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Abstract. Manifold learning is a main stream research track used for
dimensionality reduction as a method to select features. Many variants
have been proposed with good performance. A novel graph-based algo-
rithm for supervised image classification is introduced in this paper. It
makes the use of graph embedding to increase the recognition accuracy.
The proposed algorithm is tested on four benchmark datasets of different
types including scene, face and object. The experimental results show the
validity of our solution by comparing it with several other tested algo-
rithms.
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1 Introduction

In the last years, machine learning has been playing an important role in many
domains, especially in image recognition and classification. It has shown the great
power for effective learning. In supervised learning, a physical phenomenon is
described by a mapping between predict or labeled data. In this domain, graph-
based algorithms have drawn great attention [1][2][3][4][5]. A lot of efforts have
been done by using graph-based learning methods to various topics, such as
regression [6] and dimensionality reduction [7].

Techniques that address the latter problem were proposed to reduce the
multi-dimensional data dimensionality. It aims to find relevant subsets for fea-
ture description. It yields a smaller set of representative features while preserv-
ing the optimal salient characteristics. Hence, not only the processing time can
be decreased, but also a better generalization of the learning models can be
achieved. The algorithms mentioned above rely on both the manifold structure
and learning mechanism [8][9][10]. Therefore, in many cases, it is possible to
achieve better performance than other conventional methods. However, all of
these methods firstly define the characterized manifold structure and then per-
form a regression [11]. As a result, the constructed graphs have great effects on
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the performance. Indeed, the graph spectral is fixed in the following regression
steps.

Taking into consideration the above remarks, we introduce in this paper a
graph-based algorithm for efficient supervised image classification. It applies the
models of graph-based dimensionality reduction and sparse regression simulta-
neously. Besides, an iterative locally linear graph weight algorithm is applied to
acquire graph weights and improve the recognition accuracy. Finally, we inspect
the optimization problem of the proposed approach and we demonstrate the
situations to solve it.

The rest of the paper is structured as follows. In section 2, the graph embed-
ding model is introduced. Section 3 details the proposed graph-based supervised
classification algorithm. Section 4 presents the experiments carried out on bench-
mark datasets to verify the effectiveness of the proposed algorithm by comparing
with other art-of-state algorithms. The analysis of the experimental results are
also given. Finally, in Section 5, we draw conclusions and discuss the works for
the future research.

2 Related Works

2.1 Notations and Preliminaries

In order to make the paper self-contained, the notations used in the paper are in-
troduced. X = [x1,x2, · · · ,xl,xl+1, · · · ,xl+u] ∈ Rd×(l+u) is defined as the sample

data matrix, where xi

∣∣l
i=1 and xj

∣∣∣l+u
j=l+1 are the labeled and unlabeled samples,

respectively. l and u are the total numbers of labeled and unlabeled samples,
respectively, and d is the sample dimension. Let N be the total number of sam-
ples. The label of each sample xi is denoted by yi ∈ 1, 2, ..., C, where C relates to
the total number of classes. Let S ∈ R(l+u)×(l+u) be the graph similarity matrix,
where Sij represents the similarity between xi and xj as given by the Cosine or
the Gaussian Kernel (S is symmetric). To make it clear, Table 1 shows all the
nations and descriptions in this paper.

2.2 Graph Embedding

In graph embedding, each node of a constructed graph G = {X,S} relates to
a data point xi ∈ X [12]. The graph embedding is aimed at finding an optimal
matrix Y with a lower dimension that can make the best description of the
similarity between the data well. The optimal Y is given by

arg min
Y

(YTXLXTY)

s.t. YTXDYTA = I (1)

Where L = D− S gives the Laplacian matrix, D is a diagonal matrix and I
is an identity matrix.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_14

https://dx.doi.org/10.1007/978-3-319-93701-4_14


A Graph-based Algorithm for Supervised Image Classification 3

Table 1. Notations and descriptions.

