
On Two Kinds of Dataset Decomposition?

Pavel Emelyanov1,2[0000−0001−8747−0600]

1 A.P. Ershov Institute of Informatics Systems, Lavretiev av. 6, 630090, Novosibirsk,
Russia

2 Novosibirsk State University, Pirogov st. 1, 630090, Novosibirsk, Russia
emelyanov@mmf.nsu.ru

Abstract. We consider a Cartesian decomposition of datasets, i.e. find-
ing datasets such that their unordered Cartesian product yields the
source set, and some natural generalization of this decomposition. In
terms of relational databases, this means reversing the SQL CROSS JOIN

and INNER JOIN operators (the last is equipped with a test verifying the
equality of a tables attribute to another tables attribute). First we out-
line a polytime algorithm for computing the Cartesian decomposition.
Then we describe a polytime algorithm for computing a generalized de-
composition based on the Cartesian decomposition. Some applications
and relating problems are discussed.

Keywords: Data analysis · Databases · Decision tables · Decomposi-
tion · Knowledge discovery · Functional dependency · Compactification
· Optimization of Boolean functions

Introduction

The analysis of datasets of different origins is a most topical problem. Decom-
position methods are powerful analysis tools in data and knowledge mining as
well in many others domains. Detecting the Cartesian property of a dataset,
i.e. determining whether it can be given as an unordered Cartesian product of
two (or several) datasets, as well as its generalizations, appears to be important
in at least four out of the six classes of data analysis problems, as defined by
the classics in the domain [9], namely in anomaly detection, dependency model-
ing, discovering hidden structures in datasets and constructing a more compact
data representation. Algorithmic treatment this property has interesting appli-
cations, for example, for relational databases, decision tables, and some other
table–based modeled domains, such as Boolean functions.

Let us consider the Cartesian product × of two relations given in the form of
tables in Fig. 1. It corresponds to the SQL–operator T1 CROSS JOIN T2. In the
first representation of the product result, where the “natural” order of rows and
columns is preserved, a careful reader can easily recognize the Cartesian structure

? This work is supported by the Ministry of Science and Education of the Russian Fed-
eration under the 5–100 Excellence Programme and the grant of Russian Foundation
for Basic Research No. 17–51–45125.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

A B

x y

x z

×
C D E

x u p

y u q

z v r

=

A B C D E

x y x u p

x y y u q

x y z v r

x z x u p

x z y u q

x z z v r

B E D A C

z q u x y

y q u x y

y r v x z

z r v x z

y p u x x

z p u x x

Fig. 1. Cartesian product of tables.

of the table. However, this is not so easy to do for the second representation,
where the rows and columns are randomly shuffled, even though the table is
small. In the sequel, we will only consider the relations having no key of any
kind and assume that the tuples found in the relations are all different.

Only in the first twenty–five years after Codd had developed his relational
data model, more than 100 types of dependencies were described in the literature
[14]. Cartesian decomposition underlies the definitions of the major dependency
types encompassed by the theory of relational databases. This is because the
numerous concepts of dependency are based on the join operation, which is
inverse to Cartesian decomposition. Recall that the join dependency is the most
common kind of dependencies considered in the framework of the fifth normal
form. A relation R satisfies the join dependency ./ (A1, . . . , An) for a family
of subsets of its attributes {A1, . . . , An} if R is the union of the projections
on the subsets Ai, 1 6 i 6 n. Thus, if Ai are disjoint, we have the Cartesian
decomposition of the relation R into the corresponding components–projections.

For the case n = 2 the join dependency is known in the context of the fourth
normal form under the name multivalued dependency. A relation R for a fam-
ily of subsets of its attributes {A0, A1, A2} satisfies the multivalued dependency
A0 7→ A1 iff R satisfies the join dependency ./ (A0∪A1, A0∪A2). Thus for each
A0-tuple of values, the projection of R onto A1 ∪ A2 has a Cartesian decompo-
sition. Historically, multivalued dependencies were introduced earlier than join
dependencies [8] and attracted wide attention as a natural variant thereof.

