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Abstract. AI and machine learning are mathematical modeling methods for 
learning from data and producing intelligent models based on this learning. The 
data these models need to deal with, is normally a mixed of data type where 
both numerical (continuous) variables and categorical (non-numerical) data 
types. Most models in AI and machine learning accept only numerical data as 
their input and thus, standardization of mixed data into numerical data is a criti-
cal step when applying machine learning models. Having data in the standard 
shape and format that models require often a time consuming, nevertheless very 
significant step of the process.  
 

Keywords: Machine Learning, Natural Language Processing, Mixed Type Var-
iables 

1 Introduction 

1.1 Motivation 

As an example, when we have a data set (below) combined of many variables where 
all are numerical ones except two variables of categorical type (gender and marital 
status) as following [50]: 

             Table 1. Original mixed variables 

User Age Income Gender Marital status 
1 31 90,000 M Single 
2 45 45,000 M Married 
3 63 34,000 M Divorced 
4 33 65,000 F Divorced 
5 47 87,000 F Single 
6 38 39,000 M Married 
7 26 120,000 M Married 
8 25 32,000 F Married 
9 29 55,000 F Single 

10 44 33,000 F Single 
 
When applying many machine learning models, the models need the data to be  
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numerical data type.  Thus, the categorical data should be converted into numerical 
type. The most efficient way of converting the categorical variable is the introduction 
of dummy variables (one hot encoding) for which a new (dummy) variable is created 
for each category (except the last category - -  since it’d be dependent on the rest of 
dummy variables, i.e., its value could be determined when all other dummy variables 
are known) of the categorical variable. These dummy variables are binary variables 
and could assume only two values, 1 and 0. The value 1 means the sample has the 
value of that variable and 0 means the opposite. 
Here, for this example, we have two categorical variables: 

1.Gender: there are only two categories, so we need to create one dummy variable. 
2.Marital Status: there are three categories so we need to create two new dummy 

variables. 
The result after the creation of dummy variables is shown in table 2. 
     
                 Table 2. The original variables after the introduction of dummy variables. 

 

User Age Income 
Dummy variable-1 
(Female) 

Dummy Variable -2 
(Married) 

Dummy Variable -3 
(Single) 

1 31 90000 0 0 1 
2 45 45000 0 1 0 
3 63 34000 0 0 0 
4 33 65000 1 0 0 
5 47 87000 1 0 1 
6 38 39000 0 1 0 
7 26 120000 0 1 0 
8 25 32000 1 1 0 
9 29 55000 1 0 1 

10 44 33000 1 0 1 

 
 

 
 

After this transitional step, we could use any machine learning model for this data 
set as all its variables are numerical one. 

In general, for any categorical variable of “m” categories (classes), we need to create 
“m-1” dummy variables. The problem arises when any specific categorical variable 
has large (based on our work, that means larger than 8) number of categories. The 
reason is that, in these cases, the number of dummy variables need to be created be-
comes too large causing the data to become of high dimension. The high dimensional-
ity of data leads to “curse of dimensionality” problem and thus all related issues relat-
ed to “curse of dimensionality” such as the need of “exponential increase in the num-
ber of data rows” and “difficulties of distance computation” would appear. Obviously, 
one needs to avoid the situation since, in addition to these problems, curse of dimen-
sionality also leads to misleading results from any machine learning models such as 
finding false patterns discovered based on noise or random chance. Besides all of that, 
higher dimension leads to higher “computational cost” and “slow model response and 
lower robustness”, all of which should be avoided. Therefore, in the process of trans-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_18

https://dx.doi.org/10.1007/978-3-319-93701-4_18


3 

formation of categorical data into numerical data types, we must reduce the number of 
newly created numerical variables to reduce the dimension of data [50]. 

Two examples of the case of categorical variables of large categories or classes are 
“country of residence” and “URL related data such as the last site visited by the user”. 
For the first variable, there are more than 150 categories and for the second, there is 
potentially as many categories as the number of users which is a very large (in the 
order of millions) number. To address these types of problem, this work establishes a 
new approach of reducing the number of categories (when the number of categories in 
a categorical variable in larger than 10) to K categories for K . This way, we will 
create a limited number of dummy variables to replace the categorical variable in the 
data set. 