Notation Description

d Dimensionality of original data
N Number of data samples
l Number of labeled samples
u Number of unlabeled samples
C Number of classes
xi The i-th original data sample
yi The label of xi

S Graph similarity matrix
W Linear transformation matrix
D Diagonal matrix
I Identity matrix
L Laplacian matrix
Xl Labeled train samples matrix
Xu Unlabeled test samples matrix
X Original data matrix
Y Low dimensional matrix

In fact, different algorithms for dimensionality reduction result in various in-
trinsic graphs G = {X,S}. The most used algorithms to reduce the dimensional-
ity include Principal Components Analysis (PCA), Linear Discriminant Analysis
(LAD), Locally Linear Embedding (LLE) [13], Locality Preserving Projections
(LPP) [2], ISOMAP [14], etc.

3 Proposed Algorithm

3.1 Similarity Matrix S

Firstly, a nearest neighbors method is used to determin k neighbors (k ≤ N) for
each node. Asuming that i and j are two nodes linked by an edge, if i is among
the k nearest neighbors of j, or if j is among the k nearest neighbors of i. It is
obvious that this relation is symmetric.

Secondly, the similarity matrix S is computed. It is introduced in [15][16]. In
order to acquire better performance for recognition and classification, the matrix
S is computed in a high-dimensional data space. The regularizer L1/2 is used
as an unbiased estimator in this paper. It is used to improve the sparsity of
matrix S for the minimization problem. Additionally, for graph embedding, the
condition S ≥ 0 is added. The process of minimization can be presented as:

min
S≥0

∑
i

∥∥∥∥∥∥xi −
∑
j

Si,jxj

∥∥∥∥∥∥
2

+ α‖S‖ 1
2

+ β‖S‖2

= min
S≥0
‖X−XS‖2 + α‖S‖ 1

2
+ β‖S‖2
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⇒ min
S≥0

Tr
(
κ̃− 2κ̃S + ST κ̃S

)
+ α‖S‖ 1

2
+ βTr

(
STS

)
(2)

Where α and β are the free parameters, κ̃ the kernel of X and ‖S‖ 1
2

=∑
i

∑
j

S
1/2
i,j .

Thus, Eq. (2) could be rewritten as:

min
S≥0

Tr
[(
κ̃− 2κ̃S + ST κ̃S

)
+ βSTS

]
+ α‖S‖ 1

2
(3)

Furthermore, Eq. (3) is equivalent to

min
S≥0

Tr
[
ST (βI + κ̃) S− 2κ̃S + κ̃

]
+ α‖S‖ 1

2
(4)

It should be noticed that minimizing Eq.(4) is subjected to S ≥ 0. Let ς ≥ 0
be the corresponding Lagrange multipliers. The Lagrange function F (S) can be
presented as:

F (S) = Tr
[
ST (βI + κ̃) S− 2κ̃S + κ̃

]
+ α‖S‖ 1

2
+ Tr

(
ζST

)
(5)

Then, partial derivative of both sides leads to

∂F (S)

∂Sij
=

(
−2κ̃+ 2κ̃S + 2βS +

1

2
αS−

1
2 + ζ

)
ij

(6)

Where S−
1
2 is equivalent to the inverse matrix of principal square-rooting

matrix S
1
2 .

Then, the Karush-Kuhn-Tucker(KKT) condition ζS = 0 for S is

(
−2X + 2XS + 2βS +

1

2
αS−

1
2 + ζ

)
ij

Sij = 0 (7)

Eq. (7) can be reformulated as:

(−κ̃ij + (κ̃S + βS +
1

2
αS−

1
2 )ij)Sij = 0 (8)

An iterative process to retrieve S is expressed by

Sij ←
X

(XS + βS + 1
4αS−

1
2 )

ij

Sij (9)

In fact, Eq. (9) only shows the computation for one iteration and it repeats
many times until the result is convergence. Finally, we acquire the similarity
matrix S for graph projection.
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3.2 Graph Embedding Learning

The work described in [17] proposed a novel graph-based embedding framework
for feature selection with unsupervised learning, named Joint Embedding Learn-
ing and Sparse Regression (JELSR). This unsupervised method aims at ranking
the original features by performing non-linear embedding learning and sparse
regression concurrently. JELSR inspired us to develop a method with graph em-
bedding algorithm for supervised learning in the domain of image classification.

