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Abstract. As far as we know, Inverse Extreme Learning Machine (IELM)
is the first work extending ELM to LLP problem. Due to basing on ex-
treme learning machine (ELM), it obtains the fast speed and achieves
competitive classification accuracy compared with the existing LLP meth-
ods. Kernel extreme learning machine (KELM) generalizes basic ELM to
the kernel-based framework. It not only solves the problem that the node
number of the hidden layer in basic ELM depends on manual setting, but
also presents better generalization ability and stability than basic ELM.
However, there is no research based on KELM for LLP. In this paper,
we apply KELM and design the novel method LLP-KELM for LLP. The
classification accuracy is greatly improved compared with IELM. Lots of
numerical experiments manifest the advantages of our novel method.

Keywords: Learning from label proportions · Extreme learning ma-
chine · Kernel · Classifier calibration.

1 Introduction

In the age of big data, there are a huge number of varied data, but manually
labeling these data is very difficult and expensive[10, 35, 34, 19]. In order to solve
the situation, many machine learning techniques called weak-label learning are
proposed. They don’t require the complete labeling information and can achieve
good generalization performance. There are many specific techniques of weak-
label learning, such as semi-supervised learning (SSL)[3, 17, 33] , learning from
partial labels [16, 5, 31], multi-instance learning (MIL)[1, 2, 7, 21, 32] and learn-
ing from label proportions (LLP) [18, 4, 22, 25–30, 8, 23, 6]. In this paper, the
problems of LLP are concerned on and investigated.
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In LLP, the training instances are divided into bags and there are no labels for
every instance. The only known information about labels is the label proportion
for every bag. The goal of LLP is to get a instance-level classifier to give the
predictions of the class labels for the new instances. An intuitive instruction of
LLP problem is shown in Figure 1.

Fig. 1. Illustration of LLP. Consider the binary classification problem, each instance
has the positive or negative label. Now there are 4 bags for training: bag1, bag2,
bag3, bag4. The proportions of positive instances in each bag are 50%, 60%, 20%, 80%,
respectively. By using the 4 bags with the proportions, we get a instance classifier.

LLP attracts a lot of attention and has many applications, such as privacy
protection, spam filter, computer vision and medical research. Let’s take medical
research as a detailed example. Of course, it is also an application of LLP for pri-
vacy protection. In medical research, we want to study the outbreak pattern of a
new type of flu. Whether each patient is infected with this new type of flu virus
is a private information between the patient and the doctor. However, the statis-
tics can be obtained on the proportion of patients diagnosed with this novel flu
who went to hospital for treatment. Some information about the basic physical
condition of patients is also available. Based on these, LLP methods can be used
to predict whether each patient is infected with the new flu virus. According to
the prediction of LLP methods, the medical researchers can explore the specific
relationship between this new type of flu and individual physical condition. Af-
ter establishing the corresponding relationship, they can develop corresponding
measures to better treat this disease and prevent large-scale infections.

For the sake of addressing the problems of LLP, many algorithms have been
proposed[18, 4, 22, 25–30, 8, 23, 6]. Recently, Cui et al. [6] presented an approach
based on extreme learning machine (ELM)[14, 15, 13, 12] called inverse extreme
learning machine (IELM).Compared with the existing methods, it speeds up
the training process and achieves competitive classification results. However,
the LLP methods based on ELM have not been well studied. In this paper, we
design a new LLP method LLP-KELM, which links inverse classifier calibration
[24, 27, 6] to kernel extreme learning machine (KELM) [13]. It overcomes the
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disadvantage that the node number of hidden layer need to be manually set.
Moreover, the performance has been significantly improved than IELM.

2 Related Work

2.1 Classifier Calibration Methods

On a dataset, an probability distribution P (X,Y ) is given to describe the gen-
eration process of data instances. where Y and X denotes the label set and the
sample space, respectively. Without loss of generality, Y is set to a binary set
{+1,−1}. Generally speaking, P (X,Y ) is an oracle and we don’t known it. For
a general classification task, we usually obtain the classification result by using
the sign value of numerical decision function, i.e.,

class(x) = sign(fNum(x)).

In order to produce a probabilistic prediction , we can use a probabilistic classifier
fProb. It estimates the class probability conditioned on the given sample x, i.e.

fProb(x) ≈ P (Y = 1|x).

