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Abstract. This paper presents a hybrid algorithm employed to reduce the 

weight of an electric motor, designed for electric vehicle (EV) propulsion. The 

approach uses a hybridization between Cuckoo Search and CMAES to generate 

an initial population. Then, the population is transferred to a new procedure 

which adaptively switches between two search strategies, i.e. one for explora-

tion and one for exploitation. Besides the electric motor optimization, the pro-

posed algorithm performance is also evaluated using the 15 functions of the 

CEC 2015 competition benchmark. The results reveal that the proposed ap-

proach can show a very competitive performance when compared with different 

state-of-the-art algorithms. 

Keywords: electric motors, hybridization, Cuckoo Search, CMAES. 

1 Introduction 
Metaheuristics are widely used to solve complex optimization problems within a 

reasonable time. According to [3], most of metaheuristics have the common following 
characteristics: they are nature-inspired, and based on stochastic components (random-
ness). Besides, a balance should be preserved between the diversification and exploita-
tion phases [5]. Otherwise, metaheuristics would suffer from falling in local optima 
(weak diversification) or from slow convergence (weak exploitation). To overcome 
these limitations, hybridization between different algorithmic components appears to 
be an appropriate choice. Hybrid metaheuristics have attracted a lot of attention from 
researchers to solve optimization problems. It has been proven that choosing an appro-
priate combination of algorithmic concepts can lead to a successful solving of many 
hard optimization problems [2].  

In this paper, we propose a hybrid algorithm to optimize the weight of electric mo-
tors within electric vehicles. The hybridization is based on a CMAES-enhanced Cuck-
oo Search (CS) which provides a well distributed initial population. Then, the popula-
tion is transferred to a surrogate model-based LSHADE to optimize the solutions ob-
tained so far. 

LSHADE is a recent version of differential evolution algorithm (DE) that incorpo-
rates success-history based parameter adaptation [17] with Linear Population Size 
Reduction (LPSR) [18]. The main motivation for using LSHADE as the main optimiz-
er is its high adaptability when solving many optimization problems [1]. In addition to 
that, LSHADE ranked first at the CEC 2014 competition.  However, our approach 
relies on a modification of this algorithm, where we aim to improve its exploration 
capability by integrating the K-means clustering algorithm to generate the central indi-
viduals of a given population. Then, we apply a Lévy Flight movement on them to 
generate new individuals. The proposed approach is evaluated using the 15 test func-
tions of the CEC 2015 benchmark and it is compared with LSHADE, DE and Cuckoo 
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Search (CS). This experimentation shows that our proposition obtains very competitive 
results on the electric motor problem at hand and on the CEC 2015 benchmark.  

 
The rest of this paper is organized as follows. In Section 2, the electric motor prob-

lem is discussed. In Section 3, the algorithmic components of our proposition are pre-
sented. In Section 4, our approach is explained in details. Then, the results are dis-
cussed in section 5. Finally, Section 6 concludes the paper. 

2 Electric Motor Design 

Here the application under study is introduced. The hybrid optimization approach 
will be applied to optimize the design of an electric motor used to propel an electric 
vehicle (EV). Concerning the EV application one can observe that from the first hybrid 
vehicle in series production, the Toyota Prius Hybrid, have past about 20 years. At that 
time, the permanent magnet synchronous machine (PMSM) used to propel the hybrid 
vehicle was designed at 6 000 r/min. The PMSM structure from today’s Prius Hybrid 
has a double speed, 12 000 r/min. Moreover, for all other manufacturers, the electric 
motors used for the traction present a speed level in the same range: BMW-i3 is run-
ning at a top speed of 11 400 r/min, Renault-Zoe at 11 300 r/min, etc.. The idea of 
increasing the speed of the electric propulsion is due to the improved power density 
(i.e., power/weight ratio) of the high speed traction motor: the higher the speed of the 
motor, the better the power density. Since the power density is improved, meaning that 
for the desired out power, the weight of the machine is reduced, the operation range 
(the main drawback of electric vehicles today), meaning the autonomy of the electric 
car, can be increased [7, 6]. Also, by reducing the weight and consequently the volume 
of the electric motor, one could consider to increase the capacity of the supplying bat-
tery, again, with a clear advantage on terms of vehicle’s autonomy. 

For the above reasons our interest was to find the best suited motor topology, ca-

pable to run at higher speeds. We have established the desired output power, which is 

20kW, while the motor is supplied from a battery of 380 Vdc. In Fig. 1 is presented 

the 3D view of the high speed PMSM which was designed to run at 22 000 r/min and 

where one can identify the main components of the active parts of the machine, mean-

ing: the stator and rotor parts, the inset permanent magnets (PMs) with the appropriate 

polarity. All the calculation of the obtained performances are made on the length of 

the machine (Lm in Fig.1). The analysis with respect to the obtained performances of 

the designed highs-speed PMSM is carried out with a numerical finite element meth-

od (FEM). Based on this one will get the electromagnetic and mechanical perfor-

mances. This analysis stands for validation of the analytical design of the machine 

and will also be used to verify the optimized results proposed by our optimization 

approach. In Fig.2 is presented, in several slices on the length of the machine, the flux 

density repartition while the machine is running at high speed. Based on this analysis 

we can see which machine’s iron regions present a risk of saturation. Since we are 

using very good steel, we can conclude that the machine is not oversaturated.  