An important task is the development of efficient algorithms for solving the
computationally challenging problem of finding dependencies in data. A lot of
research has been devoted to mining functional dependencies (see surveys [10],
[12]), while the detection of more general dependencies, like the multivalued
ones, has been studied less. In [16], the authors propose a method based on
directed enumeration of assumptions/conclusions of multivalued dependencies
(exploring the properties of these dependencies to narrow the search space) with
checking satisfaction of the generated dependencies on the relation of interest. In
[13], the authors employ an enumeration procedure based on the refinement of
assumptions/conclusions of the dependencies considered as hypotheses. Notice
that when searching for functional dependencies A 7→ B on a relation R, once an
assumption A is guessed, the conclusion B can be efficiently found. For multival-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

ued dependencies, this property is not trivial and leads to the issue of efficient
recognition of Cartesian decomposition (of the projection of R on the attributes
not contained in A). Thus, the algorithmic results presented in this paper can
be viewed as a foundation for the development of new methods for detecting the
general kind dependencies, in particular, multivalued and join dependencies.

In [7] we considered the problem of Cartesian decomposition for the relational
data model. A conceptual implementation of the decomposition algorithm in
Transact SQL was provided. Its time complexity is polynomial. This algorithm
is based on an algorithm for the disjoint (no common variables between compo-
nents) AND–decomposition of Boolean functions given in ANF, which, in fact is
an algorithm of the factorization of polylinear polynomials over the finite field
of the order 2 (Boolean polynomials), described by the authors in [6, 5]. Notice
that another algorithm invented by Bioch [1] also applied to this problem is
more complex because it essentially depends on a number of different values of
attributes.

The relationship between the problems of the Cartesian decomposition and
factorization of Boolean polynomials can be easily established. Each tuple of
the relation is a monomial of a polynomial, where the attribute values play the
role of variables. Importantly, the attributes of the same type are considered
different. Thus, if in a tuple different attributes of the same type have equal
values, the corresponding variables are different. NULL is also typed and appears
as a different variable. For example, for the relation above the corresponding
polynomial is

zB · q · u · xA · yC + yB · q · u · xA · yC +

yB · r · v · xA · zC + zB · r · v · xA · zC +

yB · p · u · xA · xC + zB · p · u · xA · xC =

xA ·(yB + zB)·(q · u · yC + r · v · zC + p · u · xC)

Subsequently, we use this correspondence between relational tables and polyno-
mials. This polynomial will also be referred as the table’s polynomial.

Apparently, however, datasets with pure Cartesian product structure are
rare. Cartesian decomposition has natural generalizations allowing us to solve
more complex problems. For example, it is shown [4] that more polynomials can
be decomposed if we admit that decomposition components can share variables
from some prescribed set. We could use the same idea for the decomposition
of datasets. Hopefully, the developed decomposition algorithm for datasets, in
contrast to [4], does not depend on number of shared variables and therefore
remains practical for large tables.

Fig. 2 is an adapted example from [17] extended by one table. This example
comes from the decision support domain which is closely related to database
management [15] and has numerous applications. From the mathematical point
of view, a decision table is a map defined, sometimes partially, by explicit list-
ing arguments and results (a set of rules or a set of implications “conditions–
conclusions”). The well–known example is truth tables, which are widely used to
represent Boolean functions. The decomposition of a decision table is finding the

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

A.
arg1 arg2 int

low low 1

low hig 1

med low 1

med hig 2

hig low 1

hig hig 3

B.
int. arg3 res

1 low low

2 low med

3 low hig

1 med med

2 med med

3 med hig

1 hig hig

2 hig hig

3 hig hig

?

�
�
�

��	
arg1 arg2 int arg3 res

low low 1 low low

low low 1 med med

low low 1 hig hig

low hig 1 low low

low hig 1 med med

low hig 1 hig hig

med low 1 low low

med low 1 med med

med low 1 hig hig

med hig 2 low med

med hig 2 med med

med hig 2 hig hig

hig low 1 low low

hig low 1 med med

hig low 1 hig hig

hig hig 3 low hig

hig hig 3 med hig

hig hig 3 hig hig

C.

arg1 arg2 arg3 res

low low low low

low low med med

low low hig hig

low hig low low

low hig med med

low hig hig hig

med low low low

med low med med

med low hig hig

med hig low med

med hig med med

med hig hig hig

hig low low low

hig low med med

hig low hig hig

hig hig low hig

hig hig med hig

hig hig hig hig

D.

