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Abstract. In the field of CT medical image reconstruction, there are
two approaches you can take to reconstruct the images: the analytical
methods, or the algebraic methods, which can be divided into iterative
or direct.
Although analytical methods are the most used for their low computa-
tional cost and good reconstruction quality, they do not allow reducing
the number of views and thus the radiation absorbed by the patient.
In this paper, we present two direct algebraic approaches for CT recon-
struction: performing the Sparse QR (SPQR) factorization of the system
matrix or carrying out a singular values decomposition (SVD). We com-
pare the results obtained in terms of image quality and computational
time cost and analyze the memory requirements for each case.

Keywords: CT· Medical Imaging· Reconstruction· Matrix factoriza-
tion· QR· SVD· Few projections

1 Introduction and Background

In medical imaging, CT (computerized tomography) [18, 24] is one of the most
significant tests to perform a diagnosis. Thus, it is imperative to develop recon-
struction algorithms that provide high-quality images as well as high compu-
tational time efficiency. Having fast algorithms is essential to have short-term
results of a CT scan available to medical professionals.
The reconstruction methods can be divided into two types, depending on their
nature. On the one hand, we find the analytical algorithms. They are based on
the application of the Fourier transform on the data obtained from the projec-
tion of x-rays on an object, called sinogram. On the other hand, we have the
algebraic methods, whether direct or iterative, which make a mathematical ap-
proach to the reconstruction problem.
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In clinical practice, the most widespread methods are the analytical ones. This
is due to the reduced computational time cost involved, which can be vital in
emergency diagnoses. However, algebraic methods allow reducing the number of
projections, and therefore the radiation to which we expose the patient.
Since hardware elements evolve at high speed and also their cost decreases con-
stantly, using algebraic approaches to solve these problems has become possible.
Although they involve a high computational cost, nowadays it is less significant
thanks to parallel computing (multiple CPUs, GPU computing, clusters, etc.)
[12]. If we add the enhancement of main memory in new equipments, it is now
feasible to implement these methods for large size problems as is our case.
The aim of this work is to achieve the resolution of the CT image reconstruc-
tion problem by means of two direct algebraic factorization methods. The first
one, called multifrontal sparse QR (SPQR), and implemented in the library
’SuiteSparseQR, a multifrontal multithreaded sparse QR factorization package’
[7], allows solving the equation of reconstruction problem more directly than the
iterative methods we studied previously (such as ART [1], SART [2] or LSQR
[22]). This is achieved by calculating the QR factorization of the sparse system
matrix A to simulate its pseudo-inverse.
The second method is the singular values decomposition (SVD) of the system
matrix A, which is carried out through the parallel implementation of the method
included in the SLEPc [14] to simulate, as in the previous case, the pseudo-inverse
of the matrix.
Since these methods are not widespread in clinical practice, the validity of both
approaches will be tested. We will check the quality of the reconstructed image
by working with a smaller number of projections in order to reduce the radia-
tion induced to the patient, and analyze the computation resources necessary to
perform the decomposition of the matrix A. This point will be vital for the use
of these algebraic methods, since the matrices are large and can suppose a high
demand for RAM.

2 Materials and Methods

2.1 CT image reconstruction problem

In a CT reconstruction problem, using an algebraic approach we need to solve
the equations system defined by the equation (1), where A (2) represents the
system matrix, a sparse matrix that measures the weight of the influence that
each ray has on the reconstructed image [5, 16]. The size of the matrix A is MxN,
where M is the number of traced rays, and N is the size in pixels of the image to
be reconstructed. The vector g (3) represents the sinogram or projections vector
and u (4) the solution image. Both the system matrix and the sinogram vector
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have been calculated with Joseph’s Forward Projection method [17].