The structure is designed to have only 2 magnetic poles. Since the frequency of the 

supply is proportional to the machine’s magnetic poles and since the iron losses of the 

machine are proportional to the square of the frequency, it means that the machine 

efficiency is drastically affected by the frequency/poles values. Thus, having the low-
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est possible number of poles will offer the possibility to reduce at maximum the fre-

quency of the machine, and finally to have the most appropriate magnetic configura-

tion. And from this point on, we can consider to optimize the structure itself in order 

to obtain the best power density (power/weight ratio). 

 

                      
(a) (b) 

Fig. 1. (a) 3D view of the considered high-speed PMSM; (b) Numerical FEM analysis for flux 

density distribution on the high-speed PMSM 
 

3 Approach components 

We provide in this section a brief presentation of the algorithmic components used in 

our proposition.  

3.1 CMA-ES 

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a class of evolu-

tionary algorithms where the new population is generated by sampling from a proba-

bility distribution constructed during the optimization process. CMA-ES is briefly 

explained in Algorithm 1.  

Algorithm 1: Pseudocode of CMA-ES algorithm 

1.   λ ← number of samples per iteration 
2.   μ ← number of recombination points 
3.   Initialize state variables m, σ, C = I, pσ  = 0, pc  = 0 
4.   Repeat 
5.      For i = 1 to λ do 
6.           xi

(t+1)← sample ith solution according to (1) 
7.           fi     ← evaluate ith solution 
8.      End for 
9.      Sort the new solutions and find the first μ solutions 
10.    m(t+1)  ← update the mean value according to (2) 
11.    pc

(t+1)← update anisotropic evolution path according to (4) 
12.    C(t+1)← update the covariance matrix according to (5) 
13.    pσ

(t+1)← update isotropic evolution path according to (6) 
14.    σ(t+1)← update the step size using isotropic path length  according to (7) 
15.  Until (stopping condition = true) 

In this algorithm, solutions are generated using a multivariate normal distribution N 

with mean m and a covariance C. According to [11], a new solution 𝑥𝑡+1 is generated 

as follows: 

 𝑥𝑡+1 =  𝑚𝑡 + 𝜎𝑡𝑁(0, 𝐶𝑡)  (1) 

 𝑚𝑡 = ∑ 𝑤𝑖𝑥𝑖:𝜆
𝑡𝜇

𝑖=1   (2) 

Shaft 

Stator 

Lm 

PM+ 
Rotor 

PM- 
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  𝑤𝑖 = log (𝜇 +
1

2
) − log(𝑖) , ∑ 𝑤𝑖

𝜇
𝑖=1 = 1  (3) 

where 𝑚𝑡 is the weighted mean of the 𝜇 best solutions,  𝑥𝑖:𝜆
𝑡  is the tth ranked individual, 

𝜆 is the number of samples, 𝜎𝑡 is the step size parameter. Besides, a covariance matrix 
𝐶𝑡  is adapted using an evolution path 𝑝𝑐

𝑡+1. It is generated with the following equa-
tion: 

  𝑝𝑐
𝑡+1 = (1 − 𝑐𝑐)𝑝𝑐

𝑡 + √𝑐𝑐(2 − 𝑐𝑐) √𝜇

𝜎𝑡 (𝑚𝑡+1 − 𝑚𝑡)  (4)                                         

          𝐶𝑡+1 = (1 − 𝑐𝑐𝑜𝑣)𝐶𝑡 + 𝑐𝑐𝑜𝑣𝑝𝑐
𝑡+1(𝑝𝑐

𝑡+1)𝑇  (5) 

where 𝑐𝑐  and 𝑐𝑐𝑜𝑣  ∈ [0, 1] are learning rates for 𝑝𝑐
𝑡+1 and 𝐶𝑡+1 respectively.  

Moreover, the step size parameter is updated through the evolution path 𝑝𝜎
𝑡+1 as below: 

          𝑝𝜎
𝑡+1 = (1 − 𝑐𝜎)𝑝𝜎

𝑡 + √𝑐𝜎(2 − 𝑐𝜎)√𝜇𝐵𝑡𝑚𝑡+1  (6) 

where 𝑐𝜎  is a learning rate controller, and 𝐵𝑡  is the normalized eigenvectors of 𝐶𝑡. 
Then, 𝜎𝑡+1is updated as follows: 

         𝜎𝑡+1 =  𝜎𝑡exp (
||𝑝𝜎

𝑡+1||−𝑇𝑛

𝑑𝜎𝑇𝑛
)  (7) 

          𝑇𝑛 =  √𝑛(1 −
1

4𝑛
+

1

21𝑛2)  (8) 

where n represents the problem dimension and 𝑑𝜎>1 is a damping parameter. 

