2 Acceptance Criterion

Acceptance criterion is in the high level and is independent of the domain. Monte
Carlo acceptance criterion is used in this study [17]. A solution that improve the
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objective function will be accepted if the following condition is met [23].

R < exp(∆f) = exp(ft − ft−1) (3)

where R is the random number between [0,1] and ∆f is the difference between
performance at (t− 1)th and (t)th iterations.

4.3 Low level heuristics

In this work, 18 heuristics are included in the low level. Every heuristic has
different characteristics hence may lead to different search behaviours. We use
the following six heuristics to form the set of low level heuristics. Each heuristic
is used in several ways to change one, two, three, real values parameters only,
integer parameters only or all parameters.

Parametrised Gaussian Mutation

Xi = Xi +N(0, σ2) (4)

where σ2 is 0.5 times the standard deviation [23].
There another three operators which are the same as above but with different

σ values ranged from 0.2, 0.3 and 0.4 of the standard deviation.

Differential Mutation

Xi = Xi + F × (X1i −X2i)∀i = 1...n (5)

where Xi is the decision variable for a given solution and X1i is the best solution
and F is the scaling factor[23].

Arithmetic Crossover

Xi = λ×Xi + (1− λ)×X1i,∀i = 1...N (6)

where λ is random number with range 0 to 1. Xi is the current solution and X1i
is the current best solution [23].

4.4 Initial Solution

This in our study is a set of CNN parameters that need to be tuned. These
parameters are represented as an array. Each parameter initially is randomly
generated. The random function is as follows:

xp = lp +Randp(0, 1)× (up − lp), p = 1...p (7)

where p is the total number of parameters to be tuned. Randp returns a random
number within 0 and 1. lp and up are lower bound and upper bound respectively
for that parameter[23].
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5 Experiments and Results

The first set of experiments are for image classifications. There are two most
commonly used optimisers that were studied, namely Adam and Adadelta. In
[24], it was mentioned that Adam and Adadelta provide the best convergence
during the learning process. Table 1 show the classification performance on noisy
MNIST sets with these two optimisers. The learning rate was set as 0.2 for
all experiments. This preliminary experiments show that Adadelta can achieve
better accuracy in comparison with Adam.

Table 1. Experiment with training on MNIST and testing on n-MNIST

Datasets Optimiser Learning Rate Train Accuracies Test Accuracies Epochs

mnist-m-b Adam 0.2 0.9828 0.9631 4

mnist-m-b Adadelta 0.2 0.9732 0.9660 4

mnist-awgn Adam 0.2 0.9810 0.7023 4

mnist-awgn Adadelta 0.2 0.9737 0.7897 4

mnist-rc-awgn Adam 0.2 0.9814 0.5287 4

mnist-rc-awgn Adadelta 0.2 0.9740 0.6676 4

After a range of preliminary experiments, we settled on the settings include
the optimisation algorithm, learning rate, drop out rate and number of neurons
in the dense layer to start our experiment on classifying the noisy-MNIST and
MNIST images. The images for training data are more than 60,000. We decrease
the data size by half starting from 216 = 65540 images to see the impact on
test accuracy. For each size we repeat the experiment 30 times. The results are
shown in Table 2 including the average training accuracies and test accuracies
of the 30 runs. The epochs are all set as 10 to be consistent.

As we can see from Table 2, the classification performance between training
on 65540 images and 512 images are not much different, meaning 512 is sufficient
for training image classifiers to recognise good quality images. The drop in per-
formance between 512 and 64 images is not major as well. The set of 32 images
starts showing significant performance loss indicating more training images are
required. When the training size is as small as 4, the test accuracy becomes 50%
which is pretty much random guessing for this binary classification task.

