
Automatic mapping for OpenCL-Programs
on CPU/GPU Heterogeneous Platforms

Konrad Moren1 and Diana Göhringer2

1 Fraunhofer Institute of Optronics, System Technologies and Image Exploitation
IOSB, Ettlingen 76275, Germany

konrad.moren@iosb.fraunhofer.de
2 TU Dresden, Adaptive Dynamic Systems, 01062 Dresden, Germany

diana.goehringer@tu-dresden.de

Abstract. Heterogeneous computing systems with multiple CPUs and
GPUs are increasingly popular. Today, heterogeneous platforms are de-
ployed in many setups, ranging from low-power mobile systems to high
performance computing systems. Such platforms are usually programmed
using OpenCL which allows to execute the same program on different
types of device. Nevertheless, programming such platforms is a chal-
lenging job for most non-expert programmers. To enable an efficient
application runtime on heterogeneous platforms, programmers require
an efficient workload distribution to the available compute devices. The
decision how the application should be mapped is non-trivial. In this pa-
per, we present a new approach to build accurate predictive-models for
OpenCL programs. We use a machine learning-based predictive model to
estimate which device allows best application speed-up. With the LLVM
compiler framework we develop a tool for dynamic code-feature extrac-
tion. We demonstrate the effectiveness of our novel approach by applying
it to different prediction schemes. Using our dynamic feature extraction
techniques, we are able to build accurate predictive models, with ac-
curacies varying between 77% and 90%, depending on the prediction
mechanism and the scenario. We evaluated our method on an extensive
set of parallel applications. One of our findings is that dynamically ex-
tracted code features improve the accuracy of the predictive-models by
6.1% on average (maximum 9.5%) as compared to the state of the art.

Keywords: OpenCL, heterogeneous computing, workload scheduling,
machine learning, compilers, code analysis

1 Introduction

One of the grand challenges in efficient multi-device programming is the workload
distribution among the available devices in order to maximize application perfor-
mance. Such systems are usually programmed using OpenCL that allows execut-
ing the same program on different types of device. Task distribution-mapping de-
fines how the total workload (all OpenCL-program kernels) is distributed among
the available computational resources. Typically application developers solve this

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

problem experimentally, where they profile the execution time of kernel function
for each available device and then decide how to map the application. This ap-
proach error prone and furthermore, it is very time consuming to analyze the
application scaling for various inputs and execution setups. The best mapping
is likely to change with different: input/output sizes, execution-setups and tar-
get hardware configurations [1, 2]. To solve this problem, researchers focus on
three major performance-modeling techniques on which mapping-heuristic can
be based: simulations, analytical and statistical modeling. Models created with
analytical and simulation techniques are most accurate and robust[3], but they
are also difficult to design and maintain in a portable way. Developers often have
to spend huge amount of time to create a tuned-model even for a single target
architecture. Since modern hardware architectures are rapidly changing those
methods are likely to be out of the date. The last group, statistical modeling
techniques overcome those drawbacks, where the model is created by extract-
ing program parameters, running programs and observing how the parameters
variation affects their execution times. This process is independent of the target
platform and easily adaptable. Recent research studies [4, 5, 6, 7, 8, 9] have
already proved that predictive models are very useful in wide range of applica-
tions. However, one major concern for accurate and robust model design is the
selection of program features.

Efficient and portable workload mapping requires a model of corresponding
platform. Previous work on predictive modeling [10, 11, 12, 13] restricted their
attention to models based on features extracted statically, avoiding dynamic
application analysis. However, performance related information, like the number
of memory transactions between the caches and main memory, is known only
during the runtime.

In this paper, we present a novel method to dynamically extract code features
from the OpenCL programs which we use to build our predictive models. With
the created model, we predict which device allows the best relative application
speed-up. Furthermore, we developed code transformation and analysis passes to
extract the dynamic code features. We measure and quantify the importance of
extracted code-features. Finally, we analyze and show that dynamic code features
increase the model accuracy as compared to the state of the art methods. Our
goal is to explore and present an efficient method for code feature extraction to
improve the predictive model performance. In summary:

– We present a method to extract OpenCL code features that leads to more
accurate predictive models.