Fig. 2. Examples of decision tables.

representation of the map F (X) in the form G(X1, H(X2)), X = X1∪X2, which
may not be unique. The map H can be treated as a new, previously unknown
concept. This explication leads to a new knowledge about the data of interest
and its more compact presentation.

Fig. 2 gives two examples of the interrelation between bigger and smaller
decision tables. The rules of Table C explicitly repeat the “conclusion” for
subrules. Thereby, we can detect the three dependencies

arg1, arg2 7→ int, int, arg3 7→ res, and arg1, arg2, arg3 7→ res

The rules of Table D are more lapidary; they have no intermediate “conclusions”
(the column int), and therefore this table has only the third dependency.

In the other words, Table B is a compacted version of Table C (and D as
well) where compactification is based on a new concept described by Table A.
In the map terms, informally

C(arg1, arg2, int, arg3) = D(arg1, arg2, arg3) = B(A(arg1, arg2), arg3).

Table C may appear as a result of the routine design of decision tables (a set
of business rules) by analysts. Yet another natural source of these tables is SQL
queries. In SQL terms, the decompositions mentioned above are the reversing
operators of the following kind:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

SELECT T1.*, T2.* EXCEPT(Attr2)

FROM T1 INNER JOIN T2

ON T1.Attr1 = T2.Attr2

for Table C and

SELECT T1.* EXCEPT(Attr1), T2.* EXCEPT(Attr2)

FROM T1 INNER JOIN T2

ON T1.Attr1 = T2.Attr2

for Table D. Here, EXCEPT(list) is an informal extension of SQL used to ex-
clude list from the resulting attributes. We will denote this operator as ×

A1=A2

also.
Among numerous approaches to the decomposition of decision tables via find-

ing functional dependencies we would mention the approaches [17, 2, 11] having
the same origins as our investigations: decomposition methods for logic circuits
optimizations. These approaches perform the case exemplified by Table D which
evidently occurs more frequently in the K&DM domain. They construct some
auxiliary graphs and use the graph–coloring techniques to derive new concepts.
Additional consideration are taken into account because the new concept deriva-
tion may be non–unique.

In this paper, we give a polynomial–time algorithm to solve Table C de-
composition problem. It is based on Cartesian decomposition; therefore, we will
briefly describe it. Also it explores the idea of taking into account shared vari-
ables. Namely, as it is easy to see, the values of an attribute assumed to be
connector–attribute compose such a set of shared variables. They will be pre-
sented in both derived components of decomposition, appearing as conclusions
and conditions, respectively.

Among possible applications of this algorithm we consider decomposition
problems of Boolean tables. In particular, we demonstrate how it can be used
to provide the disjunctive Shannon’s decomposition of some special form and
how it can be used in some generalized approach to designing decompositions
for Boolean functions given in the form of truth tables with don’t care values. In
addition, some relating problems are discussed.

1 Cartesian Decomposition

First, we give a description for the AND–decomposition of Boolean polynomials
which serves as a basis for the Cartesian decomposition of datasets. Then we
outline its SQL–implementation for relational databases.

1.1 Algorithm for Factorization of Boolean Polynomials

Let us briefly mention the factorization algorithm given in [6, 5]. It is assumed
that the input polynomial F has no trivial divisors and contains at least two
variables.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

1. Take an arbitrary variable x from F .
2. Let Σsame := {x}, Σother := ∅, and Fsame := 0, Fother := 0.
3. Compute G := Fx=0 · F ′x.
4. For each variable y ∈ V ar(F) \ {x}:

if G′y = 0 then Σother := Σother ∪ {y}
else Σsame := Σsame ∪ {y}.

5. If Σother=∅, then output Fsame := F, Fother := 1 and stop.
6. Restrict each monomial of F onto Σsame and add every obtained monomial

to Fsame; the monomial is added once to Fsame.
7. Restrict each monomial of F onto Σother and add every obtained monomial

to Fother; the monomial is added once to Fother.

Remark 1. The decomposition components Fsame and Fother possess the fol-
lowing property. The polynomial Fsame is not further decomposable, while the
polynomial Fother may be decomposed. Hence, we should apply the algorithm
to Fother to derive a finer decomposition.