A ∗ u = g (1)

A = ai,j ∈ RMxN (2)

g = [g1, g2, ..., gM ]T ∈ RM (3)

u = [u1, u2, ..., uN ]T ∈ RN (4)

The projections have been generated for a phantom corresponding to the
mathematical representation of the human head developed by the Forbild Phan-
tom Group [10], using the medical image program CONRAD [20] to generate
the phantom reference images. This is defined by simple geometric objects that
represent head elements with different densities such as bone, tissue, gray mat-
ter, etc.
When reconstructing a CT image for a given physical configuration of the scan-
ner, the associated matrix A is always the same. What changes is the sinogram
(g), that represents the studied object. If it were possible to calculate a pseudo-
inverse A+ of the matrix A [19, 13], the image could be obtained more directly
without solving a large equations system. This means the computational cost
would be reduced to a matrix-vector product. But this idea not viable since the
explicit calculation of the matrix A+ is prohibitive for a high resolution and
many views in the reconstruction. The reason why is that A+ can be dense and
contaminated due to rounding errors.
Another possibility is to calculate implicitly an approximation of the range and
use it to simulate the pseudo-inverse. The two methods that we have considered
to solve this approach are explained in the following subsections.

2.2 Projections reduction

In the acquisition of the data, the important factors that influence the recon-
struction of the image are two, the number of samples per projection (detectors)
and the number of projections. A reduced number of any of these two variables
will cause the formation of artifacts in the reconstructed image when using an-
alytical methods: rings by the Gibbs phenomenon, streaks and lines and Moiré
pattern, amongst others [3].
To prevent such problems, we should take into account the Nyquist theorem
[21], which says the sampling rate must be greater than twice the bandwidth of
the sampled signal. If we undersample we get the aforementioned artifacts. The
classical analytical procedure of image reconstruction (filtered back projection
FBP) is a fast process but it needs a complete set of projections to obtain high-
quality images. The exact number depends on the physical characteristics of the
scanner, but typically the minimum number of projections to take is 360.
If the aim is to reduce the dose absorbed by the patient, we should take the fewer
number of projections possible, so we should use different methods that can work
with less projections, such as iterative or direct methods. In our previous works
[6, 8, 23, 9] it has been shown that it is possible to use few views, between 30 and
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90, while using iterative methods to reconstruct high-quality images. However,
the computational cost is high for these algorithms.
In order to take an approach that is not iterative, we propose the SPQR and
SVD methods. In this way, the computational cost of the reconstruction could
be reduced, so we could reconstruct images faster in real time. We will check if
its application to the CT image reconstruction allows reducing the number of
views in equal measure than the methods that we used previously.

2.3 Sparse Pivoting QR factorization

The first new direct method used to solve the equations system is the Multi-
frontal Sparse QR (SPQR) [7]. It is a method that performs a QR [13] factor-
ization of a large sparse matrix in a sequence of dense frontal matrices. In this
way, we can form the pseudo-inverse of the system matrix.
The software used to perform this factorization is implemented in the SuiteS-
parseQR library, which uses BLAS and LAPACK, and Intel Threading Building
Block to exploit parallelism. This allows processing heavy matrices, which is key
in the reconstruction of CT images since A is large for high resolutions.
The QR factorization of the matrix A comprises its decomposition as a product
of two matrices (5), where Q is orthogonal and R is upper triangular.

A = QR (5)

AP = QR (6)

However, when A is considerably large and sparse, this decomposition can be
prohibitive since Q could not be sparse. Here, the decomposition with pivoting
(6) must be used. The resolution would be:

– If m>=n we have to solve (7). That means a matrix-vector product of QT

by the vector g, the resolution of an upper triangular system with the matrix
R and a rearrangement with permutation matrix P.