– Our method is portable to any OpenCL environment with an arbitrary num-
ber of devices. The experimental results demonstrate the capabilities of our
approach on three different heterogeneous multi-device platforms.

– We show the impact of our newly introduced dynamic features in the context
of predictive modeling.

This paper is structured as follows. Section 2 gives an overview of the related
work. Section 3 presents our approach. In Section 4 we describe the experiments.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

In Section 5 we present results and discuss the limitations of our method. In the
last section, we draw our conclusion and show directions for the future work.

2 Background and Existing Approaches

Several related studies have tackled the problem of feature extraction from
OpenCL programs, followed by the predictive model building.

Grewe[10] et al. proposed a predictive model based on static OpenCL code
features to estimate the optimal split kernel-size. Authors present that the esti-
mated split-factor can be used to efficiently distribute the workload between the
CPU and the GPU in a heterogeneous system.

Magni[11] et al. presented the use of predictive modeling to train and build a
model based on Artificial Neural Network algorithms. They predict the correct
coarsening factor to drive their own compiler tool-chain. Similarly to Grewe they
target almost identical code features to build the model.

Kofler[12] et al. build the predictive-model based on Artificial Neural Net-
works that incorporates static program features as well as dynamic, input sen-
sitive features. With the created model, they automatically optimize task parti-
tioning for different problem sizes and different heterogeneous architectures.

Wen[13] et al. described the use of machine learning to predict the proper tar-
get device in context of a multi-application workload distribution system. They
build the model based on the static OpenCL code features with few runtime
features. They included environment related features, which provide only infor-
mation about the computing-platform capabilities. This approach is most related
to our work. They also study building of the predictive model to distribute the
workloads in a context of the heterogeneous platform.

One observation is that all these methods extract code features statically
during the JIT compilation phase. We believe, that our novel dynamic code
analysis, can provide more meaningful and valuable code features. We justify
our statement by profiling the Listing 1.1.

1 kernel
2 void floydWarshall (global uint * pathDist , global uint * path ,
3 const uint numNodes , const uint pass)
4 {
5 const int xValue = get_global_id (0);
6 const int yValue = get_global_id (1);
7 const int oldWeight = pathDist [yValue * numNodes + xValue];
8 const int tempWeight = (pathDist [yValue * numNodes + pass] +
9 pathDist [pass * numNodes + xValue]);

10 if (tempWeight < oldWeight){
11 pathDist [yValue * numNodes + xValue] = tempWeight ;
12 path[yValue * numNodes + xValue] = pass;
13 }}

Listing 1.1. AMD-SDK FloydWarshall kernel

The results are shown in Fig.1. These experiments demonstrate the execution
times of the Listing 1.1 executed with varying input values (numNodes, pass)
and execution-configurations on our experimental platforms. We can observe
that even for a single kernel function, the optimal mapping considerably depends

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

200 400 600 800 1000

Nodes

101

102

E
x

e
c
u

ti
o

n
 t

im
e

 [
m

s
]

Platform A

200 400 600 800 1000

Nodes

101

102

Platform B

200 400 600 800 1000

Nodes

101

102

Platform C

Fig. 1. Profiling results for an AMD-SDK FloydWarshall kernel function on test plat-
forms. The target architectures are detailed in the Section 4.1. The Y-Axis presents
the execution time in milliseconds, the X-Axis shows the varying number of nodes.

on the input/output sizes and the capabilities of the platform. In Listing 1.1
the arguments numNodes and pass control effectively the number of requested
cache lines. According to our observations, many of the OpenCL programs rely
on kernel input arguments, known only at the enqueuing time. In general, input
values of OpenCL-function arguments are unknown at the compilation time.
Many performance related information, like the memory access pattern, number
of executed statements, could possibly be dependent on these parameters. This
is a crucial shortcoming in previous approaches. The code-statements dependent
on values known during the program execution are undefined and could not
provide quantitative information. Since current state of the art methods analyze
and extract code features only statically, new methods are needed. In the next
section, we present our framework that addresses this problem.

