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Abstract. In this paper, an agent-based data-driven model that fo-
cuses on path planning layer of origin/destination popularities and route
choice is developed. This model improves on the existing mathemati-
cal modeling and pattern recognition approaches. The paths and ori-
gins/destinations are extracted from a video. The parameters are cali-
brated from density map generated from the video. We carried out val-
idation on the path probabilities and densities, and showed that our
model generates better results than the previous approaches. To demon-
strate the usefulness of the approach, we also carried out a case study
on capacity analysis of a building layout based on video data.

1 Introduction

Capacity analysis is to measure of the amount of pedestrian traffic a building
layout can handle. To apply crowd simulation models in real applications, we
can vary the inflow of people into a building layout to determine the capacity
of the amount of pedestrian traffic the layout can handle by measuring the
pedestrians’ speeds and densities. It can be used to detect congested regions,
and underutilized regions in a building layout. And these can be further used
to evaluate different policies for crowd management and optimization (e.g., it
can be used for event planning when a large crowd is expected). In summary,
capacity analysis is useful to measure the effectiveness of a layout and plans for
upgrading layout or managing the crowd.

Existing works on capacity analysis using agent-based simulation specify the
pedestrians’ movement rules in a layout manually [17, 16]. Then the density
distribution of the pedestrians is analyzed to determine the bottlenecks in the
layout. Molyneaux et al. [8] proposed pedestrian management strategies such as
the use of access gate and flow separation. Fundamental diagram [13] can be
used to assess the capacity of a building layout and crowd management policy.
Metrics [10] such as speed, travel time and level-of-service are used. Current
works use manually defined routes to do simulation for capacity analysis. They
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only analyze speeds and densities in fundamental diagram, ignoring the ori-
gin/destination (OD) popularities. We developed more sophisticated metric to
analyze the histogram of density distributions (see section 4.3) instead of in-
stantaneous density [5] or average density [17, 16] in previous works. By deriving
interpersonal distances from densities, we can understand the safety and comfort
of the pedestrians better.

Using agent-based modeling and simulation for capacity planning has many
advantages over previous methods of mathematical analysis using statistical
route choices [9, 12]. It can model the effect of changes in the environment,
e.g., adding a new obstacle that lies in the walking paths of the pedestrians;
and the detailed crowd behaviors such as group behaviors and inter-personal
collision avoidance which the mathematical modeling approach cannot handle.
As collision avoidance behavior is generally well studied [7, 4] and data-driven
path planning presents a more challenging research issue to form realistic crowd
dynamics, we focus our study here on learning the route choice preference and
the preference of selecting the origins (O) and destinations (D) in the layout. We
formulate the OD popularities, and route choice model between a given OD pair
in this work. Parameters of our model are calibrated through differential evo-
lution genetic algorithm (GA) using a crowd density map extracted from KLT
tracks [11]. Then from the learned parameters, capacity analysis is carried out
on the layout.

The following components are generally required in agent-based simulation
for capacity planning: identification of OD and routes, route choice model, and
determination of OD popularities. With these components, pedestrian simulation
can then be performed to get the pedestrian tracks. Capacity analysis metrics
are then applied to the tracks to measure the amount of pedestrian traffic a
building layout can handle.

The paper is organized as follows: Section 2 describes the related works.
Section 3 describes our data-driven framework (OD and route identification,
route choice model, pedestrian simulation and lastly parameters calibration).
Section 4 presents a case study. Section 5 concludes this paper.

2 Related Works

Many crowd models have been proposed and developed over the years. For the
high level behaviors of pedestrians, the choice of origin and destination using
OD matrix [1] and the preference of different routes due to their differences in
lengths and differential turns using statistical route choice [9] can be used. There
is also a vector field model that maps each pedestrian position to the velocity
vector based on the position of the pedestrian in the building layout [21]. A
model of the adaption of each pedestrian speed and direction according to the
distances and angles to nearby obstacle and destination [20] is created through
genetic programming. For the low level behaviors of pedestrians, there are social
force model [7] and RVO2 model [4]. Existing work learns route choice from
density maps using mathematical modeling and optimization [12], which cannot
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model the dynamic behavior of the pedestrians such as the obstacle collision
avoidance behavior when an obstacle is added to the simulation. Unlike the
existing mathematical route choice models that model the average statistical
behavior of pedestrians over time, our model can simulate the instantaneous
behaviors of agents with more precise positions than a discrete position layout
used in mathematical modeling.

