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Abstract. We develop a reinforcement learning based search assistant
which can assist users through a sequence of actions to enable them re-
alize their intent. Our approach caters to subjective search where user
is seeking digital assets such as images which is fundamentally different
from the tasks which have objective and limited search modalities. La-
beled conversational data is generally not available in such search tasks,
to counter this problem we propose a stochastic virtual user which imper-
sonates a real user for training and obtaining bootstrapped agent. We
develop A3C algorithm based context preserving architecture to train
agent and evaluate performance on average rewards obtained by the
agent while interacting with virtual user. We evaluated our system with
actual humans who believed that it helped in driving their search for-
ward with appropriate actions without being repetitive while being more
engaging and easy to use compared to conventional search interface.

Keywords: Subjective search, Reinforcement Learning, Virtual user
model, Context aggregation

1 Introduction

Within the domain of “search”, the recent advances have focused on person-
alizing the search results through recommendations [28, 17]. While the quality
of recommendations have improved, the conventional search interface has not
innovated much to incorporate useful contextual cues which are often missed.
Conventional search interface enables the end user to perform a keyword based
faceted search where the end user types in her search query, applies some fil-
ters and then modifies the query based on the results. This iterative interaction
naturally paves way for incorporating conversations in the process. Instead of
the search engine just retrieving the “best” result set, it can interact with the
user to collect more contextual cues. For example, if a user searches for “birth-
day gift”, the search engine could follow-up by asking “who are you buying the
gift for”. Such information and interaction can provide more human-like and
engaging search experience along with assisting user in discovering their search
intent. In this work we address this problem by developing a Reinforcement
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Learning (RL) [18] based conversational search agent which interacts with the
users to help them in narrowing down to relevant search results by providing
them contextual assistance.

RL based dialogue agents have been designed for tasks like restaurant, bus
and hotel reservation [16] which have limited and well-defined objective search
modalities without much scope for subjective discussion. For instance, when
searching for a restaurant, the user can specify her preferences (budget, distance,
cuisines etc) due to which the problem can be modeled as a slot filling exercise.
In contrast, suppose a designer is searching for digital assets (over a repository
of images, videos etc) to be used in a movie poster. She would start with a broad
idea and her idea would get refined as the search progresses. The modified search
intent involves an implicit cognitive feedback which can be used to improve the
search results. We train our agent for this type of search task where it is modeled
as a sequence of alternate interactions between the user and the RL agent. The
extent to which the RL agent could help the user depends on the sequence and
the type of actions it takes according to user behavior. Under the RL framework,
intermediate rewards is given to the agent at each step based on its actions
and state of conversational search. It learns the applicability of different actions
through these rewards. In addition to extrinsic rewards, we define auxiliary tasks
and provide additional rewards based on agent’s performance on these tasks.
Corresponding to the action taken by the agent at each turn, a natural language
response is selected and provided to the user. Since true conversational data
is not easily available in search domain, we propose to use query and session
log data to develop a stochastic virtual user environment to simulate training
episodes and bootstrap the learning of the agent.

Our contributions are three-fold: 1) formulating conversational interactive
search as a reinforcement learning problem and proposing a generic and easily
extendable set of states, actions and rewards; 2) developing a stochastic user
model which can be used to efficiently sample user actions while simulating an
episode; 3) we develop A3C (Asynchronous Advantage Actor-Critic) [13] algo-
rithm based architecture to predict policy and state value functions of RL agent

2 Related Work

There have been various attempts at modeling conversational agents, as dialogue
systems [4, 26, 20, 10] and text-based chat bots [5, 11, 12, 21, 24]. Some of these
have focused on modeling goal driven RL agent such as indoor way finding
system [5] to assist humans to navigate to their destination and visual input
agents which learn to navigate and search object in 3-D environment space [27].