3 Proposed Approach

This section describes the design and the implementation of our dynamic fea-
ture extraction method. We present all the parts of our extraction approach:
transformation and feature building. We describe which code parameters we ex-
tract and how we build the code features from them. Finally, we present our
methodology to train and build the statistical performance model based on the
extracted features.

3.1 Architecture Overview

Fig.2 shows the architecture of our approach. We modify and extend the default
OpenCL-driver to integrate our method. First, we use the binary LLVM-IR rep-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

Fig. 2. Architecture of the proposed approach.

resentation of the kernel function and cache it in the driver memory ¶. We
reuse IR functions during enqueing to the compute-device. During the enqueing
phase, cached IR functions with known parameters are used as inputs to the
transformation engine. At the time of enqueuing, the values of input arguments,
the kernel code and the NDRange sizes are known and remain constant. A se-
mantically correct OpenCL program always needs this information to properly
execute [14]. Based on this observation, our transform module · rewrites the
input OpenCL-C kernel code to a simplified version.This kernel-IR version is
analyzed to build the code features ¸. Finally we deploy our trained predictive
model and embed it as a last stage in our modified OpenCL driver ¹. Following
sections describe steps ¶-¹ in more details.

3.2 Dynamic code feature analysis and extraction

The modified driver extends the default OpenCL driver by three additional mod-
ules. First, we extend and modify the clBuildProgram function in OpenCL API.
Our implementation adds a caching system ¶ to reduce the overhead of invok-
ing transformation and feature-building modules. We store internal LLVM-IR
representations in the driver memory to efficiently reuse it in the transforma-
tion module ·. Building the LLVM-IR module is done only once, usually at
the application beginning. The transformation module · is implemented within
the clEnqueueNdRangeKernel OpenCL API function. This module rewrites
the input OpenCL-C kernel code to a simplified version. The Fig.3 shows the
transformation architecture. The module includes two cache objects, which store
original and pre-transformed IR kernel functions. We apply transformations in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

Fig. 3. Detailed view on our feature extraction module.

two phases T1 and T2. First phase T1, we load for a specific kernel name the IR-
code created during ¶ and then wrap the code region with work-item loops. The
wrapping technique is a known method described by Lee [15] and already applied
in other studies [16, 17]. The work-group IR-function generation is performed
at kernel enqueue time, when the group size is known. The known work-group
size makes it possible to set constant values to the work-item loops.In a second
phase T2, we load the transformed work-group IR and propagate constant input
values. After this step, the IR includes all specific values not only the symbolic
expressions. The remaining passes of T2 further simplifies the code. The Listing
1.2 presents the intermediate code after the transformation T1 and input ar-
gument values propagation. Due to the space limitation, we do not present the
original LLVM-IR code but a readable-intermediate representation.

1 kernel
2 void floydWarshall (global uint * pathDist , global uint * path)
3 {
4 for(int yValue =0; yValue <1024; yValue ++){
5 for(int xValue =0; xValue <1024; xValue ++){
6 const int oldWeight = pathDist [yValue * 1024 + xValue];
7 const int tempWeight = (pathDist [yValue * 1024 + 16] +
8 pathDist [16 * 1024 + xValue]);
9 if (tempWeight < oldWeight){

10 pathDist [yValue * 1024 + xValue] = tempWeight ;
11 path[yValue * 1024 + xValue] = 16;
12 }
13 }
14 }
15 }

Listing 1.2. The readable-intermediate representation of Listing 1.1 after input
and built-in constants propagation. The execution parametes are: numNodes=1024,
pass=16, work-group sizes=(1,1), global sizes=(1024,1024)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