3.2 Cuckoo Search  
Cuckoo search (CS) is an optimization algorithm that simulates brood parasitism of 
cuckoo birds [19]. These birds lay their eggs in other bird’s nests. When host birds find 
the foreign eggs, they will either throw them, or abandon the nest. Following this mod-
el, each egg represents a solution, and each new solution is represented by a cuckoo 
egg. Cuckoo bird replaces bad eggs in the host nest with better feasible eggs. Moreo-
ver, CS algorithm simulates the food foraging process of many animals and insects [8]. 
Commonly, the foraging path of animals is a random walk where the next move de-
pends on the actual location and the transition probability to the next location. Howev-
er, Lévy flight random walk is proved to be more efficient for searching [8]. In CS, a 
balanced combination of local random walk and a global random walk is obtained 
through a switching parameter 𝑃𝑎.  The local random walk is written as: 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑠⨂𝐻(𝑃𝑎 − 𝜖)⨂(𝑥𝑗
𝑡 − 𝑥𝑘

𝑡 )  (9) 

where ⊗ represents entry-wise multiplications 𝑥𝑗
𝑡 , 𝑥𝑘

𝑡  are solutions randomly selected 

and H is heaviside function. 𝜖 and s are random numbers generated from a uniform 
distribution. The global random walk is handled using Lévy flights: 

 𝑥𝑖
𝑡+1 = 𝑥𝑖

𝑡 + 𝑎 ⊗ Lévy (β)  (10) 

where  

 a =  𝑎0  ⊗ ((𝑥𝑗
𝑡 − 𝑥𝑖

𝑡) )  (11) 

 Lévy (β) =
𝑢

|𝑣|1/β  (12)  

𝑎0 is a step size scaling factor and β is Lévy Flights exponent. Finally, 𝑢 and 𝑣  are 

two numbers with zero means and associated variance. Indeed, using Lévy Flights 
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and combining local and global search capabilities makes CS a very efficient algo-

rithm. CS pseudo-code is presented in Algorithm 2. 

Algorithm 2: Pseudocode of CS algorithm 

1. Initialize a population of n host nests  xi (i=1,2…. n) 
2. While stop criterion is not reached 

3.     Get a cuckoo (say i) randomly and generate a new solution according to (10) 

4.     Evaluate its fitness Fi 

5.     Choose randomly a nest among n (say j ) 

6.     If ( Fi  <   Fj  ) 

7.           Replace j by the new solution 
8.     End 

9.     Abandon a fraction (pa) of worse nests 

10.     Build new nests according to (9) 
11.     Keep the best solutions among the current nests and the new generated ones 

12.     Rank the solutions and find the current best 

13. End while 

 

3.3 K-means 

K-means is a widely used clustering algorithm. The parameter K is a given integer 

representing the number of centers. The algorithm assigns each point from a given set 

of points to the nearest center among the K centers [14]. Algorithm 3 presents the 

pseudo-code of K-means. 

Algorithm 3: Pseudocode of K-means algorithm 

1. Input: A data set D 
2. Output: K clusters 
3. Choose k centers C1, C2, … Ck randomly from n points (X1, X2, .. Xn) 
4. Assign point XI, i=1,2, …, n to the nearest center CJ,  j∈{1, 2, ...,k } 
5. Compute new cluster centers as follows: 

6.   Ci
∗ =

1

|Ci|
∑ Xj, i = 1, 2, … , kXj∈Ci

 

7. Stop if termination criterion is satisfied. Otherwise, continue from step 3 

3.4 LSHADE 

LSHADE is an adaptive version of differential evolution algorithm (DE). It incorpo-

rates success-history-based parameter adaptation [17] with Linear Population Size 

Reduction (LPSR) [18]. The convergence performance of LSHADE is improved by 

using the mutation strategy current to-pBest/1/bin [20] to generate mutant vectors. It 

is proved that this strategy is very efficient for the generation of high quality individ-

uals [20]. 

Current to-pBest/1/bin is expressed as follows: 

 𝑣𝑖,𝑔 =  𝑥𝑖,𝑔 + 𝐹(𝑥𝑏𝑒𝑠𝑡,𝑔 − 𝑥𝑖,𝑔) + 𝐹(𝑥𝑟1,𝑔 − 𝑥𝑟2,𝑔)  (13) 

where 𝑥𝑏𝑒𝑠𝑡,𝑔 is a randomly selected parent from the top best individuals of the cur-

rent individuals. To maintain the diversity of the population, an archive A is proposed. 