RL based dialogue systems have been explored in the past. For example,
[20] uses User Satisfaction (US) as the sole criteria to reward the learning agent
and completely disregards Task Success(TS). But US is a subjective metric and
is much harder to measure or annotate real data with. In our formulation, we
provide a reward for task success at the end of search along with extrinsic and
auxiliary rewards at intermediate steps (discussed in section 3.4). Other RL
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Improving Search through RL based Conversational Assistant 3

based information seeking agents extract information from the environment by
sequentially asserting questions but these have not been designed on search tasks
involving human interaction and behavior[2].

RL has also been used for improving document retrieval through query refor-
mulation where the agent sequentially reformulates a given complex query pro-
vided by the user [15, 14]. But their work focuses on single turn episodes where
the model augments the given query by adding new keywords. In contrast, our
agent engages the user directly into the search which comprises of sequence of
alternate turns between user and agent with more degrees of freedom (in terms
of different actions the agent can take).

To minimize human intervention while providing input for training such
agents in spoken dialogue systems, simulated speech outputs have been used to
bypass spoken language unit [4]. This approach enables to reduce the system’s
dependence on hand engineered features. User models for simulating user re-
sponses have been obtained by using LSTM which learns inter-turn dependency
between the user actions. They take as input multiple user dialogue contexts
and outputs dialogue acts taking into account history of previous dialogue acts
and dependence on the domain [1].

Often task oriented dialogue systems are difficult to train due to absence
of real conversations and subjectivity involved in measuring shortcomings and
success of a dialogue [7]. Evaluation becomes much more complex for subjective
search systems due to absence of any label which tells whether the intended task
had been completed or not. We evaluate our system through rewards obtained
while interacting with the user model and also on various real world metrics
(discussed in experiments section) through human evaluation.

3 System Model

3.1 Reinforcement Learning

Reinforcement Learning is the paradigm to train an agent to interact with the
environment in a series of independent episodes where each episode comprises of
a sequence of turns. At each turn, the agent observes state s of the environment
(s ∈ S - set of possible states) and performs an action from A - set of possible
actions which changes the state of the environment and the agent gets the corre-
sponding reward [18]. An optimal policy maximizes cumulative reward that the
agent gets based on the actions taken from start till the final terminal state.

3.2 Agent action space

Action space A is designed to enable the search agent to interact with the user
and help her in searching the desired assets conveniently. The agent actions can
be divided into two sets - the set of probe intent actions - P and general actions
- G as described in Table 1 and Table 2 respectively. The agent uses the probe
intent actions P to explicitly query the user to learn more about her context.
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Table 1. Probe intent actions

Action Description

probe use case ask about where assets will be used
probe to refine ask the user to further refine query if less relevant search results

are retrieved
cluster categories ask the user to select from categorical options related to her query

Table 2. General actions

Action Description

show results display results corresponding to most recent user query
add to cart suggest user to bookmark assets for later reference
ask to download suggest user to download some results if they suit her requirement
ask to purchase advise the user to buy some paid assets
provide discount offer special discounts to the user based on search history
sign up ask the user to create an account to receive updates regarding

her search
ask for feedback take feedback about the search so far
provide help list possible ways in which the agent can assist the user
salutation greet the user at the beginning; say goodbye when user concludes

the search

For instance, the user may make a very open-ended query resulting in a diverse
set of results even though none of them is a good match. In such scenarios, the
agent may prompt the user to refine her query or add some other details like
where the search results would be used. Alternatively, the agent may cluster the
search results and prompt the user to choose from the clustered categories. These
actions serve two purposes - they carry the conversation further and provide
various cues about the search context which is not evident from input query.

The set G consists of generic actions like displaying assets retrieved corre-
sponding to the user query, providing help to the user etc. The set G comprises
of actions for carrying out the functionality which the conventional search in-
terface provides like “presenting search results”. We also include actions which
promote the business use cases (such as prompting the user to signup with her
email, purchase assets etc). The agent is rewarded appropriately for such prompts
depending on the subsequent user actions.

