
Architecture Emulation and Simulation of Future Many-

Core Epiphany RISC Array Processors

David A. Richie
1
 and James A. Ross

2

1 Brown Deer Technology, MD, USA

drichie@browndeertechnology.com
2 U.S. Army Research Laboratory, MD, USA

james.a.ross176.civ@mail.mil

Abstract. The Adapteva Epiphany many-core architecture comprises a scalable

2D mesh Network-on-Chip (NoC) of low-power RISC cores with minimal un-

core functionality. The Epiphany architecture has demonstrated significantly

higher power-efficiency compared with other more conventional general-

purpose floating-point processors. The original 32-bit architecture has been up-

dated to create a 1,024-core 64-bit processor recently fabricated using a 16nm

process. We present here our recent work in developing an emulation and sim-

ulation capability for future many-core processors based on the Epiphany archi-

tecture. We have developed an Epiphany SoC device emulator that can be in-

stalled as a virtual device on an ordinary x86 platform and utilized with the ex-

isting software stack used to support physical devices, thus creating a seamless

software development environment capable of targeting new processor designs

just as they would be interfaced on a real platform. These virtual Epiphany de-

vices can be used for research in the area of many-core RISC array processors

in general.

Keywords: RISC, Network-on-Chip, Emulation, Simulation, Epiphany.

1 Introduction

Recent developments in high-performance computing (HPC) provide evidence and

motivation for increasing research and development efforts in low-power scalable

many-core RISC array processor architectures. Many-core processors based on two-

dimensional (2D) RISC arrays have been used to establish the first and fourth posi-

tions on the most recent list of top 500 supercomputers in the world [1]. Further, this

was accomplished without the use of commodity processors and with instruction set

architectures (ISAs) evolved from a limited ecosystem, driven primarily by research

laboratories. At the same time, the status quo in HPC of relying upon conventional

commodity processors to achieve the next level of supercomputing capability has

encountered major setbacks. Increasing research into new and innovative architec-

tures has emerged as a significant recommendation as we transition into a post-Moore

era [2] where old trends and conventional wisdom will no longer hold.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

2

At the same time, there is increasing momentum for a shift to open hardware mod-

els to facilitate greater innovation and resolve problems with the ecosystems that

presently provide the majority of computing platforms. Open hardware architectures,

especially those based on principles of simplicity, are amenable to analysis for relia-

bility, security, and correctness errata. This stands in stark contrast to the lack of

transparency we find with existing closed architectures where security and privacy

defects are now routinely found years after product deployment [3]. Open hardware

architectures are also likely to spark more rapid and significant innovation, as was

seen with the analogous shift to open-source software models. Recognition of the

benefits of an open hardware architecture can be seen in the DARPA-funded RISC-V

ISA development, which has recently lead to the availability of a commercial product

and is based on a BSD open source licensed instruction set architecture.

Whereas the last decade was focused mainly on using architectures provided by

just a few large commercial vendors, we may be entering an era in which architec-

tures research will become increasingly important to define, optimize, and specialize

architectures for specific classes of applications. A reduction in barriers to chip fabri-

cation and open source hardware will further advance an open architecture model

where increasing performance and capability must be extracted with innovative de-

sign rather than a reliance on Moore's Law to bring automatic improvements.

More rapid and open advances in hardware architectures will require unique capa-

bilities in software development to resolve the traditional time lag between hardware

availability and the software necessary to support it. This problem is long standing

and one that is more pragmatic than theoretical. Significant software development for

new hardware architectures will typically only begin once the hardware itself is avail-

able. Although some speculative work can be done, the effectiveness is limited. Very

often the hardware initially available will be in the form of a development kit that

brings unique challenges, and will not entirely replicate the target production systems.

Based on our experience with Epiphany and other novel architectures, the pattern

generally follows this scenario. Efforts to develop hardware/software co-design

methodologies can benefit development in both areas. However in this work we are

proposing an approach that goes further.