When we want to get the probability output and expect to improve the perfor-
mance of numerical classifier, calibrating the numerical classifier is a standard
approach. Therefore, we need to find a good appropriate function to scale the
numerical decision values into the probability values:

σ(fNum(x)) ≈ P (Y = 1|x).

Platt calibration [24] is one of probabilistic calibration techniques. It has
been validated that this method is quite efficient for many numerical decision
functions. It can transform decision outputs to posterior probabilities by the
equation:

σPlatt(f(x)) =
1

exp(B −Af(x)) + 1
.

In above equation, the parameters B and A can be solved by maximum likelihood
estimation.

In LLP, ”Inverse Calibration” [27] is the first method to adopt the process
of inverting calibration for a classifier. In this paper, the idea also will be used.

2.2 Extreme Learning Machine

The work[14] proposed a single-hidden-layer feed-forward networks (SLFNs)
learning system called ELM. ELM unifies the classification and regression in
the same framework. ELM runs extremely fast and can be easily implemented.

We briefly describe the special form of ELM models, which only have one
output node as follows: Given N training instances (xi, yi)

N
i=1, where xi ∈ Rn
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denotes the feature vector, yi ∈ R denotes the corresponding target value. Sup-
pose that the SLFNs with M hidden nodes have activation function z(x), then
the model of SLFNs can be represented as

M∑
j=1

βjz(wj .xi + bj) = oi, i = 1, 2, .., N. (1)

Here, wj ∈ Rn and βj ∈ R denote the input and output weight, respectively.
In order to make the output oi be as close as possible to the target yi, the loss
function of SLFNs is build as

min
{βj ,wj ,bj}Mj=1

N∑
i=1

|oi − yi|2. (2)

(2) can be transformed compactly as:

min
β,{wj ,bj}Mj=1

‖Qβ − Y ‖22. (3)

Here, β = [β1, β2, ..., βM ]T , Y = [y1, y2, ..., yN ]T , Q ( q(x) can be regard as the
feature mapping) can be expressed as:

Q =

q(x1)
...

q(xN )

 =

 q1(x1) . . . qM (x1)
...

...
...

q1(xN ) . . . qM (xN )



=

 z(w1x1 + b1) . . . z(wMx1 + bM )
...

...
...

z(w1xN + b1) . . . z(wMxN + bM )


N×M

(4)

In the training phase of ELM, {wj , bj}Lj=1 are randomly produced and don’t
need to be learned. So, the tuned parameters β of the learning system ELM can
be solved by means of the least squares methods. The solution β? is

Q†Y, (5)

where the notation † operates the Moore-Penrose generalized inverse of a matrix.
Finally, ELM is represented as

f(x) = q(x)β?. (6)

According to the theory of matrix computation [9], when Q is full row-rank,

β? = QT (QQT )−1Y, (7)

when Q is full column-rank,

β? = (QTQ)−1QTY. (8)
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A binary classification situation is considered as follows. The training instances
{xi, y?i }Ni=1 are expressed as the form of K bags: {Bk, Pk}Kk=1, where Bk repre-

sents the k-th bag including Nk instances{xi, y?i }
Nk
i=1.

We denote y?i ∈ {+1,−1} the unknown ground truth label of each instance
xi. Then, for the k-th bag Bk, the proportions of positive instances (i.e. the
conditional probability)can be calculated by

Pk =
|{i|xi ∈ Bk, y?i = +1}|

|Bk|
, k = 1, 2 . . .K. (9)

If the instance labels are modeled as {yi}Ni=1, for the k-th bag, the modeled
label proportion can be expressed as

pk =
|{i|xi ∈ Bk, yi = +1}|

|Bk|
, k = 1, 2 . . .K. (10)

Here, we can treat pk as the estimate value of Pk.

Now, LLP problem formulation has been completed and we know the bags
{Bk}Kk=1 and the corresponding proportions {pk}Kk=1. Next, We will inverse the
process of classifier calibration. Firstly, each bag Bk is regarded as an instance
Xk, which is called the ”super-instance”. The super-instance Xk is presented as
the mean value of all instances in Bk , i.e., Xk = (

∑
xi∈Bk

xi)/|Bk|. Secondly, a

soft label σ−1(pk) are generated. The generation process is described as follows:
(1)We fix the scaling function in classifier calibration methods. Here, we use the
scaling function σPlatt in the Platt calibration and let the parameter A = 1, B =
0. (2) We calculate the inverse of the scaling function σ−1Platt(p) = −log(1/p− 1)
and get the soft label ysk = σ−1Platt(pk) of each super-instance Xk.