The parent solutions that are not selected are added to this archive. Moreover, suc-

cess-history-based parameter adaptation is a mechanism used to store successful CR, 

F values that performed well in the past generations. After the generation of a new 

trial vector ui, it is compared with its parent. If ui  is better, then the CR and F parame-
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ters are stored in the sets SCR, SF respectively. Finally, the memories MCR and MF are 

updated using these successful parameters according to the following equations: 

 𝑀𝐶𝑅 = {
𝑚𝑒𝑎𝑛𝑤𝐴(𝑆𝐶𝑅) 𝑖𝑓 𝑆𝐶𝑅  ≠  ∅ 

𝑀𝐶𝑅                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
  (14) 

 𝑀𝐹 = {
𝑚𝑒𝑎𝑛𝑤𝐿(𝑆𝐹)      𝑖𝑓 𝑆𝐹  ≠  ∅ 

     𝑀𝐹                        𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒    
  (15) 

where 𝑚𝑒𝑎𝑛𝑤𝐴 is the weighted mean and 𝑚𝑒𝑎𝑛𝑤𝐿 is the Lehmar mean. 

For further details about  LSHADE, we refer the reader to [18]. 

3.5 Radial Basis Function (RBF) 

Surrogate models can be used as approximation models for the cost functions of op-

timization problems [10]. There are several surrogate models in the literature such as 

polynomial Response Surface Model RSM, Kriging and Radial Basis Function 

(RBF). In our proposition, RBF has been chosen thanks to its acceptable accuracy and 

to its relative simplicity compared to other surrogate models. A brief description of 

the RBF surrogate model is presented. Assuming that we have n given points x1, x2, …, 

xn whose true function values f(xi) are known. In this method, an interpolant is used as 

follows: 

 𝑠(𝑥) = ∑ 𝑤𝑖∅(|𝑥 − 𝑥𝑖|) + 𝑏𝑇𝑥 + 𝑎,              𝑥 ∈ 𝑅𝐷𝑘
𝑖=1   (16) 

where w = (𝑤1, 𝑤2, …, 𝑤𝑛)T ∈ Rn , 𝑏 ∈ 𝑅𝐷 , 𝑎 ∈ R, and ∅ is a cubic basis function. 

Moreover, the parameters w, b, a are obtained by solving the following system of 

linear equations: 

 (Φ      𝑃
𝑃𝑇     0

)(𝑤
𝑐

) = (𝐹
0
)  (17) 

where Φ is the n x n matrix with 𝛷𝑖,𝑗 = ∅ (‖𝑥𝑖 − 𝑥𝑗‖
2

) , 𝑐 = (𝑏𝑇 , 𝑎)𝑇 ,   

 𝐹 =  (𝑓(𝑥1), 𝑓(𝑥2), … . , 𝑓(𝑥𝑛))𝑇 

and 𝑃𝑇 = (𝑥1 𝑥2… 𝑥𝑛
1 1   …  1

)   (18)   

For more details about RBF surrogate model, the reader can refer to [10]. 

4     The proposed approach 
An initialization strategy can play an important role on the algorithm performance. 

Several works have investigated the effect of initialization techniques in finding the 

global optima such as [12]. In our approach, a CMA-ES-enhanced CS initialization 

technique is proposed to provide well-distributed points over the search space. Our 

goal is to investigate the high capability of CS in exploring the search space as well as 

the CMA-ES, which is able to provide high quality solutions with a limited number of 

evaluations. First, CMA-ES algorithm is run for a certain number of evaluations. 

Then, the produced solution is provided along with a randomly generated population 

to CS procedure. The goal is to speed up the convergence rate of CS and lead the 

search towards well-distributed individuals. Afterwards, the population pop of 

pop_size individuals obtained from the last iteration of CS is used to train the RBF 

model. Thereafter, it will be provided to the main procedure of our proposition. 
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Since it is important for a metaheuristic to show a good balance between exploration 

and exploitation, we propose a technique to handle this issue. For each generation of 

the main procedure, it is decided with a probability PLV whether the algorithm per-

forms the global search procedure, or whether one iteration of the modified LSHADE 

is performed instead as a local search procedure. The global search procedure consists 

of a clustering algorithm and a Lévy Flight perturbation. The clustering is used for its 

high capability of avoiding redundant search points during the search process [15] as 

well as its efficiency in performing global search [8] [9]. The clustering is considered 

as a search operator that exploits the whole information of the population to generate 

a certain number of centers (new individuals). In our approach, the K-means algo-

rithm is chosen because it has experimentally shown a superior performance than 

other algorithms as the fuzzy c-means (FCM) which is demonstrated in the results. K-

means is exploited in order to generate 𝐾 central individuals of the current population. 