Modern HPC platforms are almost universally used for both development and pro-

duction. With increasing specialization to achieve extreme power and performance

metrics for a given class of problems, high-performance architectures may become

well designed for a specific task, but not well suited to supporting software develop-

ment and porting. An architecture emulation and simulation environment, which

replicates the interfacing to real hardware, could be utilized to prepare software for

production use beyond the early hardware/software co-design phase. As an example,

rather than incorporate architectural features into a production processor to make it

more capable at running compiler and development tools, the production processor

should be purpose-built, with silicon and power devoted to its specific production

requirements. A more general-purpose support platform can then be used to develop

and test both software and hardware designs at modest scale in advance of deploy-

ment on production systems.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

3

The focus of this research has been on the Epiphany architecture, which shares

many characteristics with other RISC array processors, and is notable at the present

time as the most power-efficient general-purpose floating-point processor demon-

strated in silicon. To the best of our knowledge, Epiphany is the only processor archi-

tecture that has achieved the power-efficiency projected to be necessary for exascale.

The Adapteva Epiphany RISC array architecture [4] is a scalable 2D array of low-

power RISC cores with minimal un-core functionality supported by an on-chip 2D

mesh network for fast inter-core communication. The Epiphany-III architecture is

scalable to 4,096 cores and represents an example of an architecture designed for

power-efficiency at extreme on-chip core counts. Processors based on this architec-

ture exhibit good performance/power metrics [5] and scalability via a 2D mesh net-

work [6,7], but require a suitable programming model to fully exploit the architecture.

A 16-core Epiphany-III processor [8] has been integrated into the Parallella mini-

computer platform [9] where the RISC array is supported by a dual-core ARM CPU

and asymmetric shared-memory access to off-chip global memory. Most recently, a

1024-core, 64-bit Epiphany-V was fabricated by DARPA and is anticipated to have

much higher performance and energy efficiency [10].

The overall motivation for this work stems from ongoing efforts to investigate fu-

ture many-core processors based on the Epiphany architecture. At present we are

investigating the design of a hybrid processor based on a 2D array of Epiphany-V

compute cores with several RISC-V supervisor cores acting as an on-die CPU host.

In support of such efforts, we need to develop a large-scale emulation and simulation

capability to enable rapid design and specialization by allowing testing and software

development using simulated virtual architectures. In this work, a special emphasis is

placed on achieving a seamless transition between emulated architectures and physi-

cal systems. The overall design and implementation of the proposed emulation and

simulation environment will be generally applicable to supporting more general re-

search and development of other many-core RISC array processors.

The main contributions presented here are as follows: we present a description of

the design and implementation of an Epiphany architecture emulator that can be used

to construct virtual Epiphany devices on an ordinary x86 workstation for software

development and testing. Early results from testing and validation of the Epiphany

ISA emulator are presented.

2 Background

The Adapteva Epiphany MIMD architecture is a scalable 2D array of RISC cores with

minimal uncore functionality connected with a fast 2D mesh Network-on-Chip

(NoC). The Epiphany-III (16-core) and Epiphany-IV (64-core) processors have a

RISC CPU core that support a 32-bit RISC ISA with 32 KB of shared local memory

per core (used for both program instructions and data), a mesh network interface, and

a dual-channel DMA engine. Each RISC CPU core contains a 64-word register file,

sequencer, interrupt handler, arithmetic logic unit, and a floating point unit. The fully

memory-mapped architecture allows shared memory access to global off-chip

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

4

memory and shared non-uniform memory access to the local memory of each core.

The Epiphany-V processor, shown in Figure 1, was extended to support 64-bit ad-

dressing and floating-point operations. The 1,024-core Epiphany-V processor was

fabricated by DARPA at 16nm.