We can observe that the constant propagation pass, enables to determine
how the memory accesses are distributed. Now the system can extract not only
how many load and stores are requested, but also how are they distributed. With
pure static code analysis, this information is not available. Additionally, com-
pared to the pure static methods we analyze more accurately the instructions.
Our method simplifies the control flow graph and analyzes only the executable
instructions. In contrast, the static code analysis scans all basic blocks also these
that are not used. Furthermore, we extract for each load and store instructions
the Scalar Evolution (SCEV) expressions. The extracted SCEV expressions rep-
resent the evolution of loop variables in a closed form [18, 19]. A SCEV consist
of a starting value, an operator and an increment value. They have the format
{< base >, +, < step >} . The base of an SCEV defines its value at loop itera-
tion zero and the step of an SCEV defines the values added on every subsequent
loop iteration [20]. For example, the SCEV expression for the load instruction
in Listing 1.2 on line 6 has the form {{%pathDist, +, 4096}, +, 4}. We can see
that this compact representation describes the memory access of the kernel input
argument %pathDist. With this information, we analyze the SCEVs for existing
loads and stores to infer the memory access. We group the extracted memory
accesses in four groups. First invariant accesses with the stride zero. Stride zero
accesses(i.e., invariant) means that the memory access index is the same for all
loop iterations in a work-group. The second group, consecutive accesses with
stride one. Stride one means that the memory access index increases by one for
consecutive loop iterations. The third group, non-consecutive accesses with the
stride N , where N means that the memory access index is neither invariant nor
stride one. Finally, the last group, the unknown accesses with the stride X. In
general, SCEV expression can have an unknown value due to a dependence on
the results calculated during the code execution. Table 1 presents all extracted
information about the kernel function.

Features Description
F1 (arithmetic_inst)/(all_inst) computational intensity ratio
F2 (memory_inst)/(all_inst) memory intensity ratio
F3 (control_inst)/(all_inst) control intensity ratio
F4 datasize global memory allocated
F5 globalW orkSize number of global threads
F6 localW orkSize number of local threads
F7 workGroups number of work-groups
F8 Stride0 invariant memory accesses
F9 Stride1 consecutive memory accesses
F10 StrideN scatter/gather memory accesses
F11 StrideX unknown memory accesses

Table 1. Features extracted with our dynamic analysis method. These features are
used to build the predictive model.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

The selected features are not specific for any micro-architecture or device
type. We extract the existing OpenCL-C arithmetic, control and memory in-
structions. Additionally in contrast to other approaches, we extract the memory
access pattern. The selection of the features is a design specific decision. We ana-
lyze in more detail the importance of selected features in Section 4.2. In the next
section, we use our extracted features to create the training data and describe
how we train our predictive model.

3.3 Building the prediction model

Building machine-learning based models involves the collection of data that is
used in the model training and evaluation. To retrieve the data we execute,
extract features and measure the execution time for various test applications.
We use different applications implemented in: the NVIDIA OpenCL SDK [21],
the AMD APP SDK [14], and the Polybench OpenCL v2.5 [22]. We execute the
applications with different input data sizes. The purpose of this is twofold. First,
the variable sizes of input data let us collect more training data and second, the
data is more diverse due to the implicit change in work-group sizes. Many of these
applications adapt the number of work-groups with the change of input/output
data sizes. By varying the input variables of applications, we create the data set
with 5887 samples. The list of application is shown in Table 2.

Suite Application Input sizes Application Input sizes
AMD SDK Binary Search 80K-1M Bitonic Sort 8K-64K

Binomial Option 1K-64K Black Scholes 34M
DCT 130K-20M Fast Walsh Transform 2K-32K
Floyd Warshall 1K-64K LU Decomposition 8M
Monte Carlo Asian 4M-8M Matrix Multiplication 130K-52M
Matrix Transpose 130K-50M Quasi Random Sequence 4K
Reduction 8K RadixSort 8K-64K
Simple Convolution 130K-1M Scan Large Arrays 4K-64K

Nvidia SDK DXT Compression 2M-6M Median Filter 3M
Dot Product 9K-294K FDTD3d 8M-260M
HMM 2M-4M Tridiagonal 320K-20M

Polybench Atax 66K-2M Bicg 66K-2M
Gramschmidt 15K-1M Gesummv 130K-5M
Correlation 130K-5M Covariance 130K-52M
Syrk 190K-5M Syr2k 190K-5M

Table 2. The applications used to train and evaluate our predictive model.