Recently there is a trend towards data-driven based approach to model crowd
and calibrate model parameters. For calibrating interpersonal collision avoid-
ance model parameters from videos, there is an anomaly detection approach [2].
An approach that extracts example behaviors from videos and use these ex-
amples to avoid collisions in agent-based pedestrian simulation is introduced in
[19]. Interpersonal collision avoidance parameters can also be calibrated through
laboratory experiments using deterministic approach [18] or non-deterministic
approach [6]. Entry and exit regions transition probabilities can be learned ei-
ther from the density maps [14] or from the KLT tracks [15]. Current works
on data-driven modeling mostly focus on low-level pedestrian behavior models
or do pattern recognitions on video or trajectories data. Instead of extracting
patterns from data, we learn navigation behaviors of pedestrians that can be
applied in an agent-based pedestrian simulation. This simulation can later be
used to study different scenarios.

Crowd model parameters calibrations are often non-convex and require heuristic-
based optimization algorithm such as genetic algorithm to search for good pa-
rameter values. Differential evolution genetic algorithm has shown to outperform
many other variants of genetic algorithm on a wide set of problems [3]. In this pa-
per, we followed similar approach as described in [22] to use differential evolution
genetic algorithm and density-based calibration.

3 Data-Driven Framework

In this section, we will discuss about the framework of our data-driven agent-
based pedestrian simulation model.

3.1 Overview of the framework

The overview of our framework is shown in figure 1. A crowd simulation model
is built based on empirical data extracted from videos, in particular, to cap-
ture the high-level motion of path planning through OD popularities and route
choice modeling. The model is used to create agent-based simulation which is in
turn used for capacity analysis of a given layout. It is conducted based on the
calibrated simulation model. We will describe these in detail in the subsequent
sub-sections.

To model the path planning behaviors of crowds, OD popularities and a
route choice model for a given OD need to be determined. In this work, we focus
on distilling OD popularities and calibrate route choice model parameters using
video data.
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f) Learn Route Choice and 
Origin/Destination (OD) 
Popularities Parameters

d) Extract layout from trajectories
Generate paths

c) Generate density histogram for the regiona) Vary the incoming 
flow of pedestrians

a) Training Scenario
c) Extract Density Map

e) Pedestrian 
Simulation

b) Extract KLT tracks

b) Pedestrian 
Simulation

Application: Capacity Analysis

Learn: Pedestrian Model

Fig. 1. The workflow of our framework from learning model to capacity analysis

3.2 OD and Path Identification

To get a full picture of the pedestrians in a building layout, the camera is prefer-
ably looking downward between 135 to 180 degrees angle to the plane normal of
the ground to minimize perspective distortion. The video can be in monochrome
with a resolution high enough to get a few corner points on each pedestrian for
tracking.

For a given video dataset, first image transformation is applied to remove per-
spective distortion of the camera. It is done by manually labeling some points
in the ground plane in the video frame with the actual positions in the actual
layout. The perspective transformation matrix is determined from the actual
positions and pixel coordinates of the frame. Then an inverse perspective trans-
form is applied on the video frame. The image transformation is also applied to
the list of KLT tracks ρKLT (each track consists of a sequence of points (qx, qy),
each of which is represented by (track id, qx, qy, time)). Finally, we accumulate
all the points in the KLT trajectories on a density map (grid size W by H) of
the whole layout covered by the video. The density value at grid location (i, j)
or distribution Pr(M(i, j)) is determined by:

Pr(M(i, j)) =
1

T
rmask(i, j)

hsize∑
u=−hsize

hsize∑
v=−hsize

∑
n

rn(i+ u, j + v)h(u, v) (1)

T =
∑
i,j

rmask(i, j)

hsize∑
u=−hsize

hsize∑
v=−hsize

∑
n

rn(i+ u, j + v)h(u, v) (2)

rmask(i, j) = 1∑
n rn(i,j)>0 (3)

i = {1, 2, . . . ,W} and j = {1, 2, . . . ,H} (4)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_8

https://dx.doi.org/10.1007/978-3-319-93701-4_8


where rn(i, j) = 1 if track n passes through grid position (i, j). 1 is an indicator
function which is 1 when the condition is true, else it is 0. h(u, v) represents the
smoothing filter of size hsize. Note that each track contributes one density count
to a grid point in the density map and the points on each track are interpolated
so that it is continuous. The density value is then normalized by the total density
values so that it becomes a probability distribution. The grid points of the density
map that are zeros form the mask map (rmask) and these grid points are not
used for calibrating the model parameters. These mask regions represent the
walls and other barriers in the layout that the pedestrians cannot move into.
The smoothing function h(u, v) can be a Gaussian or uniform function.