Fig. 1. The Epiphany-V RISC array architecture. A tiled array of 64-bit RISC cores are con-

nected through a 2D mesh NoC for signaling and data transfer. Communication latency be-

tween cores is low, and the amount of addressable data contained on a mesh node is low (64

KB). Three on-chip 136-bit mesh networks enable on-chip read transactions, on-chip write

transactions, and off-chip memory transactions.

The present work leverages significant research and development efforts related to the

Epiphany architecture, and which produced the software stack to support many-core

processors like Epiphany. Previous work included investigating a parallel program-

ming models for the Epiphany architecture, including threaded MPI [11],

OpenSHMEM [12,13], and OpenCL [14] support for the Epiphany architecture. In all

cases the parallel programming model involved explicit data movement between the

local memory of each core in the RISC array, or to/from the off-chip global DRAM.

The absence of a hardware cache necessitated this movement to be controlled in soft-

ware explicitly. Also relevant to the present work, progress was made in the develop-

ment of a more transparent compilation and run-time environment whereby program

binaries could be compiled and executed directly on the Epiphany co-processor of the

Parallella platform without the use of an explicit host/coprocessor offload model [15].

3 Simulation Framework for Future Many-Core Architectures

There are several technical objectives addressed in the design and implementation of

a simulation framework for Epiphany-based many-core architectures. First and fore-

most, the ISA emulator(s) must enable fast emulation of real compiled binaries since

they are to be used for executing real application code, and not merely for targeted

testing of sub-sections of code. This will require a design that emphasizes efficiency

and potential optimization. An important application will be the use of virtual devices

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

5

operating at a level of performance that, albeit slower than real hardware, is amenable

to executing large applications.

Cycle-accurate correctness of the overall system is not an objective of the design,

since the goal is not to verify the digital logic of a given hardware design; sufficient

tools already exist for this purpose as part of the VLSI design process. The goal in-

stead is to ensure that the emulation and simulation environment is able to execute

real applications with correct results and with the overall performance modeled suffi-

ciently well so as to reproduce meaningful metrics. Thus, performance modeling is

done by way of directly executing compiled binary code rather than employing theo-

retical models of the architecture. The advantage of this approach is that it will simul-

taneously provide a natural software development environment for proposed architec-

tures and architecture changes without the need for physical devices. The software

development and execution environment should not appear qualitatively different

between simulation and execution on real hardware.

3.1 Epiphany Architecture Emulator

The design and implementation of an emulator for the Epiphany architecture is initial-

ly focused on the 32-bit architecture since physical devices are readily available for

testing. The more recent extension of the ISA to support 64-bit instructions will be

addressed in future work. The emulator for the 32-bit Epiphany architecture is im-

plemented as a modular C++ class, in order to support the rapid composition and

variation of specific devices for testing and software development. Implementing the

emulator directly in C++, and without the use of additional tools or languages, avoids

unnecessary complexity and facilitates modifications and experimentation. In addi-

tion, the direct implementation of the emulator in C++ will allow for the highest lev-

els of performance to be achieved through low-level optimization. The emulator class

is primarily comprised of an instruction dispatch method, implementations of the

instructions forming the ISA, and additional features external to the RISC core but

critical for the architecture functionality, such as the DMA engines.

The present design uses an instruction decoder based on an indirect threaded dis-

patch model. The Epiphany instruction decode table was analyzed to determine how

to efficiently dispatch the 16-bit and 32-bit instructions of the ISA. Examining the

lowest 4 bits of any instruction can be used to differentiate 16-bit and 32-bit instruc-

tion. For 16-bit instructions, it was determined that the lower 10 bits could efficiently

dispatch the instruction by way of a pre-initialized call table for all 16-bit instructions.

For 32-bit instructions, it was determined that a compressed bit-field of

{b19...b16|b9...b0} could efficiently dispatch instructions by way of a larger pre-

initialized call table that extends the table used for 16-bit instructions. The instruction

call table is sparse, representing a balance of trade-offs between table size and dis-

patch efficiency.

