
Enabling Adaptive Mesh Refinement for Single
Components in ECHAM6

Yumeng Chen*, Konrad Simon, and Jörn Behrens

Center for Earth System Research and Sustainability, Department of Mathematics,
Universität Hamburg, Hamburg 20144, Germany,

yumeng.chen@uni-hamburg.de

Abstract. Adaptive mesh refinement (AMR) can be used to improve
climate simulations since these exhibit features on multiple scales which
would be too expensive to resolve using non-adaptive meshes. In partic-
ular, long-term climate simulations only allow for low resolution simu-
lations using current computational resources. We apply AMR to single
components of the existing earth system model (ESM) instead of con-
structing a complex ESM based on AMR. In order to compatibly incor-
porate AMR into an existing model, we explore the applicability of a
tree-based data structure. Using a numerical scheme for tracer transport
in ECHAM6, we test the performance of AMR with our data struc-
ture utilizing an idealized test case. The numerical results show that
the augmented data structure is compatible with the data structure of
the original model and also demonstrate improvements of the efficiency
compared to non-adaptive meshes.

Keywords: AMR · data strucuture · climate modeling

1 Introduction

Atmospheric components of earth system models used for paleo-climate simula-
tions currently utilize mesh resolutions of the order of hundreds of kilometers.
Since hundreds of components need to be computed on each mesh node, compu-
tational resources are limited even with such low resolution. However, relevant
processes, such as desert dust or volcano ash clouds, cannot be resolved with suf-
ficient fidelity to capture the relevant chemical concentrations and local extent.
Improving resolution even in one single component should improve the general
simulation result due to more accurate interactions among different components
[1].

AMR dynamically refines a given mesh locally based on user-defined criteria.
This approach is advantageous, when local features need higher resolution or
accuracy than the overall simulation, since the computational effort scales with
the number of mesh nodes or cells. Compared to uniform refinement fewer cells
are added for the same quality of results. Berger and Oliger[2] introduced this
approach for hyperbolic problems using a finite difference method on structured
meshes. Since then the method has gained popularity due to its applicability in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

2 Y. Chen et al.

a variety of multi-scale problems in computational physics. However, implemen-
tation of numerical algorithms on adaptive meshes is more complicated than
on uniform meshes. In order to ameliorate the difficulty, various established
AMR software implementations are available [3–8]. These packages can generate
meshes on complex geometries and provide tools to manage AMR. For example,
Jablonowski et al.[9] proposed a general circulation model on the sphere using
the AMR library by Oehmke and Stout[5]. McCorquodale et al.[10] built a shal-
low water model on a cubed-sphere using the Chombo library[8]. However, it
is difficult to incorporate these so-called dynamical cores into current climate
models for imminent use.

We enable adaptive mesh refinement (AMR) for selected constituents of an
atmospheric model, ECHAM6 [11], with a tree-based data structure. Unlike
many other AMR implementations that use specially designed mesh data struc-
tures and implement numerical schemes in their context our approach aims at a
seamless integration into an existing code. Thus, the data structures presented
in this paper remain transparent to the hosting program ECHAM6, while en-
abling locally high resolution. The most natural data structures for efficient
AMR implementation are tree-based, more precisely forest of trees data struc-
tures [7]. The forest of trees data structure is a collection of trees, which allows
the flexibility of adding or deleting cells on the mesh. On the other hand, as an
atmospheric general circulation model that solves the equations of atmospheric
dynamics and physics on non-adaptive meshes, ECHAM6 uses arrays as its pre-
dominant data structure. In order to seamlessly incorporate AMR into individual
components of the hosting software ECHAM6, we use the forest of trees data
structure combined with a doubly linked list such that it can take arrays as in-
put, while retaining flexibility of the tree structure. We also combine the forest
of trees data structure with an index system similar to [12] to uniquely identify
individual cells on adaptive meshes and facilitate search operations.

We describe our implementation of AMR in Section 2, which includes the
description of our indexing system, data structure and the AMR procedure.
In Section 3, we present the transport equation as an example to demonstrate
the performance of our data structure for AMR on an idealized test case. We
conclude and plan our future work in Section 4.

2 Method

We explore the use of the forest of trees data structure to incorporate an AMR
approach into ECHAM6. Our implementation is similar to the forest of trees by
Burstedde et al.[7], but it is less complicated because our application is limited
to 2-D structured rectangular meshes. In order to facilitate the implementation,
we use the index system by [12].