For some types of categorical variables such as “country of residence”, we may find 
some attributes online and thus, using these attributes and applying clustering models 
and web scraping, we can create only a handful of dummy variable to replace the 
categorical variables of large categories [50]. 

 

But, there are other type of categorical variables, such as “URL” variable, where it is 
not possible to scrap features online and thus the above method [50] cannot be ap-
plied. This paper focuses on a method of dealing with this type of categorical data. 

2 The Approach Used in this work 

2.1 The Difficulties in Dealing with Modern Data 

Quite often, the models in machine learning are models that use only numeric data. 
Though, practically all data that are used in machine learning are mixed type, numeri-
cal and categorical data. When used for machine learning models that could use only 
numerical data, mixed data types are handled using three different approaches: first 
approach is trying to, instead, using models that could handle mixed data type, second 
approach is to ignore (drop) categorical variables. The last approach is converting 
categorical variables to numerical type by introducing dummy variables. The first 
approach introduces many limitations as there are only a limited number of models 
that could handle mixed data and those models are often not the best model fitting the 
data set. The second approach leads to ignoring much of the information in data set, 
i.e., the categorical data. The practical approach is the third one, i.e., conversion of 
categorical data into numerical data. As we explained above, this can be done correct-
ly only when all categorical variables have only limited number of categories (10 or 
less). Else, it leads to high dimensional data that causes, among other problems, ma-
chine learning models to produce meaningless (biased) results. In other words, when 
the variable has many classes, this approach becomes infeasible because the number 
of variables will be too much for the numeric models to handle.  
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This work detects a much smaller number of “latent classes” that are the underpinning 
classes or categories for the original categories of each categorical variable. This way, 
the high dimensionality is avoided and thus, we can use these latent classes to perform 
the dummy variable generation described above to use any machine learning. The 
small number of latent categories are detected using k-means clustering. 
 
The basic idea is that categorical variables that have many values (or unique values 
for each sample) provide little information for other samples. To maintain the useful 
information from these variables, the best method is to keep that useful (latent) infor-
mation. This invention does it by finding the latent categories by clustering all catego-
ries into similar groups.  Using k-means clustering of the categories of any categorical 
variable, we may two distinct cases. First, is when each category has given features or 
attributes. This is rarely seen in the data sets. The second case is when there are no 
such attributes about each of the categories and we need to create them.  
 
In the cases, we have features for all categories or classes of any variable, we could 
use k-means clustering directly.  Though, quite often, there is no attributes infor-
mation about these classes in the data sets. This work uses NLP [2, 13, 18, 19, 20, 53, 
57] models (Natural Language Processing) to address the case of categorical variables 
without any attributes or features. The objective is to find a small number of dummy 
variables replacing the categorical variable, that we want to convert to a numerical 
one. 
We show our approach for the very important example of URL variable. 

2.2 Application of our Model by Using the Example of URL Data 

 
Categorical variables having URL are important example of these types of categorical 
variables. They are frequently present in click data and often have very large possible 
values, sometime as much as the number of users.  
To extract the latent categories from these URL variables, we try to cluster them into 
similar URL's i.e. URLs with similar paths. We choose to extract a word and charac-
ter using n-gram vector representations from the URL's, then cluster these vector rep-
resentations using K-means clustering. 
URL clustering is a great example because of the difficulty of the task. The difficulty 
is not only as a result of the number of URLs but also because of the lack of infor-
mation(attributes) about them that can be used for clustering. When there is no infor-
mation available about the variables, we need to use NLP. It important that we use 
NLP to perform the clustering because we have no knowledge of the format of the 
URLs, i.e., we have no attributions for each URL and clustering cannot be done with-
out attributes. In this case, we use NLP to build the needed attributes for the URLs. 
When URLs have the same domain, like  www.google.com ,then the clusters would 
all be under www.google.com. However, the URLs could also be under multiple do-
mains in which case the clusters would be under multiple domains. A predetermined 
algorithm would not be able to dynamically handle this variability This is another 
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reason that, in the case of URLs as an example, we use NLP to cluster them based off 
syntactic similarity, specifically word bigrams i.e. groups of three words. Our categor-
ical variable has 500 categories, all under the domain of www.adobe.com. A few of 
these categories are; 
 