– If m<n we have to solve (8), that is reordering the vector g, then solve a
triangular system and finally make the product of the resulting vector by
the matrix Q .

u = P ∗ (R−1(QT ∗ g)) (7)

u = Q ∗ (R−T (PT ∗ g)) (8)

2.4 Q-less Sparse QR factorization

If we want to spare memory, we can compute the QR decomposition without
saving the Q explicitly. In this way we would have to transform the equations
to obtain the solution vector u, which would be as follows:
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– If m>=n we have to solve the system Q*R*g = u. By multiplying both sides
of equation by AT , we obtain: (Q ∗ R)T ∗ Q ∗ R ∗ g = AT ∗ u. Since Q is
orthogonal, performing the matrix operations to solve for u, we reach the
solution equation (9).

u = R−1 ∗R−T (AT ∗ g) (9)

– If m<n we would work with the QR decomposition of AT . By a similar
reasoning to the previous case, the solution of the system would correspond
to calculate (10), which requires the same operations but in a different order.

u = AT ∗R−1 ∗ (R−T ∗ g) (10)

Note that the Q matrix is not used for the calculation of u and therefore this
process requires fewer memory resources.

2.5 Singular Values Decomposition

The singular values decomposition performs the k-order factorization (11) [4, 19,
11]. In this factorization, U ∈ RMxk and V ∈ RkxN are matrices whose columns
are orthogonal and are called left-hand and right-hand singular vectors, where
k is the number of singular values computed. Σ ∈ Rkxk is a diagonal matrix
that has the singular values in decreasing order. The software we use to apply
this algorithm is the SVD solver included in the eigenvalues calculation parallel
library SLEPc. Applying this factorization, we can transform the equations sys-
tem into the product (13), taking the pseudo-inverse as (12).

A = UΣV T (11)

A+ = V Σ−1UT (12)

u = A+g (13)

Note that the storage cost of this decomposition is of order (M*k) + (k*N)
elements. When k grows, the memory resources necessary to carry out the de-
composition increase. Once the decomposition of the system matrix has been
calculated, resolving the problem consists on the product of two dense matrices
by a vector,thus the computational cost is of order ((M + N)*k) flops.
Since we can do this decomposition ′offline′ , it can be calculated and stored
and it can be ready when a CT image has to be reconstructed. Therefore, we
can replace an iterative method with a much simpler and less computationally
expensive matrix multiplication problem. In our application, we are interested in
the case where k = N, in which case we have enough information to reconstruct
the image with great precision.
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3 Results and Discussion

In order to check the validity of both methods, we used a cluster belonging to
the Universitat Politècnica de València to perform the factorizations. The cluster
consists of 4 RX500S7 servers with four Intel Xeon E5-4620 8 core processors
(32 cores per node) and 256GB DDR3 RAM ( 8GB / core ratio) per node.

3.1 Memory requirements

For the SPQR factorization, we have used the code developed for Matlab. We
reserve a single node in the cluster. In this node which we can consume a max-
imum of 250GB of main memory. With these resources, it has been possible to
compute the QR decomposition corresponding to the system matrix for an image
resolution from 32x32 up to 256x256 with 30 views. Besides, using the Q-less QR
factorization we have been able to use up to 90 views with the 256x256 resolu-
tion, which is important as we will explain in section 3.3. For the analogous case
of resolution 512x512, considering 30 views, the matrix has not been factorized
due to lack of RAM.
Regarding the SVD decomposition, all cases of 30 views have been computed,
except for the 512x512 resolution case. For this process, we have reserved up to
32 processors with 15GB of RAM per processor, which means up to 240GB. De-
spite making use of distributed memory, we can not reserve over one server node
at a time, similar to the sequential case. In addition, the SVD process requires
more memory than the SPQR, so with the same characteristics, it has not been
possible to reach the case of 90 views for the 256x256 resolution.

3.2 Computational time efficiency

Although the factorization time is not critical in this scenario, it is convenient
to have an approximation of the computation time required for each matrix size.
In addition, we want to make a comparison between the two proposed methods.
Table 1 shows the results in seconds of computational time cost to carry out the
decompositions.

Table 1: Factorization time
Factorization Method

SPQR SVD

Resolution Time (secs.)

