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Abstract. The world of AI and Machine Learning is the world of data and 
learning from data so the insights could be used for analysis and prediction. 
Almost all data sets are of mixed variable types as they may be quantitative 
(numerical) or qualitative (categorical). The problem arises from the fact that a 
long list of methods in Machine Learning such as “multiple regression”, “lo-
gistic regression”, “k-means clustering”, and “support vector machine”, all to be 
as examples of such models, designed to deal with numerical data type only. 
Though the data, that need to be analyzed and learned from, is almost always, a 
mixed data type and thus, standardization step must be undertaken for all these 
data sets. The standardization process involves the conversion of qualitative 
(categorical) data into numerical data type. 
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1 Introduction 

1.1 Why This Work is Needed 

AI and machine learning are mathematical modeling methods for learning from data 
and producing intelligent models based on this learning. The data these models need 
to deal with, is normally a mixed data type of both numerical (continuous) variables 
and categorical (non-numerical) data types. Most models in AI and machine learning 
accept only numerical data as their input and thus, standardization of mixed data into 
numerical data is a critical step when applying machine learning models. Having data 
in the standard shape and format that models require is often a time consuming, nev-
ertheless very significant step of the process.  
As an example, when we have a data set (below) combined of many variables where 
all variables are numerical ones except two variables of categorical type (gender and 
marital status) as following: 
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             Table 1. Original mixed variables 

User Age Income Gender Marital status 
1 31 90,000 M Single 
2 45 45,000 M Married 
3 63 34,000 M Divorced 
4 33 65,000 F Divorced 
5 47 87,000 F Single 
6 38 39,000 M Married 
7 26 120,000 M Married 
8 25 32,000 F Married 
9 29 55,000 F Single 

10 44 33,000 F Single 
 
When applying many machine learning models, the models need the data to be nu-
merical data type.  Thus, the categorical data should be converted into numerical type. 
The most efficient way of converting the categorical variable is the introduction of 
dummy variables (one hot encoding) for which a new (dummy) variable is created for 
each category (except the last category - -  since it’d be dependent on the rest of 
dummy variables, i.e., its value could be determined when all other dummy variables 
are known) of the categorical variable. These dummy variables are binary variables 
and could assume only two values, 1 and 0. The value 1 means the sample has the 
value of that variable and 0 means the opposite. 
Here, for this example, we have two categorical variables: 
1.Gender: there are only two categories, so we need to create one dummy variable. 
2.Marital Status: there are three categories so we need to create two new dummy vari-
ables. 
The result after the creation of dummy variables is shown in table 2. 

 
     
                 Table 2. The original variables after the introduction of dummy variables. 

 

User Age Income 
Dummy variable-1 
(Female) 

Dummy Variable -2 
(Married) 

Dummy Variable -3 
(Single) 

1 31 90000 0 0 1 
2 45 45000 0 1 0 
3 63 34000 0 0 0 
4 33 65000 1 0 0 
5 47 87000 1 0 1 
6 38 39000 0 1 0 
7 26 120000 0 1 0 
8 25 32000 1 1 0 
9 29 55000 1 0 1 

10 44 33000 1 0 1 

 
 

 
 

Now, we could use any machine learning model for this data set as all its variables are 
of the numerical type. 
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In general, for any categorical variable of “m” categories (classes), we need to create 
“m-1” dummy variables. The problem arises when any specific categorical variable 
has large (based on our work, that means larger than 8) number of categories. The 
reason is that, in these cases, the number of dummy variables need to be created be-
comes too large causing the data to become of high dimension. The high dimensional-
ity of data leads to “curse of dimensionality” problem and thus all related issues relat-
ed to “curse of dimensionality” such as the need of “exponential increase in the num-
ber of data rows” and “difficulties of distance computation” would appear. Obviously, 
one needs to avoid the situation since, in addition to these problems, curse of dimen-
sionality also leads to misleading results from any machine learning models such as 
finding false patterns discovered based on noise or random chance. Besides all of that, 
higher dimension leads to higher “computational cost” and “slow model response and 
lower robustness”, all of which should be avoided. Therefore, in the process of trans-
formation of categorical data into numerical data types, we must reduce the number of 
newly created numerical variables to reduce the dimension of data.  