The instruction dispatch design will allow for any instruction to stall in order to

support more realistic behaviors. Memory and network interfaces are implemented as

separate abstractions to allow for different memory and network models. Initially, a

simple memory mapped model is used, and the incorporation of more complex and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

6

accurate memory models will be introduced in future work. The emulator supports

the Epiphany architecture special registers, dual DMA engines, and interrupt handler.

The DMA engines and interrupt support are based on a direct implementation of the

behaviors described in the Epiphany architecture reference, and are controlled by the

relevant special registers.

As will be described in more detail below, the emulator was validated using appli-

cations developed in previous work and has been demonstrated to correctly execute

complex code that included interrupts, asynchronous DMA transfers, and host-

coprocessor synchronization for host callback capabilities and direct Epiphany pro-

gram execution without supporting host code.

3.2 Virtual Epiphany Devices

Rather than incorporate the emulator into a stand-alone tool, the chosen design allows

the use of the emulator to create virtual Epiphany devices that present an interface

identical to that of a physical coprocessor and is indistinguishable from a user applica-

tion. This is accomplished by creating a nearly identical interface to that which is

found on the Parallella boards. On this platform, the dual-core ARM host and the

Epiphany-III device share 32 MB of mapped DRAM, and the Epiphany SRAM and

registers are further mapped into the Linux host address space. The result is that with

one exception of an ioctl() call intended to force a hard reset of the device, all interac-

tions occur via reads and writes to specific memory locations. Further, the

COPRTHR-2 API uses these mappings to create a unified virtual address space

(UVA) between the ARM host and Epiphany coprocessor so that no address transla-

tion is required when transferring control from host to coprocessor.

Low-level access to the Epiphany coprocessor is provided by the device special file

mounted on the Linux host file system at /dev/epiphany/mesh0. The setup of the

UVA described above is carried out entirely through mmap() calls of this special file

from within the COPRTHR software stack. Proper interaction with the Epiphany

device requires nothing more than knowing the required mappings and the various

protocols to be executed via ordinary reads and writes to memory. In order to create a

virtual Epiphany device, a shared memory region is mounted at /dev/shm/e32.0.0 that

replicates the memory segments of a physical Epiphany device, as shown in Error!

Reference source not found..

The emulator described in Section 3 is then used to compose a device of the correct

number of cores and topology, and then run "on top" of this shared memory region.

By this, it is meant that the emulator core will have mapped its interfacing of regis-

ters, local SRAM, and external DRAM to specific segments of the shared memory

region. By simply redirecting the COPRTHR API to map /dev/shm/e32.0.0 rather

than /dev/epiphany/mesh0, user applications executing on the host see no difference

in functionality between a physical and virtual Epiphany device.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

7

Fig. 2. The shared memory region replicates the physical memory segments of an Epiphany

processor. Each emulated core has virtual local and global addresses which match the physical

addressing.

The only real distinction is the replacement of the ioctl() call mentioned above with a

direct back-channel mechanism for forcing the equivalent of a hard reset of the virtual

device. In addition, whereas the device special file is mapped as though it represent-

ed the full and highly sparse 1 GB address space of the Epiphany architecture, the

shared memory region is stored more compactly to optimize the storage required for

representing a virtual Epiphany device. This is achieved by removing unused seg-

ments of the Epiphany address space for a given device, and storing only the core-

local memory, register files, and global memory segments within the shared memory

region. As an example, for a 256-core device with 32 MB of global memory, the

compressed address space of the device will only occupy 42 MB rather than a sparse

the sparse 1 GB address space.

The Linux daemon process emudevd creates this shared memory region and then

operates in either active or passive mode. In active mode, an emulator is started up

and begins executing on the shared memory region. If subsequently the user executes

a host application that utilizes the Epiphany coprocessor, it will find the virtual device

to be active and running, just as it would find a physical device.