32x32 30 views 1.2 9
64x64 30 views 5.6 50
128x128 30 views 151 1900
256x256 30 views 3270 12000
256x256 60 views 12336 -
256x256 90 views 16400 -
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As we can observe, the factorization time in both cases is satisfactory. Although
it may seem that with the SVD decomposition it is too high, we must bear
in mind that this calculation will be performed only once and ’offline’, which
makes it a non-critical calculation. As shown in the table, the computational
time efficiency of the SPQR method is greater, which can be justified because
this calculation is performed in a single node, and therefore does not require
distributed memory as does the SVD. Since SVD implements the communication
through MPI messages, it generates an extra time associated with interprocess
communications, which makes the temporary efficiency much worse.

3.3 Image Quality

Regarding the quality of the images obtained by performing a reconstruction
with both methods, the results are reflected in Table 2. To measure the quality,
we used the PSNR metric [15], which shows the noise level of a image com-
pared to a reference image, and also the SSIM metric [15], which indicates the
structural similarity between both images, based on the shape of the elements
it contains.

Table 2: Reconstructed images quality
SPQR SVD

Resolution PSNR SSIM PSNR SSIM

32x32 30 views 228 1 238 1
64x64 30 views 213 1 224 1
128x128 30 views 255 1 221 1
256x256 30 views 38 0.03 30 0.29
256x256 60 views 32.5 0.03 - -
256x256 90 views 150 1 - -

In both cases we can see that up to the resolution 128x128, the results of the
reconstruction are very good, getting a PSNR greater than 200 in all cases (con-
sidering that a PSNR close to 100 can be considered a perfect reconstruction to
the perception of the eye human). In addition, all cases obtain an SSIM equal to
1, which means that structurally the image is accurate. The result of the recon-
struction by SVD with resolution 128x128 can be seen in Fig. 1b. If we compare
it with the reference image for the same resolution (Fig. 1a), we observe that
they are almost identical and the reconstruction does not have artifacts or noise.
However, for the 256x256 resolution and 30 views, the result is of very poor
quality for both methods, being the PSNR of both around 30. The reconstructed
images, that we can see in Fig. 2 are very noisy and although we get to perceive
elements of the phantom, it is not seen clearly enough.

The poor quality of this reconstruction is due to the fact that for this partic-
ular case (256x256 and 30 views), the sub-matrix extracted from the system
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(a) Reference image 128x128 (b) SVD reconstruction 128x128 30 views

Fig. 1: Reference and reconstructed 128x128 images

(a) SPQR reconstruction (b) SVD reconstruction

Fig. 2: Reconstructions 256x256 30 views
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matrix is rank deficient, as shown in Table 3. Therefore, the equations system
is ill-conditioned, which leads to missing information necessary for the recon-
struction. We observe that in the rest of the cases with smaller resolutions the
sub-matrix retains the full rank, so we have no problem when reconstructing
using these algebraic methods.
If we analyze the rank of the sub-matrices when we work with the largest res-
olutions, we can observe that we need to use more views in order to reach full
rank. For 256x256 pixels reconstructions, we should use at least 90 views, which
means we still reduce the number of views with respect to traditional methods.
For 512x512 resolution, we need over 180 views, approximately 260, to keep the
full rank on the sub-matrix. That means that even if we could still reduce a few
views compared with other methods, the resulting reconstruction problem would
have larger dimensions than we can compute.

Table 3: Rank study
Number of views

180 120 90 60 30

Resolution No of colums / Rank

32x32 1024/1024 1024/1024 1024/1024 1024/1024 1024/1024
64x64 4096/4096 4096/4096 4096/4096 4096/4096 4096/4096
128x128 16384/ 16384 16384/16384 16384/16384 16384/16384 16384/16384
256x256 65536/65536 65536/65536 65536/65536 65536/49380 65536/30093
512x512 262144/149551 262144/100842 262144/76000 262144/ 50963 262144/25608