2 The Model 

2.1 The Problem of Mixed Variables 

The Vast majorities of the models in machine learning are models that use only nu-
meric data. Though, practically all data that are used in machine learning are mixed 
type, numerical and categorical data. When used for machine learning models that 
could use only numerical data, mixed data types are handled using three different 
approaches: first approach is trying to, instead, using models that could handle mixed 
data type, second approach is to ignore (drop) categorical variables. The last approach 
is converting categorical variables to numerical type by introducing dummy variables 
or one hot encoding. The first approach introduces many limitations as there are only 
a limited number of models that could handle mixed data and those models may not 
the best model fitting the data sets. The second approach leads to ignoring much of 
the information in the data sets, i.e., the categorical data. 
The practical approach is the third one, i.e., conversion of categorical data into numer-
ical data. As we explained above, this can be done correctly only when all categorical 
variables have only limited number of categories. Else, it leads to high dimensional 
data that causes, among other problems, machine learning models to produce mean-
ingless (biased) results. In other words, when the variable has many classes, this ap-
proach becomes infeasible because the number of variables will be too high for the 
numeric models to handle.  
 
We can classify categorical variables into three types of variables. The first type is the 
ones without any clear and explicit features (like url, concatenated data, acronyms and 
so on). The second type of categorical variable occur when we   have features (attrib-
utes) readily available as a part of data sets (or metadata). This is rarely seen in the 
data sets of the real world. In these cases that we have features for all categories or 
classes of any variable, we could use k-means clustering directly and follow it with 
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the rest of the steps in this work.  The third categorical data type is the case of cate-
gorical data without those readily available features. This paper addresses this last 
type of data where, quite often, there is no attributes information about these classes 
in the data sets and thus this we use NLP, Natural Language Processing [2, 13, 18, 19, 
20, 40, 44, 45, 52, 56], models to establish these attributes. For our invention, we use 
web scraping to detect all features or attributes for our data sets. Then using these 
features, we use k-means clustering to compute a limited number of clusters that 
would represent the number of newly created features for the categorical data. 
In this work, we also determine the upper bound for the number of new numerical 
variable created for conversion and representation of categorical variable. Besides, we 
define our way of testing the correctness and validation of our approach. 
 
Therefore, to address these types of problem, this work establishes a new approach of 
reducing the number of categories (when the number of categories in a categorical 
variable in larger than 10) to K categories for K . We do it by clustering the cate-
gories of each of such categorical variable into k clusters, using k-means clustering. 
We compute the number of clusters, k, using silhouette method. We also use Silhou-
ette method also to verify correctness of our models simultaneously. Then, the num-
ber of dummy variable needs to be created for any categorical variable of such will be 
reduced to K dummy variables, one for each cluster. Thereafter, the standardization is 
done by introducing K dummy variables. 
 
Using the method explained above, this work detects a much smaller number of “la-
tent classes”, that in general could be some of the original attributes or some linear or 
non-linear combination of the original attributes, that are the underpinning classes or 
categories for the original categories of each categorical variable. This way, the high 
dimensionality is avoided and thus, we can use these latent classes to perform the 
dummy variable generation procedure that is described above to be used for any ma-
chine learning model. The small number of latent categories are detected using k-
means clustering. 
The basic idea is that categorical variables that have many values (or unique values 
for each sample) provide little information for other samples. To maintain the useful 
information from these variables, the best method may be to keep that useful (latent) 
information. This paper does it by finding the latent categories by clustering all cate-
gories into similar groups.  

2.2 Computing the Number of Cluster K and Testing the Model 

 
 
 

In this work, including for the three examples, to compute the optimal number of 
clusters, the upper bound for the number of clusters, and for testing and validation of 
our model, we use Silhouette method which is based on minimizing the dissimilarities 
inside a cluster and maximizing the dissimilarities among clusters: 
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The Silhouette model computes s(i) for each data point in the data set for each K: 

 
 

 
Where  is the mean distance of point i to all the other points in its cluster. Also, 

 is the mean distance to all the points in its closest cluster, i.e.,  is the mini-
mum mean distance of point i to all clusters that i is not a member of. 
 