3.3 State space

We model the state representation in order to encapsulate facets of both search
and conversation. The state s at every turn in the conversation is modeled
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using the history of user actions - history user,3 history of agent actions -
history agent, relevance scores of search results - score results and length conv
which represents number of user responses in the conversation till that point.

The variables history user and history agent comprises of user and agent
actions in last k turns of the conversational search respectively. This enables
us to capture the context of the conversation (in terms of sequence of actions
taken). Each user-action is represented as one-hot vector of length 9 ( number
of unique user actions). Similarly, each agent-action has been represented as a
one-hot vector of length 12. The history of the last 10 user and agent actions
is represented as concatenation of these one-hot vectors. We use zero padded
vectors wherever current history comprises of less than 10 turns.

The variable score results quantifies the degree of similarity between most
recent query and the top 10 most relevant search assets retrieved. They have
been used to incorporate the dependency between the relevance of probe intent
actions and quality of search results retrieved. length conv has been included
since appropriateness of other agent actions like sign up may depend on the
duration for which the user has been searching.

3.4 Rewards

Reinforcement Learning is concerned with training an agent in order to maximize
some notion of cumulative reward. In general, the action taken at time t involves
a long term versus short term reward trade-off. This problem manifests itself even
more severely in the context of conversational search. For instance, let us say that
the user searches for “nature”. Since the user explicitly searched for something,
it would seem logical to provide the search results to the user. Alternatively,
instead of going for immediate reward, the agent could further ask the user if
she is looking for “posters” or “portraits” which would help in narrowing down
the search in the long run.

Since we aim to optimize dialogue strategy and do not generate dialogue
utterances, we assign the rewards corresponding to the appropriateness of the
action considering the state and history of the search. We have used some rewards
such as task success (based on implicit and explicit feedback from the user during
the search) which is also used in PARADISE framework [22]. We model the total
reward which the agent gets in one complete dialogue as:

Rtotal = rTask Completion(search) +
∑
t∈turns (rextrinsic(t) + rauxiliary(t))

Task Completion and Extrinsic Rewards First kind of reward (rTC) is
based on the completion of the task (Task Completion TC) which is download
and purchase in the case of our search problem. This reward is provided once
at the end of the episode depending on whether the task is completed or not.
As second kind of rewards, we provide instantaneous extrinsic rewards [6] -

3 history user includes most recent user action to which agent response is pending in
addition to remaining history of user actions.
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(rextrinsic) based on the response that the user gives subsequent to an agent
action. We categorize the user action into three feedback categories, namely
good, average or bad. For example, if the agent prompts the user to refine the
query and the user does follow the prompt, the agent gets a high reward while
if the user refuses, a low reward is given to the agent. A moderate reward will
be given if the user herself refines the query without the agent’s prompt.

Auxiliary Rewards Apart from the extrinsic rewards, we define a set of aux-
iliary tasks TA specific to the search problem which can be used to provide
additional reward signals, rauxiliary, using the environment. We define TA = {#
click result, # add to cart, # cluster category click, if sign up option exercised}.
rauxiliary is determined and provided at every turn in the search based on the val-
ues of different auxiliary tasks metrics defined in TA till that turn in the search.
Such rewards promotes a policy which improves the performance on these tasks.

3.5 Stochastic user model details

The RL agent is trained to learn the optimal action policy requiring actual
conversational search data which is not available as conversational agents have
not been used for search task we defined. To bypass this issue and bootstrap
training, we propose a user model that simulates user behavior to interact with
the agent during training and validation. Our methodology can be used to model
a virtual user using any query and log sessions data.

We developed a stochastic environment where the modeled virtual human
user responds to agent’s actions. The virtual human user has been modeled
using query sessions data from a major stock photography and digital asset
marketplace which contain information on queries made by real users, the cor-
responding clicks and other interactions with the assets. This information has
been used to generate a user which simulates human behavior while searching
and converses with the agent during search episode. We map every record in the
query log to one of the user actions as depicted in Table 3. Figure 1 shows an
example mapping from session data to user action. To model our virtual user,
we used the query and session log data of approximately 20 days.