Then, the central individuals are relocated to potentially more promising areas of the 

search space using Lévy Flight perturbation. The Lévy Flight movement is applied 

according to: 

 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒
𝑖

= 0.001 ∗ 𝑠𝑡𝑒𝑝𝑖 ∗ (𝑧𝑖 − 𝑏𝑒𝑠𝑡) i = 1, 2, . .  𝐾  (19)  

where 𝑠𝑡𝑒𝑝𝑖  is generated according to (11), 𝑏𝑒𝑠𝑡 is the best solution so far and z is the 

set of the central individuals. Then, the new trial individuals are generated as follows: 

 𝑧𝑖 =  𝑧𝑖 + 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑖  (20) 

As a replacement strategy, the best pop_size individuals of 𝑝𝑜𝑝 ∪ 𝑧 are selected for 

the next iteration. Then, PLV parameter is decreased to progressively shift the search 

process from exploration to exploitation. This parameter is updated according to the 

following equation: 

 𝑃𝐿𝑉 = max {0, 𝑃𝐿𝑉 −  
𝑐𝑢𝑟𝑟𝑒𝑛𝑡_𝑓𝑒𝑠

max_fes
}  (21) 

Algorithm 4: One generation of our SLSHADE algorithm 

1. Given a population of pop_size individuals 

2. Given   SCR,  SF 
3. Compute MCR, and MF  according to (14), (15) 

4. Generate a mutant population popa  according to (13) 

5. Generate a mutant population popb  according to (22) 

6. Evaluate approximately popa  and popb  using RBF surrogate model 

7. Choose the population containing the best solution 
8. For each xi  in the population 

9.    Use binomial crossover to generate the trial vector ui 

10.    Evaluate ui using the actual objective function 
11.    If f(ui) <  f(xi) 

12.      xi+1 ←   ui  ,  A ←xi   ,  SCR  ← CRi  ,  SF    ←  Fi 

13.    Else 
14.      xi+1 =    xi 

15.    End If 

16. End for 

17. Reduce the population by using LPSR 

The decreasing procedure makes the approach more exploitative during the search 

process by enhancing the possibility of performing the exploitation procedure. 
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As a local search technique, a proposed surrogate model-based LSHADE 

(SLSHADE) algorithm is used, which is depicted in Algorithm 4. LSHADE is an 

adaptive version of DE that proved its high capability in solving a wide range of com-

plex optimization problems. Its parameter adaptation strategy allows achieving an 

efficient exploitation [4]. In SLSHADE, we modify the mutation strategy by using an 

additional mutation equation and a simple switching technique to choose the best 

mutation operator for the next generation. The proposed mutation equation is as fol-

lows:  

 𝑣𝑖,𝑔 = (𝑥𝑖,𝑏𝑒𝑠𝑡 − 𝑥𝑖,𝑔) + 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑖   (22) 

where 𝑠𝑡𝑒𝑝_𝑠𝑖𝑧𝑒𝑖 is computed according to (11), and 𝑥𝑖,𝑏𝑒𝑠𝑡 is the ith best solution in 

the current population . To save the limited budget of evaluations, we use the RBF for 

an approximated evaluation. After applying the two search operators (equations (13) 

and (22)), RBF is used to approximate the fitness of the two mutant populations. Af-

terwards, the population that contains the best solution is chosen to perform the bino-

mial crossover of LSHADE. To provide a fair approximation, the RBF model is up-

dated using the current population after each quarter of the available budget. The 

pseudo-code of the full proposition is depicted in Algorithm 5. 

Algorithm 5: Pseudocode of the proposed approach 

1.  Archive A ← ∅ 

2.   SCR← ∅,  SF  ← ∅ // sets of successful CR and F in the previous generation 
3.  Set all values in MCR, MF  to 0.5 

4.  Generate a solution Scmaes  using CMA-ES for a number of evaluation α 

5.  Perform CS  to generate pop of pop_size individuals for a number of evaluation ρ 
6.  Train the RBF surrogate model using each individual in pop and its fitness 

7.  While  current_fes < Budget  

8.         If (current_fes < max_fes) and (rand < PLV) 
9.            For i=1:T 

10.               Generate K central individuals of pop using K-means 

11.               Generate a step size for each center using Lévy flights 
12.               Generate new individuals according to (20) 

13.               Evaluate individuals and replace the bad individuals of the population 

14.               current_fes ← current_fes + K 
15.          End for 

16.          Decrease PLV according to equation (21)         
17.        Else  

18.          Perform SLSHADE (pop, SCR, SF) 

19.        End if 
20.        Update the RBF model using the current population after each quarter of the budget 

21.  End while 

5 Experimental results 

This section presents an evaluation of our proposition on the problem at hand. We 

compare it with LSHADE as well as CS [19] and DE [16]. Moreover, we evaluated 

our algorithm on the 15 functions of the CEC 2015 test suite [13] in order to provide 

difficult test  cases. The parameter setting of the compared algorithms are given in 

Table 1. 
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Table 1. Parameter setting of the compared algorithms 

Algorithm Parameters Electric motor design problem CEC 2015 

 α D*1000 D*1000 
 ρ D*1000 D*1000 
 pop_size 200 200 

Our proposition k pop_size/4 pop_size/4 
 PLV 0.8 0.8 
 Budget 106 D*10000 

 max_fes 2/3 * Budget 1/3 * Budget 
 T 100 1 

CS Pa 0.25 0.25 
 b 1.5 1.5 

DE CR 0.5 0.5 
 F 0.5 0.5 

 rinit 18 18 
LSHADE rarc 2.6 2.6 

 p 0.11 0.11 
 size of archive A  6 6 

5.1 Comparison on CEC 2015 benchmark 

The comparison has been carried out using the CEC 2015 test suite. The benchmark 

contains 15 functions to be minimized with a limited budget of 10000 * D evalua-

tions, where D is the dimension of the search space. Table 2 presents in detail the 

characteristics of CEC 2015 benchmark. The performance is evaluated using D=30 

and we performed 30 runs for each function.  