2.1 Index system

ECHAM6 uses arrays for rectangular mesh management. 2-D arrays are indexed
by pairs and each entry of the arrays represents a cell on the mesh. The use of

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 3

an index system greatly helps the construction of numerical schemes for solving
partial differential equations and the search of adjacent cells on the mesh.

If we construct the mesh by recursively refining the cells on the domain
starting from one cell that covers the whole domain, the index of each cell can
be computed correspondingly. After one refinement of the cell (i, j), the resulting
four cells have indexes (i, j = 0, 1, 2, . . .):

(2i, 2j + 1) (2i+ 1, 2j + 1)

(2i, 2j) (2i+ 1, 2j)
(1)

If the mesh is coarsened, every four fine cells coalesce and the index of the
resulting coarse cell is:

(b i
2
c, b j

2
c) (2)

(i, j, l)

(2i, 2j, l + 1)

k = 1

(2i + 1, j, l + 1)

k = 2

(2i, 2j + 1, l + 1)

k = 3

(2i + 1, 2j + 1, l + 1)

k = 4

refining

coarsening

1

Fig. 1. Illustration of the refinement and coarsening process of a single cell and the
corresponding index. k represents the index of the children in the tree

This works perfectly on uniformly refined meshes as all cell indices increase
proportionally with each refinement. Thus, each pair can uniquely define a cell.
However, conflicts can occur on adaptive meshes, where cells with different levels
of refinement appear at the same time. Such conflicts can cause ambiguous cell
identification, which in turn may result in the use of wrong values for numerical
schemes leading to erroneous numerical results. We adopt the concept of an
additional index for the refinement level, l, from [12]. The idea can be illustrated
in 1-D cases. If the mesh is generated by recursively refining all cells on the
domain from one cell covering the whole domain, we can get the number of
cells nx = 2l, where l is the number of refinements. We define the number of
refinements as refinement level:

l = log2 nx (3)

The refinement level is defined for each cell. Once a cell is refined, the refinement
level of this cell increases by one. Hence, on uniformly refined meshes, all cells
have the same refinement level. Our goal is to enable adaptivity on existing
meshes. Since the number of cells on the existing mesh is not necessarily an even

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

4 Y. Chen et al.

number, we take dlog2 nxe as the refinement level, l, such that nx ≤ 2l. This
concept can be extended to 2-D cases:

l = dlog2 max(nx, ny)e (4)

where nx and ny are the number of cells of the input mesh in each dimension,
respectively. Since cells on adaptive meshes have various refinement levels, the
triple (i, j, l) forms the index of a cell such that no conflicts can occur. After
refining the cell (i, j, l), the index becomes:

(2i+ a, 2j + b, l + 1) (5)

where a = 0, 1 and b = 0, 1. If four cells are coarsened into one, the four cells
coalesce and the index of the resulting cell is:

(b i
2
c, b j

2
c, l − 1) (6)

Such index system guarantees that each cell owns a unique index on the mesh.
The system is shown in Figure 1.

2.2 Data structure

Without adaptivity, a cell is treated as an entry of a 2-D array on 2-D meshes.
However, arrays lack the flexibility to organize cells on adaptive meshes. In order
to enable adaptivity with existing meshes, it is natural to adopt the idea of a
forest of trees to manage AMR [7]. A schematic illustration is shown in Figure
2. A forest is a set of trees. In our application, a tree node represents a cell.

r

1l = linit + 1

l = linit

l = linit + 2

2 3 4

r

1 2 3

1 2 3 4

4

r

doubly linked list

1Fig. 2. Illustration of the data structure. The numbers in the tree node represent the
indices of children. l is the refinement level, linit is the initial refinement level and
r represents the root of each tree. The two way connectors are a representation of a
doubly linked list. Each tree node represents a cell and the leaves of the trees are active
cells on the computational mesh. A mesh corresponding to this tree is shown in Figure
3.