After obtaining the super-instance Xk and the soft label ysk , the LLP prob-
lem is converted to a supervised learning problem, i.e., a regression problem.
We expect the regression model f can fits ysk well over each super-instance
Xk. In this paper, KELM is adopted to better solve the regression problem.
In KELM, Mercer’s conditions are applied and the ELM kernel function is de-
fined as: κ(xi, xj) = 〈q(xi), q(xj)〉 = Ki,j , where 〈, 〉 represents the inner product
operation, q is the feature mapping function in formula (4) . Here, lots of ker-
nel function can be used, such as polynomial kernel, RBF kernel and so on. In
equation (7), a positive number C can be added to all the diagonal elements of
QQT motivated by the ridge regression theory[11], and QQT can be replaced
by the kernel matrix K. When a new instance x comes, we compute the kernel
matrix kx between x and {Xk}Kk=1 and then get the corresponding response yx
by formula (11), the label y of x can be obtained by the sign of yx. The novel
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model LLP-KELM can be formalized as:

f(x) =q(x)QT (
I

C
+ QQT )−1Y

=kx(
I

C
+ QQT )−1Y

=

κ(x, X1)

:

k(x, XN )

T (
I

C
+ K)−1Y,

(11)

Here, K represents the kernel matrix of the super-instances {Xk}Kk=1, Y is the
vector of the soft labels {ysk}Kk=1. We summarize the process of LLP-KELM as
Algorithm 1.

Algorithm 1 LLP-KELM

Require: A training set in bags {(Bk, pk)}Kk=1, the kernel function κ, the parameter
C and a test instance x

Ensure: The predicted label y of the instance x
1: Compute the bag-level super-instances {Xk}Kk=1

2: compute the kernel matrix K of {Xk}Kk=1by the kernel function κ
3: compute Y = [ys1, ..., y

s
K ]T by the inverse function of σ: σ−1(pk), k = 1, 2, ..,K.

4: compute the inverse of I
C

+ K
5: compute β? = ( I

C
+ K)−1Y

6: compute the kernel matrix kx between x and the super-instances {Xk}Kk=1

7: compute the responding yx = kxβ
?

8: get the predicted label y = sign(yx)
9: return the predicted label y

4 Numerical Experiment

We conduct the experiment to verify the performances of our novel method LLP-
KELM in this section. From the paper [6], we know that IELM can produce the
comparable classification accuracy and has very fast training speed compared
with other advanced methods in many public datasets. Therefore, it is appropri-
ate that we choose IELM as the only baseline. We run the experiment code on
a server with Windows Server OS. Its configurations are Intel(R) Xeon(R) CPU
E5-2640 at 2.6GHz and 128GB main memory. MATLAB R2013a 64-bit version
is used as the programming IDE.

4.1 Benchmark Datasets

Different algorithms are compared in real-world classification datasets obtained
from the UCI repository [20] and LibSVM collection 1. We only consider the

1 https://www.csie.ntu.edu.tw/c̃jlin/libsvmtools/datasets/
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binary classification datasets. For each dataset, the features are scaled. The
statistics for these used datasets are shown in Table 1.

Table 1. Statistics of the used data. According to the sample number, data are list
one by one.

Datasets # of Samples # of Features

spect 267 22

heart 270 13

liver-disorders 345 5

vote 435 16

credit-a 690 15

diabetes 768 8

fourclass 862 2

splice 1000 60

german.numer 1000 24

a1a 1605 119

4.2 Experimental Settings

In order to generate the data form of LLP problems, we randomly split various
datasets in Table 1 into lots of bags with fixed bag size. In this paper, the bag
sizes which are used are 2, 4, 8, 16, 32, 64. We utilize grid search and 5-fold
cross validation to find the best parameters and evaluate the performance. The
performance are evaluated based on test accuracy on the instance level.

For the baseline IELM, we follow the paper [6] and adopt the same pa-
rameter setting rule. The node number of hidden layer ranges from the set
{5, 10, 15, 20, 25, ..., 200}. For our proposed method, the RBF kernel κ(u, v) =
exp(−γ‖u−v‖22) is considered. The logarithm of parameters, log10 C and log10 γ,
are adjusted from the set {−3,−2,−1, 0, 1, 2, 3} .