Table 2. Problem definitions for the CEC 2015 Competition on Learning-based Real-Parameter 

Single Objective Optimization 

No Function Range Fi 

1 Rotated High Conditioned Elliptic Function [-100,100]D 100 

2 Rotated Cigar Function [-100,100]D 200 

3 Shifted and Rotated Ackley’s Function [-100,100]D 300 

4 Shifted and Rotated Rastrigin’s Function [-100,100]D 400 

5 Shifted and Rotated Schwefel’s Function [-100,100]D 500 

6 Hybrid Function 1 [-100,100]D 600 

7 Hybrid Function 2 [-100,100]D 700 

8 Hybrid Function 3 [-100,100]D 800 

9 Composition Function 1 [-100,100]D 900 

10 Composition Function 2 [-100,100]D 1000 

11 Composition Function 3 [-100,100]D 1100 

12 Composition Function 4 [-100,100]D 1200 

13 Composition Function 5 [-100,100]D 1300 

14 Composition Function 6 [-100,100]D 1400 

15 Composition Function 7 [-100,100]D 1500 

To demonstrate the importance of each component, an experimentation has been con-

ducted to compare the proposed algorithm with other variants. In the first variant, the 

initialization method is removed and it is called “variant-1”. In the second variant, the 

switching technique to the global search procedure is disabled. The algorithm be-

comes a hybridization between the proposed initialization method and SLSHADE. 
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Moreover, to demonstrate the clustering impact in producing new individuals, K-

means algorithm has been replaced by the FCM clustering algorithm “variant-3”.  

Table 3. Comparison of CS, DE, LSHADE and our proposition on CEC 2015 test suite 

Each column from Table 3 shows best, mean and standard deviation of each algo-

rithm for each function. The best fitness found for each function is in bold. Mean 