Each entry of the input array is a root of a tree. Hence, the number of trees in
the data structure depends on the number of cells on the input mesh. The input
array can also be viewed as a forest, where each tree just has one root. The roots
of the trees are presented as a 1-D array in our current implementation. This
reduces the data structure to arrays as in ECHAM6 for non-adaptive meshes. If

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 5

(0, 0, 3)

(0, 1, 3)

(1, 0, 3)

(1, 1, 3)

(2, 0, 3) (3, 0, 3)

(3, 1, 3)

(4, 2, 4) (5, 2, 4)

(4, 3, 4) (5, 3, 4)

(3, 0, 2)

1
Fig. 3. The mesh organized by the forest of trees shown in Figure 2. The index of each
cell on the adaptiveh mesh avoids the conflicts at different refinement levels. The initial
refinement level, linit, is 2

the input mesh has nx× ny number of cells, where nx and ny is the number of
cells in each dimension, the index of each cell in the forest is nx × j + i, where
(i, j), with i = 0, . . . , (nx − 1), and j = 0, . . . , (ny − 1), is the index of the cell
in the input mesh. This is the same as the row-wise ordering that transforms
values on 2-D meshes into 1-D vectors for numerical computation. We maintain
the index of each cell from the (original) input mesh and compute the refinement
level of cells in the input mesh by equation 4. The refinement level of cells in
the roots of the trees is defined as initial refinement level, linit. The refinement
process divides a cell into four cells, which is equivalent to adding four children
to the current tree node of the tree. The children become leaves of the tree and
appear on the mesh as a cell and we refer these leaves as active tree nodes, while
the parent is non-active tree node as it is not treated as a cell on the mesh.
The four children of each tree node in the tree are indexed by k. It is necessary
to relate, k, with the index system of cells, (i, j, l). Using a, b in equation 5,
k = a+2b+1. An example of index k in cells after refinement is shown in Figure
1 and the index of children in the tree is shown in Figure 2. The index a and b
can be recovered from (i, j, l):

a = i− 2b i
2
c

b = j − 2b j
2
c

(7)

Correspondingly, as a reverse operation of mesh refinement, the coarsening is
equivalent to deleting four leaves that share the same parent. Here, the parent
node is again marked as active tree node, which appears as a cell on the mesh.
The data structure is intuitive for adaptive meshes and enables a simple search
algorithm on rectangular meshes with the help of our index system. Searching a
cell with the index (i, j, l) requires l − linit operations, which is the same as the
depth of the tree node in the tree. This is particularly useful as the numerical
schemes for solving PDEs usually need values at adjacent cells. While a forest
of trees is a suitable data structure for adaptive refinement and coarsening, the
numerical computation of PDEs usually requires (many) traversals of all active

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

6 Y. Chen et al.

cells of the mesh. It is inefficient to traverse each of the trees just to access the
leaves. Therefore, a doubly linked list is used to connect all the leaves as shown
in Figure 2. A linked list can meet the requirement for repeated traversals of the
mesh. Similar to arrays, only n operations are required for the traversal of the
whole mesh, where n is the number of cells on the mesh. Also, the tree nodes on
the doubly linked list can be added or removed flexibly and therefore it is well
suited for AMR.

2.3 Adaptive algorithm and refinement strategy

The effectiveness of the AMR also depends on the refinement procedure. Our re-
finement strategy is inspired by the adaptive semi-Lagrangian algorithm in [13]
and is similar to most AMR procedures [14–16]. Assuming a one level time step-
ping method is used, the implementation involves two meshes. One mesh, Mn,
keeps information of the nth time step, and another, Mn+1, keeps the informa-
tion of the (n+1)st time step. The computation of nt time steps are summarized
in algorithm 1 and algorithm 2. ECHAM6 has an independent module for tracer
transport. If the AMR method is integrated into ECHAM6, ECHAM6 would
parse information on the coarse meshes in the form of arrays to the AMR mod-
ule. The information on coarse resolutions are supposed to be interpolated.

Data: Mn

Initialize the input mesh Mn;
Perform mesh refinement procedure on mesh Mn based on the initial
condition of the PDE;

Recompute the initial condition on refined mesh Mn;
Generate mesh Mn+1 for new time step, which is a copy of mesh Mn;
for n = 1 to nt do

Perform mesh refinement procedure on mesh Mn+1;
Solve the PDE and store results on mesh Mn+1;
Regenerate mesh Mn as a copy of mesh Mn+1 for next time step;

end

Algorithm 1: The process of solving the PDEs with AMR. nt is the total
number of time steps, and the input data is from an array. The mesh refinement
procedure mentioned above is iterative in itself. The details of the step mesh
refinement procedure at each time step can be found in Algorithm 2.