The result of fully decoupling the emulator and user applications has an interesting

benefit. Having a coprocessor in an uncertain state is closer to reality, and there is

initially a low-level software requirement to develop reliable initialization procedures

to guarantee that an active coprocessor can be placed in a known state regardless of

the state in which it is found. This was the case during early software development

for the Epiphany-III processor and the Parallella board. Issues of device lockup and

unrecoverable states were common until a reliable procedure was developed. If a user

application were executed through a "safe" emulator tool placing the emulated device

in a known startup state, this would be overly optimistic and avoid common problems

encountered with real devices. The decoupling of the emulator and user application

replicates realistic conditions and provides visibility into state initialization that was

previously only indirectly known or guessed at during early software development.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

8

 It is worth emphasizing the transparency and utility of these virtual Epiphany de-

vices. The Epiphany GCC and COPRTHR tool chains are easily installed on an x86

platform, and with which Epiphany/Parallella application code can be cross-compiled.

By simply installing and running the emudevd daemon on the same x86 platform, it is

possible to then execute the cross-compiled code directly on the x86 platform. The

result is a software development and testing environment equivalent to that of a Paral-

lella development board. Furthermore, the virtual device is configurable in terms of

the number of cores and other architectural parameters. It is also possible to install

multiple virtual devices appearing as separate shared memory device special files

under /dev/shm. Finally, through modifications to the (open-source) Epiphany emula-

tor, researchers can explore "what-if" architecture design modifications. At the same

time, the user application code is compiled and executed just as it would be on a Par-

allella development board with a physical device. A discussion of the initial testing

and verification performed using the Epiphany ISA emulator and virtual devices will

be presented in Section 4.

4 Epiphany Emulator Results

Initial results from testing the Epiphany ISA emulator are promising and demonstrat-

ed functional correctness in a benchmark application, generating results identical to

those generated using a physical Epiphany-III device. Two platforms were used for

testing. A Parallella development board was used for reference purposes, and was

comprised of a Zynq 7020 dual-core ARM CPU and a 16-core Epiphany-III copro-

cessor, and with a software stack consisting of Ubuntu Linux 15.04, GCC 4.9.2 for

compiling host applications, GCC 5.2.0 for cross-compiling Epiphany binaries, and

the COPRTHR-2 SDK for providing software support for the Epiphany coprocessor.

Emulation was tested on an ordinary x86 workstation with an eight-core AMD FX-

8150 CPU, and with a software stack consisting of Linux Mint 17.3, GCC 5.3.0 for

compiling host applications, GCC 5.4.0 for cross-compiling Epiphany binaries, and

the COPRTHR-2 SDK for providing software support for the Epiphany coprocessor.

Two test cases were used for initial debugging and then validation of the Epiphany

architecture emulator. The first test application involved a simple "Hello, World!"

type program that used the COPRTHR host-coprocessor interoperability. This repre-

sents a non-trivial interaction between the host application and the code executed on

the Epiphany coprocessor. The test code was compiled on the x86 workstation using

the COPRTHR coprcc compiler option '-fhost' to generate a single host executable

that will automatically run the cross-compiled Epiphany binary embedded within it.

We note that the test code was copied over from a Parallella development board and

left unmodified. When executing the host program just as it would be executed on the

Parallella development platform, the application ran successfully on the x86 work-

station using the Epiphany emulator. From the perspective of the host-side

COPRTHR API, the virtual Epiphany device appears to be a physical Epiphany co-

processor that was simply mounted at a different location within the Linux file sys-

tem.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

9

A variation of this "Hello, World!" type program was also tested using an explicit

host program to load and execute a function on one or more cores of the Epiphany

coprocessor. For this test, the Epiphany binary was first compiled using the GCC

cross-compiler on the x86 workstation, with results being very similar to the first

successful test case. A cross-compiled Epiphany binary was then copied over from

the Parallella platform and used directly on the x86 workstation with emulation. Us-

ing the binary compiled on the different platform, no differences in behavior were

observed. This demonstrated that Epiphany binaries could be copied from the Paral-

lella platform and executed without modification using emulation on the x86 work-

station. Using the COPRTHR shell command coprsh we were able to execute the test

program using various numbers of cores up to 16, with success in all cases. From a

user perspective, the "look and feel" of the entire exercise did not differ from that

experienced with software development on a Parallella development board.