4.3 Results and Analysis

The experiment results on the various datasets are reported in Table 2. We use
the bold figures to state the best accuracy of our experiments. Table 2 displays
the mean test accuracies of 5-fold cross validation with standard deviation. As
shown in Table 2, our novel method LLP-KELM overwhelmingly outperforms the
baseline IELM on the test accuracy in most situations. We take some examples
to illustrate the results. The datasets ”splice”, we observe that the accuracy of
LLP-KELM and IELM are respectively 82.80% ,75.10% in the bag size 2. In the
setting of bag size 4, the accuracy value are respectively 79.30% ,70.10%. It is
obvious that LLP-KELM is much better than IELM on the test accuracy. In
other bag size setting, this is also true. We can also notice that the accuracies of
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Table 2. Mean test accuracies (mean ± std %) of 5-fold cross validation with different
bag sizes: 2, 4, 8, 16, 32, 64.

Datasets Method
Bag Size

2 4 8 16 32 64

spect
LLP-KELM 80.91±3.55 80.13±4.00 81.30±3.56 81.66±6.69 80.13±4.41 79.39±4.47

IELM 80.17±3.46 77.13±5.15 73.81±8.31 72.61±8.34 78.25±7.57 81.66±2.29

heart
LLP-KELM 82.96±4.01 85.93±3.84 81.85±2.41 77.04±5.65 74.44±5.77 73.33±9.85

IELM 82.22±4.46 80.37±2.81 76.30±7.90 70.74±12.92 67.04±6.60 75.56±6.06

liver-disorders
LLP-KELM 69.28±7.20 63.48±5.27 62.32±5.42 57.97±4.81 58.84±5.29 58.26±5.16

IELM 68.41±4.40 62.03±7.20 60.00±6.28 60.00±6.28 53.91±8.84 52.46±11.10

vote
LLP-KELM 96.32±1.89 95.40±1.41 94.48±0.96 93.56±2.38 91.95±1.82 87.82±5.05

IELM 95.63±0.51 92.87±3.08 89.43±4.48 91.03±4.48 91.95±4.53 87.36±7.22

credit-a
LLP-KELM 86.38±3.05 85.36±3.05 85.22±4.43 85.22±3.22 83.48±5.48 79.71±7.19

IELM 85.94±1.89 81.16±5.45 81.30±2.48 79.86±2.73 74.64±5.66 77.54±4.23

diabetes
LLP-KELM 77.73±1.30 75.78±1.92 74.87±0.96 74.48±2.24 70.32±2.18 69.27±3.92

IELM 76.43±0.58 74.35±1.28 72.39±3.37 69.66±4.99 69.80±4.48 60.78±13.32

fourclass
LLP-KELM 81.22±6.12 79.01±3.61 77.03±4.11 76.22±7.66 75.18±3.95 74.02±5.76

IELM 78.54±4.11 75.88±4.03 67.52±4.91 62.41±12.23 59.98±8.58 55.21±9.45

splice
LLP-KELM 82.80±1.96 79.30±2.14 74.00±5.42 71.00±5.33 61.50±3.18 60.50±7.95

IELM 75.10±3.21 70.10±4.60 66.10±4.16 63.40±2.13 61.30±2.46 60.20±6.39

german.numer
LLP-KELM 75.00±2.62 74.60±2.04 73.30±3.93 70.90±1.85 70.10±1.64 71.00±3.54

IELM 73.70±2.36 71.60±3.07 66.60±4.38 67.00±2.85 64.50±4.43 63.40±2.58

ala
LLP-KELM 83.12±1.68 82.18±1.48 80.12±2.98 78.69±2.60 78.38±2.61 76.88±2.30

IELM 79.31±3.17 75.26±2.58 72.40±3.97 68.72±5.56 71.21±7.83 74.58±4.90

the two methods LLP-KELM and IELM decrease with the bag size increasing
in some ways. This indicates that the larger the bag size, the harder it is to
correctly classify the instances in the bags. This is a great challenge in LLP.

5 Conclusion

We design a novel LLP method called LLP-KELM, which significantly improves
the method IELM. In LLP-KELM, the kernel version of ELM and the inverse
process of classifier calibration are fully utilized. In most situation of our experi-
ments, it can gain the better performances than IELM. In conclusion, our novel
method LLP-KELM is feasible for LLP and can be applied in many practical
applications.
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