The virtual user is modeled as a finite state machine by extracting condi-
tional probabilities - P (User Action u| History h of User Actions). These
probabilities are employed for sampling next user action given the fixed length
history of her actions in an episode. The agent performs an action in response
to the sampled user action and the process continues.

The query and session log data has been taken from an asset search platform
where the marketer can define certain offers/ promotions which kick in when
the user takes certain actions, for instance the user can be prompted to add
some images to cart (via a pop-up box). User’s response to such prompts on the
search interface is used as proxy to model the effect of RL agent on virtual user’s
sampled action subsequent to different probe actions by the agent. This ensures
that our conditional probability distribution covers the entire probability space
of user behavior.
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Fig. 1. Example of mapping session data to user actions. The session data comprises
of sequence of logs, each log comprises of search query, filters applied (content type),
offset field and interaction performed by the user (such as search, click etc)

Table 3. Mapping between query logs and user actions

User action Mapping used

new query first query or most recent query with no intersection with
previous ones

refine query query searched by user has some intersection with previous
queries

request more clicking on next set of results for same query
click result user clicking on search results being shown
add to cart when user adds some of searched assets to her cart for later

reference
cluster category click when user clicks on filter options like orientation or size
search similar search assets with similar series, model etc

3.6 Q-Learning

The agent can be trained through Q-learning [23] which consists of a real valued
function Q : S ×A→ IR. This Q-function maps every state-action pair (s, a) to
a Q-value which is a numerical measure of the expected cumulative reward the
agent gets by performing a in state s. In order to prevent the agent from always
exploiting the best action in a given state, we employ an ε− greedy exploration
policy [25], 0 < ε < 1. The size of our state space is of the order of ≈ 107. For
Q-learning, we use the table storage method where the Q-values for each state
is stored in a lookup table which is updated at every step in a training episode.

3.7 A3C Algorithm

In this algorithm, we maintain a value function Vπ and a stochastic policy π as a
function of the state. The policy π : A×S → IR defines a probability distribution
π(a|s) over the set of actions which the agent may take in state s and is used to
sample agent action given the state. The value function Vπ : S → IR represents
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Fig. 2. A3C architecture for predicting policy pt and value V (st).

the expected cumulative reward from current time step in an episode if policy π
is followed after observing state s i.e. Vπ(s) = IEa∼π(.|s)[Qπ(s, a)].

Search Context Preserving A3C Architecture We propose a neural ar-
chitecture (figure 2) which preserves the context of the conversational search
for approximating the policy and value functions. The architecture comprises
of a LSTM [8] which processes the state at a time step t (input it = st) and
generates an embedding ht which is processed through a fully connected layer
to predict the probability distribution over different actions using softmax func-
tion [3] and value of the input state separately. In A3C algorithm, the agent is
allowed to interact with the environment to roll-out an episode. The network pa-
rameters are updated after completion of every n-steps in the roll-out. An n-step
roll-out when the current state is st can be expressed as (st, at, rt, st+1, vst) →
(st+1, at+1, rt+1, st+1, vst+1

)→ ...→ (st+n−1, at+n−1, rt+n−1, st+n, vst+n−1
). The

parameters are tuned by optimizing the loss function losstotal which can be de-
composed into - losspolicy, lossvalue, lossentropy. lossvalue is defined as:

lossvalue(θ) = (Vtarget(si)− V (si; θ))
2, i = t, t+ 1, ..., t+ n− 1

where, Vtarget(si) =
∑t+n−i−1
k=0 γkrk+i + γn+t−iV (st+n; θ)

(1)

Thus an n-step roll-out allows us to estimate the target value of a given state
using the actual rewards realized and value of the last state observed at the end
of the roll-out. Value of a terminal state sT is defined as 0. In a similar way, the
network is trained on losspolicy which is defined as :

losspolicy(θ) = − log(p(ai|si; θ)) ∗A(ai, si; θ), i = t, t+ 1, ..., t+ n− 1, where