The overall results from the above testing demonstrated that the test codes previ-

ously developed on the Parallella platform using the COPRTHR API could be com-

piled and executed via emulation on an ordinary workstation, seamlessly, and using

an identical workflow. For a more demanding test of the emulator, a benchmark ap-

plication was used that exercises many more features of the Epiphany coprocessor.

The Cannon matrix-matrix multiplication benchmark was implemented in previous

work for Epiphany using the COPRTHR API with threaded MPI for inter-core data

transfers [11]. This application code was highly optimized and used previously for

extensive benchmarking of the Epiphany architecture and provides a non-trivial test

case for the emulator for several reasons. The Cannon algorithm requires significant

data movement between cores as sub-matrices are shifted in alternating directions.

These inter-core data transfers are implemented using a threaded MPI interface, and

specifically the MPI_Sendrecv_replace() call which requires precise inter-core syn-

chronization. Finally, the data transfers from shared DRAM to core-local memory are

performed using DMA engines. As a result, this test case places significant demands

on the architecture emulator and is built up from complex layers of support with the

COPRTHR device-side software stack. For a complete and detailed discussion of this

Epiphany benchmark application see reference [11].

 Error! Reference source not found. shows the actual workflow and output from

the command-line used to build and execute the benchmark on the x86 workstation

with the emulated virtual Epiphany device. This workflow is identical to that which

is used on a Parallella platform, and the benchmark executes successfully without

error. It was mentioned above that the application code leverages the COPRTHR

software stack; it is important to emphasize again that no changes have been made to

the COPRTHR software stack to support emulation. The virtual Epiphany devices

create a seamless software development and testing capability, and appear to the sup-

porting middleware to be real devices.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

10

] gcc –I$COPRTHR_INC_PATH -c cannon_host.c

] gcc -rdynamic -o cannon.x cannon_host.o \

 -L$COPRTHR_LIB_PATH -lcoprthr -lcoprthrcc -lm -ldl

] coprcc -o cannon_tfunc.e32 cannon_tfunc.c \

 -L$COPRTHR_LIB_PATH -lcoprthr_mpi

] ./cannon.x -d 4 -n 32

COPRTHR-2-BETA (Anthem) build 20180118.0014

main: Using -n=32, -s=1, -s2=1, -d=4

main: dd=0

main: 0x2248420 0x223f3f0

main: mpiexec time 0.117030 sec

main: # errors: 0

Fig. 3. Workflow and output from the command-line used to build and execute the Cannon

matrix-matrix multiplication benchmark on the x86 workstation using the emulated virtual

Epiphany device. The workflow and execution is unchanged from that used on the Epiphany

Parallella platform where the benchmark was first developed. This seamless interface to the

Epiphany ISA emulator enables a testing and software development environment for new de-

signs that is identical to production hardware.

The idea behind using emulated devices is that they allow for testing and software

development targeting future architecture changes. The previously developed matrix-

matrix multiplication benchmark allowed command line options to control the size of

the matrices and the number of threads used on the Epiphany device. With a physical

Epiphany-III, the range of valid parameters was limited to 16 threads, with submatri-

ces required to fit in the core-local memory of the coprocessor core executing each

thread. Using emulated Epiphany devices, it was possible to execute this benchmark

on 64 and 256 cores, and with larger matrices.