The optimal K is the K that maximizes the total score s(i) for all data set. The score 
values lie in the range of [-1, 1] with -1 to be the worst possible score and +1 to be the 
optimal score. Thus, the closest (average score of all points) score to +1 is the optimal 
one and the corresponding K is the optimal K. Our experiments show that the value of 
K has upper bound of 10. Here, we use not only the score but the maximum separa-
tion and compactness of the clusters, as measured by distance between clusters and 
uniformity of the width of clusters, to test and validate our model simultaneously 
when computing optimal K. 

In this work, we display the application of our model using three examples of cate-
gorical variables of large categories or classes. The first example is “country of resi-
dence” where there are over 175 categories or classes (countries). Secondly, we con-
sider “city of residence (in the US)” as the second example where we use 183 most 
populated cities in the US. The third example of categorical variable with large cate-
gories that we use as an application of our model is “vegetables”.   For the vegetables, 
we have found records of 52 different classes (types of vegetables). In these exam-
ples, we show, that using our approach, we can find a small number of grouping with-
in these variables and that these groupings can then be appended to the original data 
as dummy numeric variables to be used alongside the numeric variables. 

 

2.3 The First Example of Categorical Variable, “Country of Residence” 

 
Again, the issue is that there are so many categories for this categorical variable 
(country of residence), i.e., 175 categories. So, we need to create 174 dummy varia-
bles that would lead to a very high dimensional data and hence to “curse of dimen-
sionality”, as explained above. Here, we used clustering to group a list of 175 coun-
tries. For this case, syntactic similarity is useless since the name of a country has no 
relation to its attributes. Thus, we extracted the features from “www.worldbank.com”. 
The seven features that we extracted, for each country, were: population, birth rate, 
mortality rate, life expectancy, death rate, surface area and forest area. These features 
were first normalized then K-means clustering was performed on the samples, again 
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with a range of K from 2 to 10. Based off the silhouette plots in the following figure, 
figure 1, we can see that the algorithm performed well with K equal to 8: 
 

 
              Fig. 1. The Silhouette plots displaying the optimal K to be 8. 

 
country clustering output after k-means clustering is: 
 
Antigua and Barbuda Burundi Belgium Bangladesh Bahrain Barbados China Comoros Cabo 
Verde Cyprus Czech Republic Germany Denmark Dominican Republic Micronesia Fed. Sts. 
United Kingdom Gambia Guam Haiti Indonesia Israel Italy Jamaica Japan Kiribati Korea Rep. 
Kuwait Lebanon St. Lucia Liechtenstein Sri Lanka Luxembourg St. Martin (French part) Mal-
dives Malta Mauritius Malawi Nigeria Netherlands Nepal Pakistan Philippines Puerto Rico 
Korea Dem. People?◌۪s Rep. West Bank and Gaza Qatar Rwanda South Asia Singapore El Salva-
dor Sao Tome and Principe Seychelles Togo Thailand Tonga Trinidad and Tobago Uganda St. 
Vincent and the Grenadines Virgin Islands (U.S.) Vietnam 
 
Australia Botswana Canada Guyana Iceland Libya Mauritania Suriname 
 
Angola Bahamas Brazil Bhutan Chile Estonia Kyrgyz Republic Lao PDR Peru Sudan Solomon 
Islands Somalia Sweden Uruguay Vanuatu Zambia 
 
Central African Republic Gabon Kazakhstan Russian Federation 
 
Afghanistan Belarus Cameroon Congo Dem. Rep. Colombia Djibouti Fiji Faroe Islands Georgia 
Guinea Guinea-Bissau Equatorial Guinea Iran Islamic Rep. Latin America & Caribbean (exclud-
ing high income) Liberia Lithuania Madagascar Montenegro Mozambique Nicaragua Panama 
United States Yemen Rep. South Africa 
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Argentina Congo Rep. Algeria Finland Mali New Caledonia Niger Norway New Zealand Oman 
Papua New Guinea Paraguay Saudi Arabia 
 
Albania United Arab Emirates Austria Azerbaijan Benin Burkina Faso Bulgaria Bosnia and Her-
zegovina Cote d'Ivoire Costa Rica Ecuador Egypt Arab Rep. Spain Ethiopia Greece Honduras 
Croatia Hungary Ireland Iraq Jordan Kenya Cambodia Lesotho Morocco Moldova Mexico Mac-
edonia Myanmar Malaysia Poland Portugal French Polynesia Romania Senegal Sierra Leone 
Serbia Slovak Republic Slovenia Tajikistan Timor-Leste Tunisia Turkey Tanzania Ukraine Uzbek-
istan 
 
For n_clusters = 8 The average silhouette_score is : 0.608186424138 
 

                         Fig. 2. The K-means clustering output for the first example. 