Based on graph embedding and sparse regression optimization function, we
can optimize it by making the following operation:

`(W,Y) = arg min
W,Y s.t.YTY=I

(trace(YTLY) + µ(
∥∥WTX−Y

∥∥2
2

+ γ‖W‖2,1))(10)

Where γ and µ are two regularization parameters. W represents the linear
transform matrix, m is the graph embedding dimensionality, and Y denotes the
data matrix of embedding non-linear projection of X. The `2,1 norm of W is

given by ‖W‖2,1 =
∑d

i=1 ‖ŵi‖2. ŵi is the i-th row of W.
Respecting to the matrix W, we can get the derivative of `(W,Y) as follows,

∂`(W,Y)

∂W
= 2XXTW − 2XYT + 2γUW = 0 (11)

Where U ∈ Rd×d is a diagonal matrix. The i-th diagonal element is Uii =
1

2‖ŵi‖2
.

Thus, we have the equation as follows:

W = (XXT + γU)−1XYT (12)

Eq. (10) can be reformulated as:

`(W,Y) = arg min
W,Y s.t.YTY=I

(trace(YTLY) + µ(
∥∥WTX−Y

∥∥2
2

+ γ‖W‖2,1)

= tr(YLYT ) + µ(tr(WTXXTW)− 2tr(WTXYT )

+tr(YYT ) + γtr(WTUW))

= tr(YLYT ) + µ(−tr(WT (XXT + γU)W) + tr(YYT ))

= tr(Y(L + µI− µXTA−1X)YT ) (13)

Where A = XXT + γU.
Taking the objective function and the constraint YYT = I into account, the

optimization problem turns to

arg min
Y

tr(Y(L + µI− µXTA−1X)YT ) s.t. YYT = I (14)
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If A and L are fixed, The Eigen decomposition of matrix (L+µI−µXTA−1X)
can be used as the solution to the optimization problem in Eq. (14). We select m
eigenvectors corresponding to the m smallest eigenvalues in order. These eigen-
vectors are suitable to build a graph-based embedding which is used for image
classification.

4 Experiments

We have tested our method on four different datasets. They contains scenes
(8 Sports Event Categories Dataset and Scene 15 Dataset), faces (ORL Face
Dataset) and objects (COIL-20 Object Dataset). These images have been used
in different groups to train and test. The details of the experiments and results
are described in the following.

4.1 Dataset Configurations

The details of how the images in the four datasets are configurated are listed as
follows.

8 Sports Event Categories Dataset includes 8 sports event categories
(provided by Li and Fei-Fei) [18]. We have used 130 images in every category,
thus a total of 1040.

Scene 15 Dataset includes 4485 gray level images of 15 different scenes
including indoor and outdoor scenes [19]. We use 130 images in every category,
thus a total of 1950.

ORL Face Dataset consists of 10 different images of each 40 distinct sub-
jects [20].

COIL-20 Objects Dataset contains 1440 images of 20 objects (provided
by Columbia Object Image Library) [21]. We select 70 images out of 72 for each
object as a subset.

We have tested different distributions between training and testing images.
For the first three datasets, we have used 50% and 70% of images for training
twice, leaving 50% and 30% for testing, respectively. For the last dataset, we
have used 10% and 20% of images for training, remaining 90% and 80% for
testing, respectively.