The results from this testing are shown in Error! Reference source not found.

where for each combination of device, matrix size, and thread count, the total execu-

tion time for the benchmark is reported in terms of 1,000s of device clocks and wall-

clock time in milliseconds. For each reported result, the numerical accuracy of the

calculated matrix satisfied the default error test requiring that the relative error of each

matrix element be less than 1% as compared with the analytical result. This criterion

was used consistently in identifying coding errors during benchmark development,

and is used here in validating the successful executing of the benchmark through emu-

lation.

Data for certain combinations of device, matrix size, and thread count are not

shown due to several factors. First, results for larger thread counts require devices

with at least as many cores. Additionally, the size of the matrices is limited by core

count since the distributed submatrices must fit in core-local memory, which for the

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

11

purposes of testing was kept at 32 KB. Finally, smaller matrices have a lower limit in

terms of the number of threads that can be used, and this limit is impacted by a four-

way loop unrolling in the optimized matrix-matrix multiplication algorithm.

The overall trend shows that the emulator executes the benchmark in fewer clocks

when compared to a physical device. This result is expected, since the instruction

execution at present is optimistic and does not account for pipeline stalls. Having

such an optimistic mode of emulation is not necessarily without utility, since it allows

for faster functional testing of software. The emulator also, as expected, takes longer

to execute the benchmark than a physical device. Future work will attempt to address

the issue of enabling more realistic clock cycle estimates while also optimizing the

emulator for faster execution in terms of wall clock time. Finally, it should be noted

that the scaling of wall clock time with the number of emulated cores is expected

since the emulator is presently not parallelized in any way.

Of importance is the fact that as a result of this work, the software stack for devices

that do not yet exist in silicon may be developed. A case in point can be seen in the

results for the 256-core device which does not correspond to any fabricated Epiphany

device. The ability to prepare software in advance of hardware will shorten signifi-

cantly the traditional lag that accompanies hardware and then software development.

Table 1. Performance results for the execution of the Cannon matrix-matrix multiplication

benchmark using physical and emulated devices for different matrix sizes and thread counts.

Results are shown in terms of 1,000s of device clocks (wall clock time in milliseconds).

 Epiphany-III Emulated Device

Matrix Threads 16-core 16-core 64-core 256-core

162 1 104 (2.7) 46 (59) 60 (340) 79 (2667)

 4 90 (2.8) 11 (53) 12 (310) 16 (2485)

 16 109 (2.7) 14 (57) 14 (325) 18 (2288)

322 1 201 (3.1) 112 (138) 127 (682) 145 (4032)

 4 155 (3.1) 37 (86) 38 (448) 41 (2712)

 16 145 (3.1) 22 (70) 23 (325) 26 (2311)

 64 - - 47 (569) 51 (2868)

642 4 479 (4.5) 201 (298) 202 (1421) 205 (7679)

 16 311 (4.0) 73 (141) 73 (672) 77 (3773)

 64 - - 64 (663) 67 (3358)

 256 - - - 258 (8773)

1282 16 1062 (9.4) 400 (561) 400 (2395) 404 (13522)

 64 - - 165 (1230) 168 (6033)

 256 - - - 291 (9831)

2562 64 - - 816 (4849) 820 (23651)

 256 - - - 490 (15731)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

12

5 Conclusion and Future Work

An Epiphany 32-bit ISA emulator was implemented that may be configured as a vir-

tual many-core device for testing and software development on an ordinary x86 plat-

form. The design enables a seamless interface allowing the same tool chain and soft-

ware stack to be used to target and interface to the virtual device in a manner identical

to that of real physical devices. This has been done in the context of research into the

design of future many-core processors based on the Epiphany architecture. The emu-

lator has been validated for correctness using benchmarks previously developed for

the Epiphany Parallella development platform, which work without modification

using emulated devices.