 
In this example, the features extracted were not from only one domain, such as eco-
nomic features only or just physical features. The advantage, of having a diverse do-
main features, is that the clusters that are formed will be more meaningful as they 
represent higher variation of data. For example, if our only feature was country size 
then the clustering algorithm would cluster algorithms with similar size. Additionally, 
if our only feature was country population then the algorithm would cluster countries 
with similar sizes. However, by using the different types of features, the algorithm 
could find clusters of countries that have both similar sizes and similar populations. 
For example, big countries with small populations could be in the same cluster as well 
as small countries that have large populations - - based their overall similarities com-
puted using many various features. 
 

2.4 The Second Example of Categorical Variable, “City of Residence” Using 
Web Scraping 

To extract features for our categorical data (cities), we web scraped Wikipedia pages 
because of their abundant and concise data. The extraction came from the infobox on 
Wikipedia pages which contain quick facts about the article. We used five features 
which mainly pertained to the various attributes of the cities: land area, water area, 
elevation, population, and population density. For the most part, this was the only 
information available for direct extraction via Wikipedia pages. We extracted features 
for 183 U.S. cities then performed the same K-means clustering as in the previous 
examples to group the set into similar cities in each cluster. The most important aspect 
of this example is the web scraping. Whereas in the previous example, the features 
were taken from prebuilt online datasets, in this example we automatically built our 
own dataset by web scraping Wikipedia pages and constructing the features from this 
dataset. This shows that despite having a variable with many classes and no available 
information about the classes, we can extract the information necessary to perform the 
clustering. The following figure shows the silhouette model outcome: 
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Fig. 3. The Silhouette model applied to this example. The plots display the optimal number of 
cluster to be K=8. 

 
As indicated, the silhouette plot for city clusters shows the number of newly variables, 
replacing 183 cities (categories), should be 8. Some of these clusters are shown here: 
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                             Fig. 4. The city clustering output after K-means clustering. 

2.5 The Third Example: Categorical variable, “Vegetables” Using Web 
Scraping 

 
For the final example, we again use web scraping on a list of 52 vegetables to extract 
features. The features we extracted were: calories, protein, carbohydrates, and dietary 
fiber. Like the previous example, we used Wikipedia articles to extract the features. 
Once again, this example shows the practicality of using web scraping as a means of 
automatically collecting features to build features for a dataset and then perform clus-
tering on the dataset. The clustering of vegetables demonstrates the wide variety of 
variable types that our method can be applied to.  The Silhouette plots is shown below 
with the optimal k to be 7: 

 
 

 
 

                     Fig. 5. The Silhouette plot indicating the optimal number of cluster is 7. 
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Some of the clusters are shown below: 

 
 

 
 

                         Fig. 6. Some of the clusters for the example three. 

As shown by the images above, our algorithm is able to cluster the list of vegetables 
into groups based on similar nutritional benefit. 

2.6 Conclusion 

This work deals with the problem of converting categorical variables (to numerical 
ones) when the variables have high number of classes. We have shown the application 
of our model using three examples: countries, cities and vegetables. We use NLP plus 
clustering to show that even when there is no available information about the attrib-
utes, we could still perform clustering for the purpose of standardization of data. In 
the second example, we extracted external information about the values and then ap-
plied clustering using the information (features). In the second and third examples, we 
automatically extracted features from online resources. This information is needed for 
clustering. These three examples show that as long as there exists information about a 
variable, somewhere online, this information can be extracted and used for clustering. 
The final objective is to use the clustering method to drastically reduce the number of 
dummy variables that must be created in place of the categorical data type. Our model 
is practical and easy to use. It is an essential step in pre-processing data for many 
machine learning models. 
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