The worst–time complexity of the algorithm is O(L3), where L is the length
of the polynomial F , i.e., for the polynomial over n variables having M mono-
mials of lengths m1, . . . ,mM , L =

∑M
i=1mi = O(nM). In [5] we also show that

the algorithm can be implemented without computing the product Fx=0 · F ′x
explicitly.

1.2 SQL–Implementation of Decomposition Algorithm

A decomposition algorithm for relational tables implements the steps of the
factorization algorithm described above. An implementation of this algorithm in
Transact SQL is given in [3].

In terms of polynomials, it is easy to formulate and prove the following prop-
erty: if two variables always appear in different monomials (i.e., there is no
monomial in which they appear simultaneously) then these variables appear in
different monomials of the same decomposition component if a decomposition
exists. A direct consequence of this observation is that for each relation attribute
it is enough to consider just one value of this attribute because the others must
belong to the same decomposition component (if it exists).
Trivial Attribute Elimination. If some attribute of a relation has only one
value, we have a case of trivial decomposition. In terms of polynomials, this
condition can be written as F = x · F ′x. This attribute can be extracted into
a separate table. In what follows, we assume that there are no such trivial at-
tributes.
Preliminary Manipulations. This creates auxiliary strings which are needed
to form SQL queries. At the first step, we need to select a “variable” x, with
respect to which decomposition will be constructed. We need to find two sets of
attributes forming the tables as decomposition components. As mentioned above,
we can take an arbitrary value of an arbitrary attribute of the table. Next, we
create the string representing table attributes and their aliases corresponding to

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

A B

a c
b d
a e

×
C D E

x u p
x v q
y v r
z u r

=

Input table for
decomposition
A B C D E

a c x u p
b d x u p
a e x u p
a c x v q
b d x v q
a e x v q
a c y v r
b d y v r
a e y v r
a c z u r
b d z u r
a e z u r

a does not appear
(evaluation to 0)
B C D E

d x u p
d x v q
d y v r
d z u r

×

a appears
(derivative)
B C D E

c x u p
e x u p
c x v q
e x v q
c y v r
e y v r
c z u r
e z u r

“Sorting product”
F B S B F C S C F D S D F E S E

c d x x u u p p
c d x x v v q q
c d y y v v r r
c d z z u u r r
e d x x u u p p
e d x x v v q q
e d y y v v r r
e d z z u u r r

Fig. 3. Example of Cartesian Decomposition

the product Fx=0·F ′x (in terms of polynomials). The prefixes F and S correspond
to Fx=0 and F ′x.
Creation of Duplicates Filter. After that, we create a string of a logical ex-
pression allowing us to reduce the size of the table–product through the exclusion
of duplicate rows; they appear exactly twice. In terms of polynomials, these are
the monomials of the polynomial-product with the coefficient 2, which can be
obviously omitted in the field of the order 2. In an experimental evaluation we
observed that the share of such duplicates reached 80%. Since this table is used
for bulk queries, its size significantly impacts the performance.
Retrieval of “Sorting Product”. The table-product allowing for sorting at-
tributes with respect to the component selected is created in the form VIEW.
It is worth noting that it can be constructed in different ways. A “material-
ized” VIEW can significantly accelerate the next massively executed query to this
table–product. It is easy to see that the table corresponding to the full product
is bigger than the original table. In the example given above it would contain 32
rows. However, its size can be reduced substantially by applying the duplicates
filter. The view SortingProduct contains only 8 rows.
Partition of Attributes. The membership of a variable y in a component con-
taining the variable x selected at the first step is decided by checking whether
the partial derivative of the polynomial ∂

∂y (Fx=0 · F ′x) is not equal to zero (in

the finite field of order 2). They are from different components iff this derivative
vanishes. This corresponds to checking whether a variable appears in the mono-
mials in the second degree (or is absent at all). In SQL terms, an attribute A

belongs to another component (with respect to the attribute of x) if each row of
the sorting table contains equal values at F A and S A columns.
Retrieval of Decomposition. At the previous steps, we find a partition of
attributes and constructs strings representing it. If the cycle is completed and

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

the string for the second component is empty, then the table is not decompos-
able. Otherwise, the resulting tables–components are produced by restricting the
source table onto the corresponding component attributes and selecting unique
tuples.