The high density regions of the transformed ρKLT of a building layout are
extracted by clustering all the (qx, qy) positions from the tracks using a Gaussian
Mixture Modeling (GMM) algorithm as waypoints. The entrances of the layout
(OD) can also be extracted by clustering. The number of clusters is selected
using the elbow method by increasing the number of clusters until there is no
significant increase in the maximum likelihood value of the clustering result.
The W by H grid points of the layout is broken down into voronoi regions where
each grid point is labeled to the nearest waypoint center and each mask region
remains unlabeled without assigning to any waypoint. Two waypoint voronoi
regions are adjacent if the pedestrian can walk from the first waypoint to the
second waypoint without transversing other waypoints. We link the adjacent
waypoints (voronoi) to form a topology map of the layout. For all pairs of OD,
all possible paths (paths without repeating nodes) are generated between the
OD.

3.3 Path Selection Model

Distance and turn distance are the commonly used path descriptors as the choice
of path by the pedestrian is highly dependent on these two descriptors. These two
descriptors are revised from [12]. The path descriptors of each path (p), namely
the distance and turn distance, are computed using the formulas as follows:

descdist(p) =

∑N−1
i=1

√
(q

(i+1)
x − q(i)

x )2 + (q
(i+1)
y − q(i)

y )2√
(q

(N)
x − q(1)

x )2 + (q
(N)
y − q(1)

y )2

− 1 (5)

descturn dist(p) =
1

Π

N−2∑
i=1

min(|anglei+2 − anglei+1|, 2π − |anglei+2 − anglei+1|)

(6)

anglei = tan−1(
q

(i)
y − q(i−1)

y

q
(i)
x − q(i−1)

x

) (7)

where N is the number of waypoints for path p, (q
(i)
x , q

(i)
y ) is the centroid posi-

tion of the i-th waypoint of p and anglei is the direction (in radians) between

the waypoints i− 1 and i. O and D centroids will be (q
(1)
x , q

(1)
y ) and (q

(N)
x , q

(N)
y )
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respectively. The path descriptors distance and turn distance are normalized
by the straight line distance between the OD and π respectively so that the
descriptors are invariant to the scale size of the layout. We added these normal-
ization techniques to the path descriptors introduced in [12] to improve learning
performance.

The probability of taking p given o and d is then formulated as Pr(p|o, d)
function as below,

Pr(p|o, d) =
Pref(p)∑

p′ between o and d Pref(p′)
(8)

Pref(p) = eα×descdist(p)+β×descturn dist(p). (9)

Pr(o, d) is the probability of selecting a pair of OD. Pref(p) is preference of
taking a particular path and it has a value between zero to positive infinity.
In the expression Pr(p|o, d), the preference is normalized to a probability value
between zero and one. The parameters α and β are to be learned empirically
through the GA described later. The frequency of selecting p (number of times
p is selected per second), f(p) is therefore

f(p) =
∑

o∈O,d∈D

Pr(p|o, d)f(o, d) (10)

where f(o, d) is the frequency of selecting a pair of OD, which will be also learned
through GA.

3.4 Parametrized Pedestrian Simulation

For each origin o, the simulation algorithm will generate a number of agents to
be added to o using a Poisson distribution

n ∼ e−kkn

n!
(11)

where k = f(o) =
∑
d∈D f(o, d) and f(o, d) (i.e., OD popularity) is a value in

the simulation parameters. The destination of the agent ai will be set according
to

Pr(d|O(ai)) =
f(O(ai), d)∑

d′∈D f(O(ai), d′)
(12)

where O(ai) is the origin of agent ai. These parameters are evolved by the GA
to find a good set of values. The parameters will be described in more detail

in the next section. For a layout of m entrances, there are m(m−1)
2 pairs (the

permutation of arbitrary two out of m entrances) of OD. We assume that the
o and d for each agent cannot be the same, and for a given (o, d) pair, agents
have the same probability moving from o to d and from d to o. This assumption
is made so as to keep the set of the OD popularities parameters smaller and
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manageable. It also leads to better learning by preventing the creation of an
overparameterized model.