A(ai, si; θ) =
∑t+n−i−1
k=0 γkrk+i + γn+t−iV (st+n; θ)− V (si; θ)

(2)
The above loss function tunes the parameter in order to shift the policy in

favor of actions which provides better advantage A(at, st, θ) given the state st.
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This advantage can be interpreted as additional reward the agent gets by taking
action at in state st over the average value of the state V (st; θ) as the reference.
However, this may bias the agent towards a particular or few actions due to
which the agent may not explore other actions in a given state. To prevent this,
we add entropy loss to the total loss function which aims at maximizing the
entropy of probability distribution over actions in a state.

lossentropy(θ) = −
∑
a∈A

−p(a|si; θ) log(p(a|si; θ)), i = t, t+ 1, ..., t+ n− 1 (3)

4 Experiments

In this section, we evaluate the trained agent with the virtual user model and
discuss the results obtained with the two reinforcement learning techniques, A3C
and Q-learning, and compare them. For each algorithm, we simulate validation
episodes after each training episode and plot the average rewards and mean
value of the states obtained during the validation episodes. We also developed a
chat-search interface where real users can interact with the trained agent during
their search.4

4.1 A3C using User Model

The global model is obtained using 10 local agents which are trained in parallel
threads (each trained over 350 episodes). We compare the validation results using
this global model for different state representations for conversational search and
hyper-parameter settings such as discount factor (γ) (which affects exploration vs
exploitation trade-off) and the LSTM size which controls the context preserving
capacity of our architecture.

Varying discount factor We experiment with 3 values of discount factor and
fix the LSTM size to 250. Figure 3 shows the validation trend in average rewards
for different discount factors. Greater discount factor (lower value of γ) lowers
weights for the future rewards due to which the agent tries to maximize the
immediate rewards by taking the greedy actions. We validate this by computing
the variance in the results for each case. The variance values for the 3 cases (γ =
0.90, 0.70, 0.60) are 1.5267, 1.627, and 1.725 respectively. Since the agent takes
more greedy actions with higher discount factors, the variance in the reward
values also increases since the greedy approach yields good rewards in some
episodes and bad rewards in others.

4 Supplementary material containing snapshots and demo
video of the chat-search interface can be accessed at
https://drive.google.com/open?id=0BzPI8zwXMOiWNk5hRElRNG4tNjQ
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Fig. 3. Plot of average validation reward against number of training episodes for A3C
agent. The size of LSTM is 250 for each plot with varying discount factor. Higher value
of discount results in better average rewards.

Fig. 4. Plot of mean of state values observed in an episode for A3C agent. Different
curves correspond to different LSTM size. The discount value is γ = 0.90 for each
curve. Better states (higher average state values) are observed with larger LSTM size
since it enables the agent to remember more context while performing actions.

Varying Memory capacity We vary the size of the LSTM as 100, 150 and
250 to determine the effect of size of the context preserved. Figure 4 depicts the
trend in mean value of states observed in an episode. We observe that larger size
of the LSTM results in better states since average state value is higher. This
demonstrates that a bigger LSTM size providing better capacity to remember
the context results in agent performing actions which yield improved states.

4.2 Q-Learning using User Model

We experimented with values of different hyper-parameters for Q-learning such
as discount (γ) and exploration control parameter (ε) determined their optimal
values to be 0.70 and 0.90 respectively based on trends in average reward value
at convergence. We compare the A3C agent (with LSTM size 250 and γ = 0.90
with the Q-learning agent (figure 5). It can be observed that the A3C agent
is able to obtain better averaged awards (≈ 1.0) in validation episodes upon
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Fig. 5. Plot of average reward observed in validation episodes with Q-agent (left) with
γ = 0.70 and ε = 0.90) and A3C agent (right) with γ = 0.90 and LSTM size = 250.
The average reward value at convergence is larger for A3C agent than Q-agent.

convergence as compared to the Q-agent which obtains ≈ 0.20. Since A3C algo-
rithm performs and generalize better than Q-learning approach, we evaluated it
through professional designers.