Efforts to develop the software support for simulating and evaluating future many-

core processor designs based on the Epiphany architecture reflects ongoing work. In

the near term, the emulator will be improved with better memory models and instruc-

tion pipeline timing to allow for the prediction of execution time for software applica-

tions. The emulator will be extended to support the more recent 64-bit ISA which is

backward compatible with the 32-bit Epiphany architecture. With direct measure-

ments taken from the Epiphany-V SoC the emulator will be refined to produce predic-

tive metrics such as clock cycle costs for software execution. With this calibration,

general specializations to the architecture can then be explored with real software

applications.

6 Acknowledgements

This work was supported by the U.S. Army Research Laboratory. The authors thank

David Austin Richie for contributions to this work.

References

1. https://www.top500.org/lists/2017/11/. [Accessed 04-Feb-2018].

2. https://www.nitrd.gov/nitrdgroups/images/b/b4/NSA_DOE_HPC_TechMeetingReport.pdf

. [Accessed 04-Feb-2018].

3. https://spectreattack.com/spectre.pdf, https://meltdownattack.com/meltdown.pdf. [Ac-

cessed 04-Feb-2018].

4. “Adapteva introduction.” [Online]. Available: http://www.adapteva.com/introduction/.

[Accessed: 08-Jan-2015].

5. A. Olofsson, T. Nordström, and Z. Ul-Abdin, “Kickstarting high-performance energy-

efficient manycore architectures with Epiphany,” ArXiv Prepr. ArXiv14125538, 2014.

6. D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina, C.-C.

Miao, J. F. Brown III, and A. Agarwal, “On-chip interconnection architecture of the tile

processor,” IEEE Micro, vol. 27, no. 5, pp. 15–31, Sep. 2007.

7. M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. Ghodrat, B. Greenwald, H. Hoffman, P.

Johnson, W. Lee, A. Saraf, N. Shnidman, V. Strumpen, S. Amarasinghe, and A. Agarwal,

“A 16-issue multiple-program-counter microprocessor with point-to-point scalar operand

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

13

network,” in 2003 IEEE International Solid-State Circuits Conference (ISSCC), 2003, pp.

170–171.

8. “E16G301 Epiphany 16-core microprocessor,” Adapteva Inc., Lexington, MA, Datasheet

Rev. 14.03.11.

9. “Parallella-1.x reference manual,” Adapteva, Boston Design Solutions, Ant Micro, Rev.

14.09.09.

10. “Epiphany-V: A 1024-core processor 64-bit System-On-Chip” [Online]. Available:

http://www.parallella.org/docs/e5_1024core_soc.pdf. [Accessed: 10-Feb-2017]

11. D. Richie, J. Ross, S. Park, and D. Shires, “Threaded MPI Programming Model for the

Epiphany RISC Array Processor,” Journal of Computational Science, Volume 9, July

2015, pp. 94–100.

12. J. Ross and D. Richie, "Implementing OpenSHMEM for the Adapteva Epiphany RISC ar-

ray processor," International Conference on Computational Science, ICCS 2016, San Die-

go, California, USA, 6-8 June 2016

13. J. Ross and D. Richie, “An OpenSHMEM Implementation for the Adapteva Epiphany Co-

processor,” OpenSHMEM and Related Technologies. Enhancing OpenSHMEM for Hy-

brid Environments, vol. 10007, pp. 146-159, Dec. 2016, doi:10.1007/978-3-319-50995-

2_10

14. D. Richie and J. Ross, “OpenCL + OpenSHMEM Hybrid Programming Model for the

Adapteva Epiphany Architecture,” OpenSHMEM and Related Technologies. Enhancing

OpenSHMEM for Hybrid Environments, vol. 10007, pp. 181-192, Dec. 2016, doi:

10.1007/978-3-319-50995-2_12

15. D. Richie and J. Ross, “Advances in Run-Time Performance and Interoperability for the

Adapteva Epiphany Coprocessor,” Procedia Computer Science, vol. 80, Apr. 2016,

doi:10.1016/j.procs.2016.05.47

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_22

https://dx.doi.org/10.1007/978-3-319-93701-4_22