    CS DE LSHADE Variant-1 Variant-2 Variant-3 Our proposition 

F1 

Best 4.06E+06 1.84E+07 100 100.00 100.00 100.00 100 

Mean 5.88E+06 3.25E+07 100.00 100.00 100.00 100.00 100 

Std 1.09E+06 6.62E+06 6.34+E-05 0.02 8.6e-04 4.2e-03 0 

F2 

Best 1,00E+11 1.39E+04 200 200.00 200.00 200.00 200 

Mean 1,00E+11 7.50E+06 200 200.00 200.00 200.00 200 

Std 0 4.78E+04 0 3.07e-14 2.63e-14 7.46e-15 0 

F3 

Best 320.80 320.60 320 320.03 320.05 320.04 319.99 

Mean 320.90 320.68 320.05 320.07 320.09 320.09 319.99 

Std 0.03 0.03 0.01 0.01 0.01 0.01 0 

F4 

Best 525.86 532.89 404.98 405.98 408.97 406.97 403.99 

Mean 575.17 547.86 410.04 410.25 415.76 415.18 410.19 

Std 19.99 8.26 2.04 2.58 7.01 4.08 2.19 

F5 

Best 3 499.36 5 368.68 1 315.40 1490.93 1992.54 1899.11 1 618.87 

Mean 4 053.09 5 940.68 1 768.50 1865.59 2370.67 2348.35 2 147.12 

Std 193.60 234.93 200.44 181.26 195.42 199.84 229.57 

F6 

Best 5.64E+04 8.84E+05 673.18 676.37 654.09 663.72 712.41 

Mean 1.08E+05 2.20E+06 1 021.14 1014.76 861.93 796.49 928.25 

Std 2.89E+04 8.09E+05 215.63 230.03 129.32 88.51 151.84 

F7 

Best 711.84 712.73 705.85 705.56 704.928 705.07 703.15 

Mean 713.41 713.71 706.84 706.84 706.24 706.15 706.40 

Std 0.91 0.36 0.56 0.63 0.68 0.55 0.94 

F8 

Best 5 384.50 1.34E+05 810.82 811.42 806.97 801.21 811.71 

Mean 9 497.06 4.12E+05 906.48 909.34 852.84 838.76 859.89 

Std 1 941.79 1.39E+05 68.79 80.78 43.78 39.22 62.67 

F9 

Best 1 004.23 1 003.27 1 002.37 1002.59 1002.39 1002.42 1 002.43 

Mean 1 004.79 1 003.50 1 002.81 1002.85 1002.72 1002.75 1 002.80 

Std 0.24 0.15 0.18 0.14 1.3e-01 0,14 0.15 

F10 

Best 1.22E+04 1.01E+05 1 413.77 1265.26 1170.70 1152.72 1 100 

Mean 2.38E+04 5.13E+05 1 691.50 1609.82 5330.32 1474.494 1563.60 

Std 4864.28 1.81E+05 171.69 223.07 17629.47 200.49 178.13 

F11 

Best 1 428.42  1 694.51 1 500 1500 1400.75 1400.72 1 400.7 

Mean 1 443.50 1 874.25 1 515.42 1519.98 1410.13 1406.101 1 401.10 

Std 9.86 125.368 23.28 27.34 9.26 8.03 0.56 

F12 

Best 1 305.67 1 306.58 1 303.42 1303.53 1303.24 1303.24 1 303.2 

Mean 1 306.46 1 307.71 1 304.02 1303.95 1303.83 1303.78 1 304 

Std 0.36 0.55 0.26 0.23 0.27 0.23 0.38 

F13 

Best 1 300.02 1 300.02 1 300.02 1300.02 1300.02 1300.02 1 300 

Mean 1 300.02 1 300.02 1 300.02 1300.02 1300.02 1300.02 1 300 

Std 0 0 0 2.1e-04 2.75e-04 2.57e-04 0 

F14 

Best 3.33E+04 3.49E+04 3.25E+04 34167.93 32486.61 32499.62 1 500 

Mean 3.39E+04 3.51E+04 3.44E+04 34832.79 34085.43 34132.58 1 500 

Std 402.35 117.80 735.88 208.95 667.58 625.16 0 

F15 

Best 1 606.34 1 600.00 1 600 1600.00 1600.00 1600.00 1600 

Mean 1 607.50 1 600.00 1 600 1600.00 1600.00 1600.00 1600 

Std 0.59 0 0 0 4.22e-14 0 0 
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results that are significantly better than the ones of the other algorithms, according to 

the Kruskal-Wallis statistical test at 95% confidence level followed by a Tukey-

Kramer post hoc test are also in bold. The results presented in Table 4 show a superior 

performance of our proposition over the other algorithms. It can significantly outper-

form LSHADE in 6 functions, DE and CS in 15 functions. The comparison with the 

three variants reveals that our proposition could achieve better performance as well. It 

can outperform variant-1 in 8 functions which shows the importance of the proposed 

initialization method.Similarly, disabling the global search has a major effect on the 

algorithm. Variant-2 performs significantly worse than the proposition in 8 functions. 

Variant-3 shows slightly better performance when compared to variant-1 and variant-

2. However, the proposition can significantly outperform it in 7 functions. These re-

sults demonstrates the impact of clustering. It is observed that both clustering methods 

can significantly improve the performance of the proposed algorithm. 

Table 4. Comparison using Kruskal-Wallis test on CEC 2015 test suite 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.2 Comparison on HS-PMSM 

The paper’s objective is to reduce HS-PMSM weight and by that, increase EV’s au-

tonomy. The problem at hand is a multi-objective problem, where the objective func-

tions are as follows: 

1. The first objective function concerns the mass of the electric motor 𝑚𝑎𝑡𝑜𝑡: 

  𝑚𝑎𝑡𝑜𝑡 = 𝑚𝑐𝑜𝑜𝑝𝑒𝑟 + 𝑚𝑠𝑡𝑎𝑡 + 𝑚𝑟𝑜𝑡 + 𝑚𝑝𝑚  (23) 

               where 𝑚𝑐𝑜𝑜𝑝𝑒𝑟  is the cooper mass, 𝑚𝑠𝑡𝑎𝑡 is the stator iron mass, 𝑚𝑟𝑜𝑡 is the 

               rotor iron mass, and 𝑚𝑝𝑚 is the magnets mass.          

2. The second objective function is to maximize the output power density. It is 

written as follows: 

 𝑃𝑜𝑢𝑡 =  𝑃𝑖𝑛 + ∑ 𝑙𝑜𝑠𝑠𝑒𝑠  (24) 

vs Our proposition D=30 

LSHADE 
+(better) 
-(worse) 
=(no sig) 

1 
6 
8 

CS 
+(better) 
-(worse) 
=(no sig) 

0 
15 
0 

DE 
+(better) 
-(worse) 
=(no sig) 

0 
15 
0 

 
Variant-1 

 

+(better) 
-(worse) 
=(no sig) 

1 
8 
6 

 
Variant-2 

 

+(better) 
-(worse) 
=(no sig) 

0 
8 
7 

 
Variant-3 

 

+(better) 
-(worse) 
=(no sig) 

1 
7 
7 
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where 𝑃𝑜𝑢𝑡  is the output power density, 𝑃𝑖𝑛  is the input density, and the sum of losses 

mainly contains the mechanical, iron and copper loss component. 