 

http://www.adobe.com/creativecloud.html?promoid=NGWGRLB2&mv=other 

http://www.adobe.com/creativecloud/photography.html?promoid=NQCJRBTZ&mv=other 

http://www.adobe.com/creativecloud/buy/students.html?promoid=P79NQTWV&mv=other 

http://www.adobe.com/creativecloud/business/teams.html?promoid=NYTLR3CX&mv=other 

http://www.adobe.com/creativecloud/business/enterprise.html?promoid=NV3KR73Y&mv=other 

http://www.adobe.com/creativecloud/buy/education.html?promoid=NLMHRGL1&mv=other 

http://www.adobe.com/products/photoshop.html?promoid=PC1PQQ5T&mv=other 

http://www.adobe.com/products/illustrator.html?promoid=PGRQQLFS&mv=other 

http://www.adobe.com/products/indesign.html?promoid=PLHRQGPR&mv=other 

http://www.adobe.com/products/premiere.html?promoid=PQ7SQBYQ&mv=other 

http://www.adobe.com/products/experience-design.html?promoid=PYPVQ3HN&mv=other 

                Fig. 1. The example of URL variable list with 500 different categories. 

 
For the algorithm to work best, we first strip the URL’s of any characters that provide 
little information for clustering (since these words may introduce no new infor-
mation). These words include punctuation and common words such as “http” and 
“www”. We, thus, perform pre-processing on this list which includes removing punc-
tuation, queries (anything after the character “?”), and stop-words (http, com, www, 
html, etc...). After this step, we are left with the URLs as space separated words repre-
senting the path of URL; 
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                     Fig. 2. The process of deleting noisy words from the url variable. 

 
A sample of the result looks like: 
 
adobe creativecloud business teams 
 adobe creativecloud desktop-app 
 adobe creativecloud business enterprise 
 adobe creativecloud business teams 
 adobe creativecloud business enterprise 
 adobe creativecloud business teams plans 
 adobe creativecloud 
 
adobe creativecloud buy students 
 adobe creativecloud buy education 
 adobe creativecloud buy students 
 adobe creativecloud buy students 
 adobe creativecloud buy education 
 adobe creativecloud buy government 
 adobe creativecloud buy government 

 

            Fig. 3. The url data after the removal of words that may be irrelevant for clustering. 
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One of the most popular tools in NLP is the ones involving representation of words 
with a numerical vector representation in an n dimensional space. Using the context 
of a word, it can be mapped into an n-dimensional vector space. Learned representa-
tions such as word embedding is increasingly popular for modeling semantics in NLP. 
This is done by reducing semantic composition to simple vector operations. We’ve 
modified and extended traditional representation learning techniques [13, 18, 50] to 
support multiple word senses and uncertain representations.  
In this work, we used a modification so that, instead of projecting individual words, 
we project whole URLs containing multiple words. We use these words and their 
contexts as features for the projection of the whole URL. 

 

 
 

                                        Fig. 4. Vector representation of the url data. 

 
 

Using the cleaned list, we extract vector representations of the URL's using the tool 
“Sally”. Sally is a tool that maps a set of strings to a set of vectors. The features that 
we use for this mapping are bi-gram words and tri-gram characters. Thus, using word 
bigrams of the URLs as features, we project the URLs into vector space using “Sal-
ly”. Sally represents the URLs using a sparse matrix representation. This means that 
the URLs are projected into very long vectors with each dimension representing a 
word trigram that has been seen in the dataset. If a trigram has been observed in the 
URL its value in the vector is 1. Otherwise the value is 0. This results in a long vector 
with most values equal to 0 and a few values equal to 1. All the vectors together make 
a matrix that is a sparse matrix because of its many 0 values. Finally, we used K-
means clustering on the embedding. Given that the URLs have been transformed into 
points in n-dimensional vector space, K-means clustering can find groups of points 
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and partitions them as a cluster in the dataset. Given a number K which is the number 
of clusters for the algorithm to discover, K-means finds the best partitioning of the 
dataset such that the points in the clusters are mutually as similar as possible. In the 
context of URLs this means finding the groups of URLs that share the most word 
trigrams. Figure below shows that the best K values is 10. 

 
 
 

 
 

          Fig. 5. The computation of optimal number of clustering using word tri-grams. 