To verify the new concepts discovery algorithms, Jupan and Bohanec de-
scribed an artificial dataset establishing characteristics of cars (see, for example,
[17]). As it is pure Cartesian product of several attribute domains representing
characteristics, the decomposition algorithm given above produces a set of linear
factors.

At the same time, disjointly decomposable Boolean polynomials are rare:

Proposition 1. If a random polynomial F has M monomials defined over n > 2
variables without trivial divisors, then

P[F is ∅–undecomposable]>1−
(

1−φ(M)

M

)n
>1−

(
1− 1

eγ ln lnM+ 3
ln lnM

)n
,

where φ and γ are Euler’s totient function and constant, respectively.

Remark 2. For database tables M is the relation’s cardinality (number of the
table’s rows) and n is the number of different values in the table which can
be estimated as O(dM) where d is the relation’s degree (number of the table’s
attributes). Notice that polynomials corresponding to database tables have a
particular structure and, therefore, the bound can be improved.

2 One Generalization of Cartesian Decomposition

As “pure” Cartesian decomposition is rare, it is naturally to detect other tractable
cases and to develop new kinds of decompositions for them. One way is to aban-
don the strict requirement on decomposition components to be disjoint on val-
ues. It is shown [4] that more Boolean polynomials can be decomposed if we
admit that decomposition components can share variables from some prescribed
set. We would use the same idea for decomposition of datasets. Arbitrariness
of choice of variables results in an exponential growth of the algorithm com-
plexity with respect to the number of variables. Hopefully, table–based datasets
have a particular structure that can be taken into account. Namely, we can take
as shared variables only those which corresponds to the same attribute. This
attribute connects original datasets (items of them) on base of the equality of
theirs values. In this case, the decomposition algorithm does not depend on the
number of shared variables in contrast to the Boolean polynomials case and
therefore appears practical for large tables.

2.1 Decomposition with Explicit Attribute–Connector

For the decomposition of tables with an explicit connector–attribute, the Carte-
sian decomposition is a crucial step. In general, this decomposition consists of
the following steps:

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

A B C D E

a p u x 1
b q u x 1
a p u y 2
a q v y 2
b p u x 3
b p v y 3

P = [{{A,B}, {C}, {D}},
{{A}, {B,C}, {D}},
{{A}, {B}, {C,D}}]

Fig. 4. An undecomposable table with decomposable sub–tables for the connector–
attribute E.

1. Subdivide the original table into k sub–tables such that all sub–table rows
contain the same value at the connector–attribute (this attribute should be
excluded for further manipulations).

2. For each sub–table perform the full Cartesian decomposition (i.e. all compo-
nents are undecomposable), skipping the last step (projection on partition
of attributes). Notice that all trivial components appear in the partition of
attributes as singleton sets. Then we have a set of partitions P = [p1, . . . , pk]
of table attributes A, where one partition corresponds to the Cartesian de-
composition of one sub–table.

3. We cannot use a simple projection on partition of attributes because it is
possible that all sub–tables are decomposable while the entire table is not
(an example at Fig. 4). The table of interest is decomposable if there exists
a minimal closure of the parts of attribute partitions across all sub–tables (if
parts of different partitions have a common attribute, then both parts are
joined with the resulting closure) such that this closure does not coincide
with the entire set of the table attributes. This simple procedure can be
done in O(|P | · |A|2) steps.

1. Select any attribute set π of any partition from P .

2. Initialize the result set R by π.
//when the algorithm stops then R contains component attributes

3. Initialize the active set A by π.
//it contains attributes that will be treated at the next closure steps

4. While A 6= ∅ do:

5. Take any attribute a from A; remove it from A.

6. For each p ∈ P do:

7. Select from p the attribute set π containing a.

8. A := A ∪ (π \R).

9. R := R ∪ π.

10. If R = A then the table is not decomposable; otherwise, it is.

11. If decomposable thenR andA\R are the attribute sets of the components
of decomposition.

12.For each sub–table perform projections on these attribute sets.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

Fig. 5. Circuit Decomposition Example.