In our approach, we execute presented OpenCL programs on the CPU and
the GPU to measure the speedup of the GPU execution for each individual
kernel over the CPU. Furthermore, to consider various costs of data transfers on
architectures with discrete and integrated GPUs, we measure the transfer times
between the CPU and GPU. We define it as DT . To model the real cost of the
execution on the GPUs, we add the DT to the GPU execution time. Finally, in
a last step we combine the CPU/GPU execution times and label the kernel-code

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

to one of five speed-up classes. The Equation 1 defines the speed-up categories
for our predictive model.

Speedup_class =

Class1 CP U
GP U+DT ≤ 1x(no speedup)

Class2 1x < CP U
GP U+DT ≤ 3x

Class3 3x < CP U
GP U+DT ≤ 5x

Class4 5x < CP U
GP U+DT ≤ 7x

Class5 CP U
GP U+DT ≥ 7x

(1)

In our experiments, we use the Random Forest (RF) classifier. The reason
fo this is twofold. First, the RF classifier enables to build the relative feature
importance ranking. In Section 5 we use this metric to explore the relative feature
importance on the classification accuracy. The second one is that, the classifiers
based on decision trees are usually fast. We also investigated other machine
learning algorithms but due to the space limitations, we will not show a detailed
comparison of these classifiers. Finally, once the model is trained we use the
trained model during the runtime ¹ to determine the kernel scheduling.

4 Experimental Evaluation

4.1 Hardware and Software Platforms

We evaluate on three CPU+GPU platforms. The details are shown in Table 3.
All platforms have Intel CPUs, two platforms include discrete GPUs. The third
platform is an Intel SoC (System on Chip) with integrated CPU/GPU. We use
LLVM 3.8 with Ubuntu-Linux 16.04 LTS to drive our feature extraction tool.
The host-side compiler is GCC 5.4.0 with -O3 option. On the device-side Intel
OpenCL SDK 2.0, NVIDIA Cuda SDK 8.0 and AMD OpenCL SDK 2.0 provide
compliers.

4.2 Evaluation of the model

We train and evaluate two speed-up models with different features to compare
our approach with the state of the art. The first model, is based on our dynamic
feature extraction method. Table 1 shows the features applied to build the model.
To train and build the second model, we extract statically only the code features
F1-F7 from the kernel function (i.e. during the JIT-compilation). The memory
access features F8-F11 known only during the runtime are not included. For
both models, we apply the following train and evaluation method. We split 10
times our dataset into train and test sets. Each time we randomly select 33% of
dataset samples for the evaluation process. The remaining 67% are used to train
the model. Figure 4 presents the confusion matrix for the evaluation scenario.

We observe that the prediction accuracy for the model created with dynamic
features is higher than for the model based on static features. On the Platform

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

Platform A CPU GPU
I7-4930K Radeon R9-290

Architecture Ivy Bridge Hawaii
Core Count 6 (12 w/ HT) 2560
Core Clock 3.9 GHz 0.9 GHz
Memory bandwidth 59.7 GB/s 320 GB/s
Platform B CPU GPU

I7-6600U HD-520
Architecture Skylake Skylake
Core Count 2 (4 w/ HT) 192
Core Clock 3.4 GHz 1.0 GHz
Memory bandwidth 34.1 GB/s 25.6 GB/s
Platform C CPU GPU

Xeon E5-2667 Geforce GTX 780 Ti
Architecture Sandy Bridge Kepler
Core Count 6 (12 w/ HT) 2880
Core Clock 3.5 GHz 0.9 GHz
Memory bandwidth 51.2 GB/s 288.4 GB/s