 
 

2.3 Computing the Optimal Number of clusters 

To compute the optimal number of clusters, we use Silhouette method which is based 
on minimizing the dissimilarities inside a cluster and maximizing the dissimilarities 
among clusters [31, 50]: 

The Silhouette model computes s(i) for each data point in the data set for each K: 
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Where  is the mean distance of point i to all the other points in its cluster. Also, 
 is the mean distance to all the points in its closest cluster, i.e.,  is the mini-

mum mean distance of point i to all clusters that i is not a member of. 
 
The optimal K is the K that maximizes the total score s(i) for all data set. The score 
values lie in the range of [-1, 1] with -1 to be the worst possible score and +1 to be the 
optimal score. Thus, the closest (average score of all points) score to +1 is the optimal 
one and the corresponding K is the optimal K. Our experiments show that the value of 
K has upper bound of 10. Here, we use not only the score but the maximum separa-
tion and compactness of the clusters, as measured by distance between clusters and 
uniformity of the width of clusters, to test and validate our model simultaneously 
when computing optimal K. Fig.6 depicts Silhouette model for different K [50]. 

 

 

 
       Fig. 6. Using silhouette model to compute the optimal number of clusters, to be 10. 
 
Using the results from silhouette model, we use k-means clustering to cluster the URL 
data. Some of the clusters are shown in fig.7. 

 
adobe data-analytics-cloud 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud 
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 adobe data-analytics-cloud 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud analytics 
 adobe data-analytics-cloud analytics select 
 adobe data-analytics-cloud analytics prime 
 adobe data-analytics-cloud analytics ultimate 
 adobe data-analytics-cloud analytics video 
 adobe data-analytics-cloud analytics predictive-intelligence 
 adobe data-analytics-cloud analytics live-stream 
 adobe data-analytics-cloud analytics data-workbench 
 adobe data-analytics-cloud analytics mobile-app-analytics 
 adobe data-analytics-cloud analytics capabilities 
 adobe data-analytics-cloud analytics new-capabilities 
 adobe data-analytics-cloud analytics resources 
 adobe data-analytics-cloud analytics learn-support 
 adobe data-analytics-cloud analytics select 
 adobe data-analytics-cloud analytics prime 
 adobe data-analytics-cloud analytics ultimate 
 adobe data-analytics-cloud analytics video 
 adobe data-analytics-cloud analytics predictive-intelligence 
 adobe data-analytics-cloud analytics live-stream 
 adobe data-analytics-cloud analytics data-workbench 
 adobe data-analytics-cloud analytics mobile-app-analytics 
 adobe data-analytics-cloud analytics marketing-attribution 
 adobe data-analytics-cloud analytics analysis-workspace 
 
adobe products photoshop 
 adobe products illustrator 
 adobe products indesign 
 adobe products premiere 
 adobe products experience-design 
 adobe products elements-family 
 adobe products special-offers 
 adobe products photoshop 
 adobe products photoshop-lightroom 
 adobe products illustrator 
 adobe products premiere 
 adobe products indesign 
 adobe products experience-design 
 adobe products captur 

 

                           Fig. 7. Some of the clusters for the url data. 

As the figure above shows, our method has grouped together URLs with similar paths 
and separated URLs with dissimilar paths. 

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_18

https://dx.doi.org/10.1007/978-3-319-93701-4_18


11 

3 The Results and Conclusion 

This project provides a method of converting categorical variables to numerical varia-
bles so machine learning models could use data. For this conversion to be plausible 
for categorical variables with many classes, we propose that clustering can be used to 
decrease the number of classes in the variable to a small number for dummy variable 
generation. Though, some variables may have accessible features which makes it 
possible to cluster them, but many variables lack the information or features that 
would be needed for clustering models. This work deal effectively with these types of 
categorical variables and assumes no extra features and information may be available, 
neither explicitly nor implicitly - - by web scraping, for such variables. For the model 
to work, we used NLP to create a vector representation of the variables. Then, we use 
the vector representation to cluster the variables, i.e., clustering the categories of the 
variables. 
 
This work provides a new and only practical method of dealing with the standardiza-
tion of categorical variables when the variables have large number of categories or 
classes and have no explicitly or implicitly available features. Our model avoids the 
deletion of the categorical variables and thus loss of information that causes machine 
learning models to produce meaningless results. This work also leads to the avoidance 
of creating high dimensional data where “curse of dimensionality” leads to high com-
putational cost, need of exponentially larger data sets, distorted values for distance 
metrics and biased models. 
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