For each origin o, new agents are added to the simulation at a fixed (i.e.,
every 5 seconds) interval according to Eq.(11). The destination (d) and path (p)
of each agent is selected according to Eq.(12) and Eq.(8) respectively. They are
assigned with the list of waypoints of p ∈ P from o to d. The particular position
(a waypoint is represented as a 2D Gaussian distribution learned from GMM) is
selected randomly within the Gaussian distribution range of the waypoint,

(qx, qy) ∼
√

det(2πΣj)e
− 1

2 (q−µj)
T Σj

−1(q−µj) (13)

where µj and Σj are derived from GMM clustering, and q is the vector form of
(qx, qy). Each agent is then following p ∈ P from o through a list of waypoints
to d. Agents avoid each other using a collision avoidance mechanism while mov-
ing between two consecutive waypoints. In this study, we apply the Reciprocal
Velocity Obstacle (RVO2) method [4] for collision avoidance. RVO2 collision
avoidance algorithm basically finds the best velocity vector for each agent to
avoid collision. Once an agent reaches d, it will be removed from the simulation.
Agents’ trajectories through simulation are then aggregated. The density map is
then created from the agents’ trajectories in the same way as from the ρKLT. The
detail description of our agent-based simulation procedure is shown in figure 2.

3.5 Path Selection Parameter and OD Popularity Determination

Our goal is to develop an agent-based model that behaves similarly to the video
by having the same density distribution. In this model, we focus on the path
planning layer of behaviors, which needs to set the route choice and OD pop-
ularities. The route choice and OD popularities will be the parameters to be
calibrated by our GA. (Differential evolution) GA is very suitable for this prob-
lem as the cost function is non-convex. GA will reduce the number of simulation
runs needed to do global optimization and it is important as each simulation
run is a time-consuming process. As the parameters space is bounded by a set of
minimum and maximum ranges instead of discrete values, this also makes GA
very suitable.

First a population of random parameters are generated. The parameters are
ordered in this particular order, < {f(o, d)|o ∈ O, d ∈ D}, α, β > where (α, β)
are the route choice parameters. Then the fitness value of every individual of the
population is calculated by running simulations using the parameter values of
the individual, and compare the simulated density map with the ground truth
density map using the formula below:

fitness, λ =

√√√√ W∑
i=1

H∑
j=1

(Pr(M(i, j)|ρsimulate)− Pr(M(i, j)|ρKLT ))2 (14)

where Pr(M(i, j)) is the probability of finding an agent/a pedestrian on a grid
point (i, j) of the density map, W and H are the width and height of the density
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Our Pedestrian Simulation

Input:
f(o): Frequency of selecting a particular o
Pr(d|o): The probability of selecting a d given o
Pr(p|o, d): The probability of selecting a path p of a pair of OD
Return: the list of tracks ρsimulate

Agent Generation Procedure:

for Every small time interval (i.e. 5 seconds interval) do
for Every origin o in layout do

Generate n number of agents using a Poisson distribution, Eq.(11)
Set the origin of each generated agent to o
Set the position of each generated agents to o position
Put these generated agents into the simulation

end for
end for

Agent Navigation Procedure:

for Each active agent ai with id = id(ai) and o = O(ai) do
Select the destination D(ai) for agent ai using Pr(d|O(ai)), Eq.(12)
Select a path for agent ai using Pr(p|O(ai),D(ai))
for For every waypoints wj on the path do

Generate a position (qx, qy) on the waypoint using Eq.(13)
Move agent ai to position (qx, qy)
Record the track of agent, (id(ai), qx, qy, time) into ρsimulate

if Agent ai reached the destination D(ai) then
Remove the agent ai

end if
end for

end for

Fig. 2. Procedure of our pedestrian simulation

map. Note that Pr(M) sums to one and greater than zero and the mask regions
of the density map are not used for parameter calibration. We use a probability
distribution for the density map because we do not have the density values from
the KLT tracks, but the relative densities between the grid points. As usual the
population parameter values are evolved using differential evolution mutation
and crossover methods to generate new offsprings. The fitness of these offsprings
are evaluated using simulations and the fitness formula above. The offsprings
will replace their parents if their fitness values are smaller than their parents.
After several generations, the population will converge to a good set of parameter
values.
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4 Case Study

In this section, we will describe our scenario, evaluate our framework and lastly
carry out capacity analysis using our framework.