Table 3. Hardware Platforms

A the model based on dynamic features have a 90.1% mean accuracy. The ac-
curacy values is an average over testing scenarios. We calculate the accuracy as
the ratio between sum of values on the diagonal in Figure 4 to all values. We
observe similar results for two other Platforms B and C. The mean accuracies for
the remaining platforms are 77% and 84% for Platforms B and C respectively.
Overall, we can report increase of the prediction accuracy with dynamically ex-
tracted features by 9,5%, 4,9% and 4,1% for the tested Platforms. We observe
also that, the model based on dynamic features leads to lower slowdowns. We can
observe from Figure 4 that the model with static features predicts less accurate,
the error rate is 19,4%, for the dynamic model only 9,9%. More importantly, we
can see that the distribution of errors is different. Overall, we can observe that
the number of miss-predictions, values below and above the diagonal, is higher
for the model created with static features. In the worst case, the model based
on statically extracted features predicts only 36 times correctly the 7x speed-up
on the GPU. This point corresponds to the lowest row in the confusion matrix
presented in Figure 4.

5 Discussion

We find out in our experiments that the predictive models designed with the
dynamic code features are more accurate and lead to lower performance degra-
dation in context of workload distribution. To further explore the impact of dy-
namic features on the classification, we analyze the relative feature importance.
The selected RF classifier enables to build the relative feature importance rank-
ing. The relative feature importance metric is based on two statistical methods
Gini-impurity and the Information gain. More details about the RF classifier
and the feature importance metric are included in the [23]. Figure 5 presents

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

Predicted CPU/GPU class

T
u
re

 C
P
U

/G
P
U

 c
la

s
s

1x

3x-5x

7x

5x-7x

1x-3x

1x
1x-3

x

3x-5
x

5x-7
x 7x

1499 47 1 4 0

71 178 10 0 0

7 19 9 0 1

7 3 3 3 3

11 1 3 0 63

1400

1200

1000

800

600

400

200

0

(a)

1402 142 1 6 0

131 117 11 0 0

9 16 10 0 1

9 1 3 3 3

29 11 2 0 36

T
u
re

 C
P
U

/G
P
U

 c
la

s
s

1x

3x-5x

7x

5x-7x

1x-3x

Predicted CPU/GPU class

1x
1x-3

x

3x-5
x

5x-7
x 7x

1400

1200

1000

800

600

400

200

0

(b)

Fig. 4. The confusion matrix for platform A, (a) results for the model with dynamic
features (b) results without dynamic features.

the relative feature importance for the both models presented in the previous
section.

F9 F5 F1
0 F7 F2 F1 F6 F3 F1

1 F8 F4
0

5 · 10−2

0.1

0.15

0.
16

0.
16

0.
12

0.
11

9.
2

·1
0−

2

8.
9

·1
0−

2

8.
6

·1
0−

2

8.
6

·1
0−

2

4.
7

·1
0−

2

3
·1

0−
2

2.
6

·1
0−

2

R
el
at
iv
e
fe
at
ur
e
im

po
rt
an

ce

(a)
F2 F5 F3 F1 F7 F6 F4

5 · 10−2

0.1

0.15

0.2 0.2
0.19

0.17
0.16

0.13
0.11

3.8 · 10−2

(b)

Fig. 5. Relative feature importance for the classifier (a) trained with dynamic features
and (b) with statically extracted features. The values on X-Axis are features presented
in Table 1, the Y-Axis represents the ranking of relative feature importance.

We can observe for the model created with the dynamic code features that
the most informative features (i.e. mostly reducing the model variance), are
consecutive memory access F9 and the F5 number of global work-items. For the
second model created with statically extracted features, most informative are
number of loads and stores the F2 and again the F5 count of global work-items.
The high position in the ranking for loads and stores confirms the importance
of memory accesses extracted with our dynamic approach. One intuitive and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

reasonable explanation for the importance of dynamic code features (memory
accesses) would be that many of the analyzed workloads are memory-bound.