Table 5. The problem constraints 

Parameter Symbol Unity Variation limits 

Output power 𝑃𝑜𝑢𝑡 W [19995; 20005] 

Current consumption 𝐼𝑠 A [20 ; 56] 

Motor torque 𝑇𝑚 Nm [8.5 ; 8.6] 

Motor’s efficiency          ɳ - [0.9; 0.99] 

Motor’s power factor        PF - [0.81; 0.99] 

Rotor inner diameter        Dir mm [22; 70] 

Slot filling factor         Ʈ - [0.1; 0.5] 

 

The two objective functions are aggregated to obtain the following new objective 

function which will be optimized using the proposed algorithm: 

 min 𝑗(𝑥) = −
𝑃𝑜𝑢𝑡

𝑚𝑎𝑡𝑜𝑡
+ 𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦  (25)      

where 𝑝𝑒𝑛𝑎𝑙𝑖𝑡𝑦 = 104 ∑ 𝐶𝑖
7
𝑖=1   (26) 

𝐶𝑖 = 0 if the constraint i is satisfied, 1 otherwise. 

The set of constraints are presented in Table 5. There are 8 variables for the optimiza-

tion problem at hand, i.e. 8 geometrical parameters controlling the electric motor 

structure. The parameters are presented in Table 6.  
Table 6. The geometrical parameters for the weight optimization 

 

 

 

 

 

 

 

 

 

 

To conduct a fair comparison, the proposed algorithm has been run 30 times. We 

collected the best, the mean, the median, the worst, and the standard deviation of each 

algorithm. It is observed from Table 7 that our proposition obtains the best solution 

compared to the other algorithms.   

Table 7. Results on the real problem after 30 runs 

 CS DE L-SHADE Variant-1 Variant-2 Variant-3 Our proposition 

Best -3.308e+03 -3.156e+03 -3.197e+03 -3.397e+03 -3.318e+03 -3.380e+03 -3.397e+03 
Mean -3.131e+03 -2.910e+03 -3.044e+03 -3.114e+03 -3.202e+03 -3.188e+03 -3.397e+03 

Median -3.179e+03 -3.024e+03 -2.816e+03 -2.937e+03 -3.283e+03 -3.210e+03 -3.397e+03 
Worst -3.034e+03 -2.848e+03 -2.797e+03 -2.935e+03 -3.130e+03 -3.085e+03 -3.397e+03 

Std 88.52 91.23 107 112,10 49.03 58,36 0 

 

Symbol Description Variation limits 

Dis Inner stator diameter [50; 80] mm 

hjr Rotor yoke height [7; 15] mm 

histm Tooth isthmus [0.5; 2] mm 

hjs Stator yoke height [8; 15] mm 

wt Tooth width [3.5; 8] mm 

gap0 Air-gap length [0.5; 1.5] mm 

hmp PM height [4; 8] mm 

Lm Machine’s length [100; 160] mm 
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Besides, a stable performance is achieved, since the proposition could obtain the best 

solution in each run. The comparison between the 3 variants reveals that variant-2 

could obtain the best results. It demonstrates clearly the importance of the proposed 

initialization method. Variant-3 shows an inferior performance when compared to the 

proposition. Thus, it can be concluded that each component of our proposition tends 

to be effective and the combination as a whole leads to a successful algorithm.  Fur-

ther details about the optimal solution found by our proposition are depicted in Table 

8. Regarding the optimized obtained results, the proposed algorithm could achieve an 

important gain of 28% in the mass. Moreover, it could achieve a gain of 17 % and 

29% decreasing the mechanical loss and the iron loss stator respectively. 

Table 8. The best geometrical parameters with the optimized factors 

Symbol Original motor Optimized motor Gain % 

matot 8.2513 kg 5.8885 kg + 28.63 
Pout 20000 W 20005 W + 0.25e-3 
Pout / mtot 2.42 kW/kg 3.39 kW/kg + 28.653 
Iron loss stator 225.73 W 158.9 W + 29.60 
Mechanical loss 352.69 W 292.15 W + 17.16 
Efficiency 0.9596 0.9607 + 1.01 
Power factor 0.8187 0.8100 - 1.06 
Dis 63 mm 66.7 mm  

hjr 10.5 mm 9.3 mm  

histm 1.5 mm 1 mm  

hjs 11.8 mm 9.8 mm  

wt 5 mm 4 mm  
gap 1 mm 0.9 mm  

hmp 6 mm 4 mm  

Lm 135 mm 100 mm  

6     Conclusion 
The paper has presented a successful hybridization to solve numerical optimization 

problems. The proposition consists in combining 2 state-of-art algorithms as an ini-

tialization method. Then, the produced population is transferred to the main proce-

dure. The latter switches between the global and the local search procedures giving 

progressively the priority to the local search procedure to adaptively enhance exploi-

tation in the algorithm. The proposition has been tested on CEC 2015 test suite and on 

the optimization of an electric motor. The obtained results have shown a stable and 

competitive performance compared to other state-of-art algorithms. Besides, a superi-

or performance of K-means over FCM clustering algorithm has been noticed in the 

global search procedure. Thus, as a future work, we aim to justify this superiority by 

conducting an experimentation integrating visualization tools, in order to analyze the 

behavior of each clustering method. We also aim to integrate recent landscape analy-

sis strategies to switch between the search operators (local and global search) in order 

to investigate their influence on the algorithm performance.     
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