4.3 Human Evaluation of Agent Trained Through A3C

To evaluate the effectiveness of our system when interacting with real humans, we
asked professional designers to search images which they will use while designing
a poster on natural scenery using both our conversational search agent and
conventional search interface provided by stock photography marketplace and
collected feedback from 12 designers. We asked them to rate our conversational
search system on following metrics. Table 4 shows average rating value of each
of these metrics.

1. Information flow to measure the extent to which the agent provide new
information and suggestions which helped in driving the search forward (on
a scale of 1 to 5 where 5 represents high information flow).

2. Appropriateness of actions to measure the suitability of actions taken by
the agent during the search in terms of coherence (on a scale of 1 to 5 where
5 denotes that it took right actions at right time during the search).

3. Repetitiveness to measure how repetitive was the agent’s actions in pro-
viding assistance during their search (on a scale of 1-5 where 1 represents
not repetitive at all).

We also asked the designers to compare our system to conventional search
interface in terms of following metrics :

1. Engagement : This is to measure how interactive and engaging conversa-
tional search is on a scale of 1 to 5 where 1 represents same engagement as
conventional search. Our system could achieve an average rating of 2.67 in
this metric.
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Table 4. Human Evaluation Ratings for Agent Trained Through A3C

Metric Average Rating

Information Flow 2.58
Appropriateness 2.67
Repetitiveness 2.50

2. Time Required: We asked the designers to compare two search modalities
in terms of time required to reach desired results. They were asked to choose
between conversational search required - 1.more time, 2. About the same
time, 3. Less time. About 33.3% of designers said that it requires more
time, 16.7% said that conversational search was faster while remaining 50%
believed that it required about the same time.

3. Ease of Use : We asked them to choose one of three options - conversational
search is, 1. Difficult to use and adds additional burden, 2. About the same
to use, 3. Much easier to use, compared to conventional search. 33.3% of the
designers believed that conversational search is easier, 41.7% said that it is
the same while 25% believed that it is difficult to use it for search.

The above evaluation shows that although we trained the bootstrapped agent
through user model, it performs decently well with actual users by driving their
search forward with appropriate actions without being much repetitive. The
comparison with conventional search shows that out system is much more en-
gaging, requires about the same time while being easier to use than conventional
search. Following is an example interaction between assistant and real human :

User : show some images of mountains
Agent : We also have many images in these categories, should I show you some?
User : nature mountains
Agent : Where will you use these images?
User : i am organizing adventure sports
Agent : Check out the images
User : can you show some more
Agent : Images can be added to cart for building a separate collection of stuff
that you like. You can simply click on add to cart button
User : <User adds few assets to cart>
Agent : Want me to get you anything else?
User : i want people riding bike on mountains
Agent : We also have many images in these categories, should I show you some?
- high mountains, hiking sports mountains, mountaineering mountains
User : hiking sports mountains
Agent : Signing up takes a moment, just give me your email id
User : ABC@XYZ.com
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5 Conclusion

In this paper, we develop a Reinforcement Learning based search assistant to
interact with customers to help them search digital assets suited to their use-
case. We model the rewards, state space, action space and develop an A3C based
architecture which leverages the context of search to predict the policy. The
trained agent is able to obtain higher average rewards in the validation episodes
with virtual user and observes states with better values indicative of providing
better search experience. As the next step, we would deploy our system to collect
true conversational data which can be used to fine tune the current model as
well as to train a new model which can generate the natural language responses
in addition to deciding the action. In different search domains, designing the
state and action space can take significant time which makes every situation
an absolutely new task to be solved. To approach this issue as a future work,
another system can be designed which helps in the automation of state space
characterization with the help of system query logs.
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