4.1 Scenario Description

An agent-based crowd simulation, performing the path planning of crowds through
the proposed route choice and OD popularities model, is developed in Java for
the Grand Station dataset [23]. This dataset consists of a 33 minutes and 20
seconds video containing 50010 frames with a framerate of 25 fps at the resolu-
tion 720x480. A set of about 40000 KLT tracks, ρKLT, is also provided with the
dataset. The GA is implemented in Matlab and for each set of parameter values,
a multiple instances of the crowd simulation are executed. The average result
over 4 runs is used for fitness evaluation. In this case, there are 8 entrances and
therefore we have 28 pairs of OD. And another two route choice parameters, so
we have in total 30 parameters. We choose a population size of 30 for the GA
(we have also experimented with a population size of 100 and it leads to similar
fitness value). We set the size of the density map to be 100 by 100 grid points
to make it more manageable.

4.2 Evaluation of the Proposed Framework

In this section, we will compare our model (Model) against three baseline mod-
els: uniform OD popularity and shortest path (UniMod), existing vector-field
model (VecMod) [21], and existing pedestrian-obstacle-destination model (Pod-
Mod) [20]. The ground truth (GT) will be derived from the ρKLT.

Figure 3 shows the density maps generated from our model and other existing
approaches. We applied a small 5 by 5 window average filter to the density map
(i.e., h(u, v) = 1 and hsize = 2, see Eq.(4)) to filter out the randomness. Our
approach matches the ground truth density map better than other approaches by
more than 10% (by comparing the fitness values in the figure). As VecMod learns
the path of the pedestrian from the directions of the ρKLT instead of from the
density map of the ρKLT, it cannot model the variations of movements across the
open space as well as our route choice approach. PodMod learns a deterministic
function of movement for each OD pair, it only allows the pedestrian to move
along one path instead of probabilistically select one of the paths in our route
choice approach.

OD popularities parameters are calibrated by GA and simulation. The pop-
ularities can be estimated from the density map because the density between
a high popularity OD will be higher and likewise the density between a low
popularity OD will be lower. As for the OD popularities, figure 4(a) shows the
relative popularity of each pair OD and figure 4(b) shows the density map ob-
tained from the training video without applying any smoothing function (i.e.,
h(u, v) = 0 and hsize = 0, see Eq.(4)). The high popularities between the bottom
and right entrances further confirm what is shown in the video.
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(a) (b) (c) (d)

Fig. 3. Density maps generated by (a) VecMod [21], (b) PodMod [20], (c) our model
and (d) GT. (Fitness,λ = (a) 6.159× 10−3 (b) 6.329× 10−3 (c) 4.216× 10−3)
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Fig. 4. (a): Relative popularities of learned OD popularities, (b): GT density map
without applying any smoothing filter (see text for more details)

We compared the learned path probabilities with the path probabilities of
the ρKLT. As the ρKLT are broken without OD information, we cannot directly
map each track to a specific path. So we match each track to all paths with
which the track matches partially, and evenly distribute the probabilities of the
tracks to the matching list of paths. To specify it formally,

Pr(p = pathi|GT) =
1

αi
if αi > 0, else 0 (15)

where αi = # of tracks in ρKLT match sub-path of pathi and a KLT track matches
sub-path of pathi if the track contains a ‘substring’ of the pathi’s waypoints. The
following distance functions are used for comparison:
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Total Variation Distance =
∑
i

|Pr(p = pathi|Model)− Pr(p = pathi|GT)|

Histogram Intersection =
∑
i

min(Pr(p = pathi|Model),Pr(p = pathi|GT)).

(16)

These two distance functions are commonly used for comparing between two
probability distributions (it is the lower the better for variation distance; whereas
it the higher the better for histogram intersection). UniMod is used as a baseline
model as it is commonly assumed if we have no information of how often one
pedestrian will choose a pair of OD over another pair.