We limit the differences of refinement levels between adjacent cells to guar-
antee a relatively smooth resolution variation since abrupt resolution changes
can result in artificial wave reflections [17]. This also facilitates the search for
adjacent cells since the number of adjacent cells for each cell is less or equal to
two.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 7

Data: M
numofiter = 0;
numofcoarsened = numofrefined = 1;
if M == Mn+1 then

Solve PDE by a first-order scheme (predictor step);
end
while numofcoarsened/ = 0 do

Mark cells that will be coarsened according to a coarsening criterion;
Remove coarsening marker for those cells with neighbors differing by more
than one level;

Update mesh and obtain number of coarsened cells numofcoarsened;

end
while numofiter < N or numofrefined/ = 0 do

if M == Mn+1 then
Solve PDE by a first-order scheme (predictor step);

end
Mark cells that will be refined according to a refinement criterion;
Mark those cells with neighbors differing by more than one level for re-
finement;

Update mesh and refinement levels of cells and obtain number of refined
cells numofrefined;

numofiter = numofiter + 1;

end

Algorithm 2: The mesh refinement procedure in each time step. N is
the maximum number of iterations, numofcoarsened is the number of cells
coarsened in the current iteration, numberofrefined is the number of cells
refined in the iteration, numofiter records the total number of iterations.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

8 Y. Chen et al.

3 Results

We test our data structure for adaptive mesh management with an idealized
moving vortices test case [18]. The test case is designed to test transport schemes
on the sphere. We generate the initial condition of tracer concentration and
velocity as arrays and parse these into our data structure such that we can
use our own implementation instead of adding the test case into ECHAM6. We
use the Flux-Form Semi-Lagrangian (FFSL) [19] transport scheme in ECHAM6,
which is a finite volume scheme that conserves mass and permits long time steps.
The scheme uses an operator splitting technique, which computes 2-D problems
by applying a 1-D solver four times. Here, we choose the cell-integrated semi-
Lagrangian scheme [20] as the 1-D solver, where a piecewise parabolic function
is used as reconstruction function.

3.1 Moving vortices test case

In this test case, two vortices are developing at opposite sides of the sphere while
rotating around the globe. The test case simulates 12 days of model time and
has the benefit that an analytical solution is available. The velocity field is given
by:

u =aωr{sin θc(t) cos θ − cos θc(t) cos[λ− λc(t)] sin θ}
+ u0(cos θ cosα+ sin θ cosλ sinα),

v =aωr cos θc(t) sin[λ− λc(t)]− u0 sinλ sinα,

(8)

where u0 is the velocity of the background flow that rotates the vortices around
the globe, (λ, θ) is the longitude and latitude, (λc(t), θc(t)) is the center of the
current vortex. In our experiment, we set u0 = 2πa

12days
, where a is the radius of

the earth and (λc(0), θc(0)) = (3π
4 , 0). The computation of the position of the

vortex center can be found in [18]. ωr is the angular velocity of the vortices:

ωr =

{
3
√
3u0 sech2(r) tanh(r)

2ar r 6= 0

0 r = 0
(9)

where r = r0 cos θ′. θ′ is the position of the rotated sphere where the vortex
center is at the north and south poles and r is the radial distance of the vortex.
We set r0 = 3.

The moving votices test case is particularly useful but hard test for AMR
schemes because the tracer does not only appear in a limited area, which is
common in climate simulations. It covers a large area of the globe and the
concentration of the tracer is:

ρ = 1− tanh[
r′

γ
sin(λ′ − ωrt)] (10)

where r′ = r0 cos θd, and θd is the departure position of background rotation and
λ′ is the departure position on the rotated sphere where the vortices’ centers are
at the poles at t = 0.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 9

Day 0 Day 0

Day 12 Day 12

Fig. 4. Numerical solution of the moving vortices test case with base resolution of 10
degrees and 2 levels of refinement which leads to fine grid resolution 2.5 degrees. The
left column shows the numerical solution and the right column shows the corresponding
mesh evolution.

We choose to set the flow orientation to α = π
4 considering that this could be

the most challenging test set-up for operator splitting schemes [14]. Since the
vortices are moving around the globe and the mesh has different sizes around
the sphere, the maximum Courant number changes with time. The maximum
Courant number appears when the vortices move close to the poles. We use a
maximum Courant number of 0.96 and 5.3 respectively. A snapshots of the
numerical solution on adaptively refined meshes is shown in Figure 4.