The above experiments confirm that the size of training dataset does im-
pact on training. In the next set of experiments the hyper-heuristic approach
presented in Section 4 is added in the learning process to tune the network
parameters. The results are shown in Table 3 which listed the average test accu-
racies of 30 runs on training set of size 512 to that of size 4. Sizes above 512 are
not included as the results from these sets would be all similar and close to 100%.
For comparison purposes, the test results of training without the hyper-heuristic
approach from Table 2 are repeated in the middle column of Table 3 .
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Table 2. Experiment with different training sizes

Training Size Training Accuracies Test Accuracies Epochs

65540 0.9999 1.0 10

32770 1.0 1.0 10

16384 0.9999 1.0 10

8192 0.9998 1.0 10

4096 0.9979 0.9998 10

2048 0.9866 0.9917 10

1024 0.9639 0.9922 10

512 0.9043 0.9910 10

256 0.7500 0.9891 10

128 0.6078 0.9898 10

64 0.7031 0.9824 10

32 0.7600 0.7905 10

16 0.5625 0.6959 10

8 0.5205 0.6469 10

4 0.5000 0.5022 10

Table 3. Experiment with different training size using hyper-heuristic approach

Size of Training Data Test Accuracies (No HH) Test Accuracies (with HH)

512 0.9910 0.9990

256 0.9891 0.9990

128 0.9898 0.9988

64 0.9824 0.9911

32 0.7905 0.9165

16 0.6959 0.9068

8 0.6469 0.6872

4 0.5022 0.5211

From test accuracies listed in Table 3 we can see the big improvement intro-
duced by the hyper-heuristics approach on sizes 32 and 16. For larger size there
are still performance increases but there are not much room for improvement.
For smaller size like size 4, the sample is too few to be learnable hence the pa-
rameter tuning could not be much of help. This result indicates that with the
hyper-heuristic tuning approach, it is possible to reduce the required training
size. For applications of which training examples are few or expensive to obtain,
our parameter optimisation could be very helpful.

To investigate the computational cost of the parameter optimisation, we also
measured the running time of the above experiments which were all conducted
on a machine with Intel core i3 with processor 1.90GHz, 4.00 GB RAM and
64-bit Windows 10. The results are presented in Figure 6 which shows the av-
erage time in seconds of 30 runs of learning on sizes 4, 8 up to 128, with and
without the hyper-heuristic parameter optimisation. As can be seen on the fig-
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ure, the optimisation process does take extra time. However the time increase
is acceptable, maximum of a double time in the case of 128 training images. In
comparison, exact methods for combinatorial optimisation are too expensive to
be practical.

Fig. 6. Comparison on Running Time with and without Hyper-Heuristic Optimization

Fig. 7. Test accuracies with and without Hyper-heuristic Parameter Optimisation
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From the above experiments we can see the hyper-heuristic approach can
greatly improve learning without requiring too much extra computational re-
sources. To further illustrate the differences realised by our hyper-heuristic ap-
proach, the test performance on different sizes are plotted as in Figure 7. The
lines represent the average of 30 runs, while the bars on size 4 to size 64 are the
standard deviation of these 30 runs of using and without using hyper-heuristic
optimisation. As can be seen in this figure, the gap at size 16 and at size 32 are
significant. To verify the significance, T-tests are conducted on test accuracies
on size 16 which resulted a p-value of 0.000002, and on size 32 which resulted
a p-value of 0.000025. These p-values are way below the null hypothesis thresh-
old 0.05, showing the differences that hyper-heuristic optimisation made on test
performance are indeed significant.

6 Conclusions

In this work, we utilised deep learning to classify images of good quality versus
images of poor quality without understanding or examining the image content.
Based on our investigation using MNIST and n-MNIST benchmark, we can con-
clude that deep learning with convolutional neural networks can handle this
type of image classification tasks and can achieve high performance with suf-
ficient amount of training images. Our study also confirms that the learning
performance is affected by training size. Learning image quality classifiers does
not need large amount of samples. However the learning would still suffer if the
training set is too small.

Another important part of this study is introducing hyper-heuristic approach
based parameter optimisation to automatic configure the learning. Through our
experiments it is clear that this optimisation method can improve the learning
especially when the training size is not sufficient but not too few. Furthermore,
the additional computational cost introduced by our hyper-heuristic method is
not too expensive. That makes this method attractive especially in real world
applications where training samples might be expensive or difficult to obtain.
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