5.1 Limitations

Our dynamic approach described in previous sections increases a classification
accuracy. However, the proposed and described method in this paper has also
several limitations. Our memory access analysis is limited to a sub-set of all
possible code variants. The Scalar Evolution pass computes only the symbolic
expressions for combinations of constants, loop variables and static variables.
It supports only a common integer arithmetic like addition, subtraction, mul-
tiplication or unsigned division [20]. Other possible code variants and resulting
statements lead to unknown values. Another aspect is the feature extraction
time. Compared to the pure static methods our dynamic method generates an
overhead during the runtime. We can observe the variable overhead between 0.3
and 4 ms, dependent on the platform capabilities and the code complexity.

6 Conclusion and Outlook

Deploying data parallel applications using the right hardware is essential for
improving application performance on heterogeneous platforms. A wrong device
selection and as a result not efficient workload distribution may lead to a signifi-
cant performance loss. In this paper, we propose a novel systematic approach to
build the predictive model that estimates the compute device with an optimal
application speed-up. Our approach uses dynamic features available only during
the runtime. This improves the prediction accuracy independently of the appli-
cations and hardware setups. Therefore, we believe that our work provides an
effective and adaptive approach for users who are looking for high performance
and efficiency on heterogeneous platforms. The performed experiments and re-
sults encourage us to extend and improve our methodology in the future. We
will extract and experiment with other code features and classifiers. Addition-
ally, we will improve our feature extraction method to further increase the model
accuracy and reduce the overall runtime.

References

[1] Calotoiu, A., Hoefler, T., Poke, M., Wolf, F.: Using automated performance
modeling to find scalability bugs in complex codes. In Gropp, W., Matsuoka,
S., eds.: International Conference for High Performance Computing, Networking,
Storage and Analysis, SC’13, Denver, CO, USA - November 17 - 21, 2013, New
York, NY, USA, ACM (2013) 45:1–45:12

[2] Hoefler, T., Gropp, W., Kramer, W., Snir, M.: Performance modeling for system-
atic performance tuning. In: State of the Practice Reports. SC ’11, New York,
NY, USA, ACM (2011) 6:1–6:12

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

[3] Lopez-Novoa, U., Mendiburu, A., Miguel-Alonso, J.: A survey of performance
modeling and simulation techniques for accelerator-based computing. IEEE Trans.
Parallel Distrib. Syst. 26(1) (2015) 272–281

[4] Bailey, D.H., Snavely, A. In: Performance Modeling: Understanding the Past
and Predicting the Future. Springer Berlin Heidelberg, Berlin, Heidelberg (2005)
185–195

[5] Nagasaka, H., Maruyama, N., Nukada, A., Endo, T., Matsuoka, S.: Statistical
power modeling of GPU kernels using performance counters. In: Green Computing
Conference, IEEE Computer Society (2010) 115–122

[6] Kerr, A., Diamos, G.F., Yalamanchili, S.: Modeling GPU-CPU workloads and
systems. In Kaeli, D.R., Leeser, M., eds.: Proceedings of 3rd Workshop on Gen-
eral Purpose Processing on Graphics Processing Units, GPGPU 2010, Pittsburgh,
Pennsylvania, USA, March 14, 2010. Volume 425 of ACM International Confer-
ence Proceeding Series., ACM (2010) 31–42

[7] Dao, T.T., Kim, J., Seo, S., Egger, B., Lee, J.: A performance model for gpus
with caches. IEEE Trans. Parallel Distrib. Syst. 26(7) (2015) 1800–1813

[8] Baldini, I., Fink, S.J., Altman, E.R.: Predicting GPU performance from CPU runs
using machine learning. In: SBAC-PAD, Washington, DC, USA, IEEE Computer
Society (2014) 254–261