We have verified that the rank of the matrix used has direct effect on the recon-
structed image. In Fig. 3 we present the singular vector of a full-rank sub-matrix.
As we can see, we have a few dominant values, approximately 1000, and then
they start to decrease. When we reach the 8000th value, it looks like they sta-
bilize and are close to 0. If we look to the detail window on the plot, we can
observe that the last 1600 values, even if they are close to 0, vary between 0.03
and 0.01, which is still a significant number in this case. Therefore, this means
we can not disregard any singular value.
In Fig. 4 we can observe how varying the number of singular values, we get very
different reconstructions. As explained before, we do not reach optimal quality
until we use the full rank. We observe the same effect with SPQR if we vary the
number of views.
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Fig. 3: Singular vector 128x128

In Fig. 5 we see the difference between taking 30, 60, and 90 for the 256x256
resolution matrix. With 60 projections we increase the rank, so the image is
slightly better than with 30, as can be observed in the edges of the phantom.
But it is not until we reach 90 views that the image is of good quality.

(a) 2000 (b) 6000 (c) 10000

(d) 14000 (e) 15300 (f) 16384

Fig. 4: Reconstruction varying singular values 128x128

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_25

https://dx.doi.org/10.1007/978-3-319-93701-4_25


CT medical imaging reconstruction . . . 11

(a) 30 views (b) 60 views (c) 90 views

Fig. 5: SPQR 256x256 reconstructions

4 Conclusion

In the present work, we have proposed two sparse matrix factorization meth-
ods that can be used for CT image reconstruction. In this way, we simulate the
use of the pseudoinverse of the system matrix to transform the initial problem
solution into a simpler one. The main challenge of these methods is the high
consumption of memory to perform the computation, so we had to make use of
a high performance computing cluster.
In this cluster it has been possible to calculate the SPQR factorization up to a
resolution of 256x256 pixels and 90 views. In addition, the SVD up to 256x256
and 30 views. Although with the SVD method we have not obtained satisfactory
results for higher resolutions, through SPQR we have managed to perform a re-
construction of very high quality with 90 views and full rank. This translates into
a very significant difference in the doses of x-rays to which patients should be
exposed. Taking into account that the direct methods are based on the Nyquist
theorem, for our scanner configuration, they would use significantly more views.
However, we are reducing them to 90 in the case of resolution 256x256 and to
30 in lower ones.
Since the calculation of the factorizations for this type of reconstruction prob-
lem can be done before the moment of the reconstruction itself and stored, the
computation times required for all cases are acceptable, the SPQR method being
faster because it does not need distributed memory.
In addition, we have transformed the problem of reconstruction into a problem
of matrix-vector multiplication and resolution of a triangular system in the case
of the QR and a matrix-vector product in the case of the SVD. These resolutions
are highly parallelizable in both CPU and GPU, which means that having the
matrices stored we could accomplish the reconstructions faster than with the
previous methods.
Regarding the image quality obtained, it is very satisfactory for all the cases in
which the sub-matrix generated is full range, obtaining images of higher quality
than those obtained by iterative methods that we have presented in previous
works, such as LSQR [4]. However, the moment the sub-matrix becomes rank
deficient, the reconstructed image is of very poor quality due to the lack of in-
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formation. In future works, it is proposed to introduce regularization algorithms
to increase the range of sub-matrices, or a filter in the image that, as with the
LSQR method, are combined in a certain way that allows a more quality ap-
proximation to be made despite having an ill-conditioned problem.
In addition, it is necessary to analyze the implementation of the factorizations
in order to improve the use of RAM memory, and in this way to factorize the
corresponding matrix for 512x512 pixels, which is the objective resolution. For
this problem, we set out to use out-of-core computing techniques that make use
of the disk to avoid main memory problems.
In conclusion, we can say that we have tested the viability of the SPQR and
SVD direct algebraic methods applied to CT image reconstruction. In spite of
not having reconstructed images of very high quality, we have verified that with
these methods it is possible to reduce the dose of radiation to a great extent if
the matrix can be computed.
At this point of our work we have two resolution options: For rapid recon-
structions with low dose and medium resolutions, factoring methods. For high-
resolution reconstructions and slightly worse quality, the LSQR + FISTA + STF
iterative method, which is slower but guarantees good results.
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