Our model is better in terms of the two distance functions than the baseline
UniMod. The distances (GT versus our model/GT versus UniMod) for total
variation and historgram intersection are 1.9624/1.9965 and 0.0188/0.0017 re-
spectively. The popularities across different pairs of OD are non-uniform as we
observed that there are much more people walking from some of the entrances.

4.3 Capacity Analysis

Following the work described in [10], we choose three metrics for capacity anal-
ysis,

Density Distribution, η(d) =
∑
t

1density(t)>=d

Average Travel Speed, θ =
1

M

M∑
i=1

Speed(ai)

Travel Speed Index, ϑ =
θ

θfree flow
(17)

where density(t) is the density of the region at time t, Speed(ai) is the speed of
agent i, M is the number of agents in the region and θfree flow is the average speed
of the agents when the density is 0. η(d) is the number of time steps where the
density is greater than or equal to a specified amount d. η(d) is selected because
it has been used to determine the safety and comfort of the pedestrians [5]. θ
is selected as it can tell us the time taken for a pedestrian to move through the
region and give us the level of congestion. ϑ gives us the percentage of additional
time that is needed to move through the crowded region compared to when the
region has no crowd.

We varied the OD popularities by multiplying them using a fixed constant
between 1 to 11. Figure 5(a) shows η(d) (time step= 0.25 second). Figure 5(b)
shows θ and ϑ. Figure 5(c) shows the region where the density and speeds are
inspected for the different OD popularity values. This region is selected as it lies
along the highest density path when the popularities are at normal values.
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7x 0.4561 0.4537 D
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Fig. 5. (a) Density and (b) speed changes due to increase in OD popularities. (c):
Region under analysis

As the popularities get higher, the total number of people increases linearly,
but the density increases non-linearly. The changes in the density (figure 5(a))
is non-linear and there is a tipping point of significant increase when the popu-
larities increase from 7 to 8 times. The increase in density starts to slow down
after 8 times. For instance, for η(0.5), when the popularities are increased from
7 to 8 times, the frequency increases by more than 4 times. This makes intuitive
sense as the density increases, the speeds of pedestrians decrease due to more
collision avoidance and this in turn leads to larger increase in density. As the
density further increases, jams occur at some parts of the layout and this reduces
the rate of increment of the density at the region under study. The capacities
at different regions are also affected by layout structure which determines where
and how density is accumulated. This kind of dynamic behavior is difficult to
model mathematically and the results are different for different layouts.

We can also see that as the popularities get higher, θ decreases, where the
rate of decreases is higher between 3 to 7 times of normal popularities. This is
due to the same observation as the density. However the decrease in speed is
not as obvious as the increase in density. For the level of service (LOS) [5], it
is ‘A’ (free circulaition) when the increase of popularity is below 7 times, but it
changes drastically to ‘D’ (restricted and reduced speed for most pedestrians)
when the increase of popularity is above or equal 7 times. For ϑ, a value of 1
indicates that the average travel speed is at its optimal speed and is not affected
by the density (due to small randomness in the simulation, ϑ can be slightly
larger than 1 as in the 1st row of the table).

5 Conclusion

We have developed a data-driven agent-based framework that focuses on the
path planning layer. And this framework can be used for capacity analysis. We
have carried out experiments and analysis on the learned parameters and density
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map of our model, performed capacity analysis on hypothetical situation where
the OD popularities were varied by a constant multiplier.

The model created can be used for analyzing different crowd management
policies, sudden increase in crowd densities, and other novel scenarios. In the
future, we will automate crowd management strategies through optimization of
speeds of the pedestrians at different locations or re-routing the pedestrians,
enforced by marshallers on the ground.

The assumption we make here is that as density increases uniformly, peo-
ple’s path planning is not affected much by the density increment, but still by
space syntax (layout). There is one imperfection in our model is that it does not
model change in a pedestrian route due to very high density congestion. Con-
gestion model is important as we continuously increase the number of agents in
the simulation for capacity analysis, it will definitely lead to very serious conges-
tion at some point. As our future work, we will add congestion model into the
current route choice model to model the change of pedestrian behaviors during
congestion to tackle this problem. We are also planning to use virtual reality
experiments to collect data under controlled environment.
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