2.2 Applications to Boolean Tables

The interplay of K&DM and logic circuit optimization is quite important and
fruitful. An interesting application of this decomposition algorithm is logic circuit
optimization. Indeed, every Boolean table (with different rows) is the true/false
part of the truth table of some Boolean function (the set of satisfying/unsatis-
fying vectors). This algorithm allows us to find tables corresponding to Boolean
functions of the following Shannon’s OR–decomposition, where Fx=0 and Fx=1

components have finer disjoint Cartesian decomposition

F (U, V, x) = xF (U, V, 0) ∨ xF (U, V, 1) = xF 0
1 (U)F 0

2 (V) ∨ xF 1
1 (U)F 1

2 (V).

A number of function that are decomposable in this way can be easily counted.
For simplicity’s sake they are n22n−2 −O(n2n).

An example is shown at Fig. 5. The original circuit 1) is given in the
form of the satisfying vectors table (on missing inputs the output is false).
The connector–attribute corresponding to the input x4 is given in bold. The
composition 2) is the simplest result of decomposition as

F (x1, . . . , x7) = F1(x1, x2, x3, x4) ∧ F2(x4, x5, x6, x7).

But evidently, the connector–attribute can be replaced by a simpler controlling
wire. F vk is a part of the function Fk, k = 0, 1, with the value v = 0, 1, at x4. The

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

result is the composition 3). Notice that the derived Boolean functions given by
the tables have a specific structure and can be specifically optimized.

x1 x2 x3 x4 F

1 0 0 0 0
0 0 1 0 1
0 0 0 1 1
0 1 1 0 1
0 1 0 1 1
1 1 1 0 1
1 1 0 1 1
1 0 1 1 0

=

x1 x2 F1

0 0 1
1 0 0
0 1 1
1 1 1

×F1=F2

x3 x4 F2

0 0 0
1 0 1
0 1 1
1 1 0

x y H

0 0 0
1 1 1

DC DC

Table 1. a) Decomposition example. b) Function–combinator.

Yet another application of this decomposition emerges when we consider
the decomposition of a truth table with don’t care (DC) inputs and outputs
with respect to the resulting column. The following example at Table 1 plainly
explains this idea. The decomposition components defines the not–DC part of
the truth table.

The complete form of the original Boolean function can be defined by the
function–combinator H

F (x1, x2, x3, x4) = H(F (x1, x2), F (x3, x4)).

Note that by extending definition on DCs we can deduce different kinds of
decompositions (eliminating DC). For example, if we extend H to the definition
of the disjunction (OR) then we establish the disjoint OR–decomposition of
Boolean functions given in the form of truth tables with DC.

3 Further Work

To achieve deeper optimization we asked [6, 5] how to find a representation of
a Boolean function in the ANF–form F (X,Y) = G(X)H(Y) + D(X,Y), i.e.
the relatively small “defect” D(X,Y) extends or shrinks the pure “Cartesian
product”.

In the scope of decomposition of Boolean functions given in the form of truth
tables with DC finding small extensions (redefinition of several DCs) may cause
more compact representations.

Clearly, finding representation of the table’s polynomial in the form

F (X,Y) =
∑
k

Gk(X)Hk(Y), X ∩ Y = ∅,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

i.e. complete decomposition without any “defect”, solves Table D decomposi-
tion problem. Here, valuation of k corresponds to a new concept (an implicit
connector–attribute), which will serve as a result of the compacting table and
an argument of the compacted table. Although, apparently, such decomposi-
tions (for example, this one, is trivial, where each monomial is treated sepa-
rately) always exist, not all of them are meaningful from the K&DM point of
view. Formulating additional constraints targeting decomposition algorithms is
an interesting problem.

Finding a “defect” D(X,Y) can be considered as completing the original
“dataset” F (X,Y) to derive some “conceptual” decompositions. In other words,
D(X,Y) represents incompleteness or noise/artifacts of the original dataset if
we need to add or to remove data, respectively. It is relative because divers
completions are possible. It can be Cartesian or involve explicit/implicit connec-
tors. For example, there always exists a trivial completion ensuring Cartesian
decomposition into linear factors

F (X) +D(X) =

n∏
i=1

∑
xj
i∈Ai

xji

where xji are variables representing different values of a Ai domain (the ith–
column of the table) as for the mentioned above CARS–example of Bohanec
and Jupan.