4.2 Graph Performance Comparison

In this experiment, the graph caculated from the similarity matrix S is firstly
tested with by comparing with that of other classical similarity measure algo-
rithms, such as KNN graph and `1 graph. Table 2 displays the performance of
graphs based on different similarity measure algorithms. In order to make the
comparison, Laplacian Eigenmaps (LE) is chosen as the projection algorithm
and the classification algorithm is 1NN classifier. From the results, it can be
concluded that the kernelized sparse non-negative graph matrix S is able to
produce a graph weight matrix much better than the KNN graph and `1 graph
methods.
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Table 2. The best average recognition rates (%) on 10 random splits of different graph
algorithms.

Datasets 8 Sports Scene 15 ORL Face

Training images 50% 70% 50% 70% 50% 70%

KNN graph 52.31 54.31 42.36 45.33 89.80 92.08

`1 graph 53.81 57.31 46.72 49.23 89.95 93.67

Proposed algorithm 54.83 57.44 50.49 52.67 92.10 94.50

4.3 Effect of Proposed Algorithm

The block-based Local Binary Patterns (LBP) is used as the image descrip-
tor, where the number of blocks is set to 10 × 10. The LBP descriptor is the
uniform one having 59 features. For ORL Face and COIL-20 Objects datasets,
we use image raw brightnesses. The proposed algorithm is tested by comparing
with the following five algorithms including LLE, Supervised Laplacian Eigen-
maps (SLE) [22], Manifold Regularized Deep Learning Architecture (MRDL)
[15], Semi-Supervised Discriminant Embedding (SDE)[23] and S-ISOMAP [24].
For MRDL method, we used two layers. Image classification is carried out in the
obtained subspace using the Nearest Neighbor Classifier (NN). The experimental
results are listed in Table 3, 4, 5, and represented as graphs in Fig. 1 and 2.

Table 3. The best average recognition rates (%) of 8 Sports Event Categories Dataset
on 10 random splits.

8 Sports Scene P = 50% P = 70%

LLE 44.92 49.10

SLE 51.40 50.90

MRDL 51.77 52.85

S-ISOMAP 51.88 54.68

SDE 51.98 55.96

Proposed Algorithm 55.92 57.60

Table 4. The best average recognition rates (%) of Scene 15 Dataset on 10 random
splits.

Scene 15 Dataset P = 50% P = 70%

LLE 44.26 47.42

SLE 50.48 50.65

MRDL 46.59 47.91

S-ISOMAP 42.74 45.28

SDE 46.10 48.07

Proposed Algorithm 51.83 58.59
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Table 5. The best average recognition rates (%) of COIL-20 Object Dataset on 10
random splits.

COIL-20 Object P = 10% P = 20%

LLE 91.81 94.71

SLE 82.03 88.56

MRDL 88.00 88.86

Proposed Algorithm 93.80 96.88
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Fig. 1. Recognition accuracy vs. feature dimension for 8 Sports Event Categories
Dataset.

As presented by the results, we can draw the following conclusions. Gener-
ally, the proposed non-linear graph embedding method has enhenced performces
compared with the other algorithms tested on different datasets in Table 3, 4
and 5. Especially, compared with the MRDL algorithm, the best recognition
rate of COIL-20 Object Dataset is increased by 15.80%. As the curves shown in
Fig. 1 and 2, the recognition rates do not increase along with the dimension of
features. Therefore, the proposed method can perform well without using large
quantity of features. It can reduce the time and space complexity of training and
classification.

5 Conclusions

By emplying a novel procedure, we proposed an image classification algorithm
related to kernelized sparse non-negative graph matrix and graph-based sparse
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Fig. 2. Recognition accuracy vs. feature dimension for Scene 15 Dataset.

regression method. It is intended to reduce the feature dimensionality and im-
prove the recognition accuracy in image classification. Experiments are carried
out on benchmark datasets including scene, faces and object datasets to check
the effectiveness of our algorithm. From the experimental results, it is obvious
that the introduced algorithm outperforms the others tested. In the future, some
optimization will be made to ensure the robustness of sparse regression. Some
modifications are also needed to ameliorate the performance of our proposed
graph-based supervised algorithm for image classification.
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