[9] Tripathy, B., Dash, S., Padhy, S.K.: Multiprocessor scheduling and neural network
training methods using shuffled frog-leaping algorithm. Computers & Industrial
Engineering 80 (2015) 154–158

[10] Grewe, D., O’Boyle, M.F.P.: A static task partitioning approach for heterogeneous
systems using openCL. In Knoop, J., ed.: Compiler Construction – (20th CC’11
(Part of 14th ETAPS’11)). Volume 6601 of Lecture Notes in Computer Science
(LNCS). Springer-Verlag (NY), Saarbruken, Germany (March-April 2011) 286–
305

[11] Magni, A., Dubach, C., O’Boyle, M.F.P.: Automatic optimization of thread-
coarsening for graphics processors. In Amaral, J.N., Torrellas, J., eds.: PACT,
ACM (2014) 455–466

[12] Kofler, K., Grasso, I., Cosenza, B., Fahringer, T.: An automatic input-sensitive
approach for heterogeneous task partitioning. In Malony, A.D., Nemirovsky, M.,
Midkiff, S.P., eds.: ICS, ACM (2013) 149–160

[13] Wen, Y., Wang, Z., O’Boyle, M.F.P.: Smart multi-task scheduling for opencl pro-
grams on CPU/GPU heterogeneous platforms. In: 21st International Conference
on High Performance Computing, HiPC 2014, Goa, India, December 17-20, 2014.
(2014) 1–10

[14] AMD: AMD APP SDK v2.9 (2014)
[15] Lee, J., Kim, J., Seo, S., Kim, S., Park, J., Kim, H., Dao, T.T., Cho, Y., Seo, S.J.,

Lee, S.H., Cho, S.M., Song, H.J., Suh, S., Choi, J.: An opencl framework for het-
erogeneous multicores with local memory. In Salapura, V., Gschwind, M., Knoop,
J., eds.: 19th International Conference on Parallel Architecture and Compilation
Techniques (PACT 2010), Vienna, Austria, September 11-15, 2010, ACM (2010)
193–204

[16] Kim, H.S., Hajj, I.E., Stratton, J.A., Lumetta, S.S., mei W. Hwu, W.: Locality-
centric thread scheduling for bulk-synchronous programming models on CPU ar-
chitectures. In Olukotun, K., Smith, A., Hundt, R., Mars, J., eds.: Proceedings of
the 13th Annual IEEE/ACM International Symposium on Code Generation and
Optimization, CGO 2015, San Francisco, CA, USA, February 07 - 11, 2015, IEEE
Computer Society (2015) 257–268

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

[17] Jo, G., Jeon, W.J., Jung, W., Taft, G., Lee, J.: Opencl framework for arm proces-
sors with neon support. In: Proceedings of the 2014 Workshop on Programming
Models for SIMD/Vector Processing. WPMVP ’14, New York, NY, USA, ACM
(2014) 33–40

[18] Zima, E.V.: On computational properties of chains of recurrences. In: Proceedings
of the 2001 International Symposium on Symbolic and Algebraic Computation.
ISSAC ’01, New York, NY, USA, ACM (2001) 345–

[19] Engelen, R.A.V.: Efficient symbolic analysis for optimizing compilers. In: In
Proceedings of the International Conference on Compiler Construction (ETAPS
CC’01. (2001) 118–132

[20] Grosser, T., Größlinger, A., Lengauer, C.: Polly - performing polyhedral opti-
mizations on a low-level intermediate representation. Parallel Processing Letters
22(4) (2012)

[21] Nvidia: Nvidia opencl sdk code samples (2014)
[22] Grauer-Gray, S., Xu, L., Searles, R., Ayalasomayajula, S., Cavazos, J.: Auto-

tuning a high-level language targeted to GPU codes. In: Innovative Parallel Com-
puting (InPar), 2012. (May 2012) 1–10

[23] Breiman, L.: Random forests. Machine Learning 45(1) (2001) 5–32

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_23

https://dx.doi.org/10.1007/978-3-319-93701-4_23