A simple observation is inspired by considering non–linear factors that can
appear under some completions. For example, if A and B domains belong to the
same non–decomposable factor then all the factor’s monomials aibj form values
of a new concept that is a subconcept of A × B. It can serve for the reduction
of dataset dimension (degree of a relation) and space requirements to represent
domain values.

References

1. Bioch, J.C.: The complexity of modular decomposition of Boolean functions. Dis-
crete Applied Mathematics 149(1-3), 1–13 (2005)

2. Bohanec, M., Zupan, B.: A function–decomposition method for development of
hierarchical multi–attribute decision models. Decision Support Systems 36(3), 215–
233 (2004)

3. Emelyanov, P.: Cartesian decomposition of tables. Transact SQL,
http://algo.nsu.ru/CartesianDecomposition.sql

4. Emelyanov, P.: AND–decomposition of boolean polynomials with prescribed
shared variables. In: Proceedings of the Second International Conference on Al-
gorithms and Discrete Applied Mathematics (CALDAM 2016). Lecture Notes in
Computer Science, vol. 9602, pp. 164–175. Springer (2016).

5. Emelyanov, P., Ponomaryov, D.: Algorithmic issues of conjunctive decomposition
of boolean formulas. Programming and Computer Software 41(3), 162–169 (2015)

6. Emelyanov, P., Ponomaryov, D.: On tractability of disjoint AND–decomposition
of boolean formulas. In: Proceedings of the PSI 2014: 9th Ershov Informatics Con-
ference. Lecture Notes in Computer Science, vol. 8974, pp. 92–101. Springer (2015)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

7. Emelyanov, P., Ponomaryov, D.: Cartesian decomposition in data analysis. In:
Proceedings of the Siberian Symposium on Data Science and Engineering (SSDSE
2017). pp. 55–60 (2017).

8. Fagin, R., Vardi, M.: The theory of data dependencies: a survey. In: Mathematics of
Information Processing: Proceedings of Symposia in Applied Mathematics, vol. 34,
pp. 19–71. AMS, Providence, Rhode Island (1986)

9. Fayyad, U., Piatetsky-Shapiro, G., Smyth, P.: From data mining to knowledge
discovery in databases. AI Magazine 17(3), 37–54 (1996)

10. Liu, J., Li, J., Liu, C., Chen, Y.: Discover dependencies from data – a review. IEEE
Transactions on Knowledge and Data Engineering 24(2), 251–264 (2012)

11. Mankowski, M., Luba, T., Jankowski, C.: Evaluation of decision table decompo-
sition using dynamic programming classifiers. In: Suraj, Z., Czaja, L. (eds.) Pro-
ceedings of the 24th International Workshop on Concurrency, Specification & Pro-
gramming (CS&P’2015). pp. 34–43 (2015)

12. Papenbrock, T., Ehrlich, J., Marten, J., Neubert, T., Rudolph, J., Schoenberg,
M., Zwiener, J., Naumann, F.: Functional dependency discovery: an experimental
evaluation of seven algorithms. Proceedings of the VLDB Endowment 8(10), 1082–
1093 (2015)

13. Savnik, I., Flach, P.: Discovery of multivalued dependencies from relations. Intel-
ligent Data Analysis 4(3–4), 195–211 (2000)

14. Thalheim, B.: An overview on semantical constraints for database models. In: Pro-
ceedings of the 6th International Conference on Intellectual Systems and Computer
Science. pp. 81–102 (1996)

15. Vanthienen, J.: Rules as data: Decision tables and relational databases. Business
Rules Journal 11(1) (2010), http://www.brcommunity.com/a2010/b516.html

16. Yan, M., Fu, A.W.c.: Algorithm for discovering multivalued dependencies. In: Pro-
ceedings of the 10th International Conference on Information and Knowledge Man-
agement (CIKM’01). pp. 556–558. ACM, New York, NY, USA (2001)

17. Zupan, B., Bohanec, M.: Experimental evaluation of three partition selection cri-
teria for decision table decomposition. Informatica 22, 207–217 (1998)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_13

https://dx.doi.org/10.1007/978-3-319-93701-4_13