Similar to [14], we use a gradient based criterion. Since we use a cell-based
AMR, each cell is assigned an indicator value, θ. This value is computed as the
maximum of gradients in cell mean values with respect to the four adjacent cells:

θ = max(
∂ρ

a cos θ∂λ
,
∂ρ

a∂θ
) (11)

If θ > θr, the algorithm refines the cell; if θ < θc, the algorithm coarsens the cell.
The threshold of θr = 1 and θc = 0.95 is chosen for this test case. This criterion
is justified by the fact that flux-form semi-Lagrangian schemes show little nu-
merical diffusion when strong variations in the tracer are highly resolved. Still,
only limited areas are covered by fine resolution cells. The refinement criterion
successfully captures areas where vortices are located because strong distortion
of the tracer distribution leads to large gradient in tracer concentrations ρ. Due
to the higher resolution around the poles and the highly distorted velocity field,
the mesh is refined around the poles even if the vortices do not directly cross

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

10 Y. Chen et al.

the poles. This leads to extra high resolution cells on adaptive meshes. A bet-
ter representation of the velocity field on refined meshes still helps to get more
accurate results.

103 104 105

cell number

10-4

10-3

10-2

10-1

100

` 2

uniform
1 level
2 level

103 104 105

cell number

10-4

10-3

10-2

10-1

100

` ∞

uniform
1 level
2 level

Fig. 5. Convergence rate of the numerical solution with respect to the cell number on
the domain. The left one shows the `2 and the right shows the `∞-norm

The convergence rate in Figure 5 shows that, although the results on the non-
adaptive mesh can have the best accuracy, similar accuracy can be achieved
with fewer cells using adaptive meshes. It is expected that the numerical result
on the adaptive mesh is less accurate because the initial condition is defined on
a coarser resolution. Furthermore, the `2 and `∞ norms are a measure of the
global accuracy and the results on the coarse resolution have an impact on the
error. Nevertheless, AMR shows improvement in the accuracy compared with
the non-adaptive mesh on coarse resolutions. The results are consistent with the
results from [14].

Figure 6 show that the wall clock time for tests on adaptive meshes is less than
on uniform meshes with the same finest resolution. The test is run in serial. The
wall clock time is measured on Debian 3.2 operating system and the machine
has 4 Intel Xeon X5650 CPUs, each of which has 6 cores with a clock speed of
2.67 GHz and 12 MB L3 cache. The machine also has a RAM of 24 GB. It is
worth noting that the wall clock time is affected by various factors and is not an
accurate measure of the effectiveness of AMR. In particular, the implementation
is not fully optimized. A more objective measure is that AMR runs use fewer
cells compared to uniform meshes with the same resolution. The cell number
shown in Figure 6 represents the average number of cells over all time steps.
For this test case the ratio of cell number on adaptive meshes to cell number
on uniform meshes remains approximately constant even with different finest
resolutions. A possible explanation is that the vortices develop only after some
simulation time. Therefore, the (uniform) coarse mesh cell number dominates

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 11

0.3125 0.625 1.25 2.5 5 10
Finest Resolution (◦)

103

104

105

C
e
ll

N
u
m

b
e
r

uniform
1 level
2 level

0.3125 0.625 1.25 2.5 5 10
Finest Resolution (◦)

101

102

103

104

105

W
a
ll

C
lo

ck
 T

im
e

uniform
1 level
2 level

0.3125 0.625 1.25 2.5 5 10
finest resolution (◦)

103

104

105

ce
ll

n
u
m

b
e
r

uniform
1 level
2 level

0.3125 0.625 1.25 2.5 5 10
finest resolution (◦)

10-1

100

101

102

103

104

105

W
a
llc

lo
ck

 t
im

e
 (

s)

uniform
1 level
2 level

Fig. 6. Used time and cell number of the numerical scheme in the moving vortices test
case using a loglog plot. The upper left graph shows the cell number on the mesh with
the same finest resolution and the upper right graph shows the time used on different
refinement levels with the same finest resolution in serial in moving vortices test cases.
The lower left and lower right is the cell number and the time consumption for solid
body rotation test case.

0 1000 2000 3000 4000 5000
Time steps

0

5

10

15

20

25

M
e
m

o
ry

 u
se

 (
M
B

)

1 level refinement
2 level refinement
non-adaptive mesh

Fig. 7. Time evolution of the total heap memory usage for different refinement levels
using moving vortices test case with a maximum resolution of 2.5◦ on the mesh

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

12 Y. Chen et al.

the average over time. The cell number and the time consumption is also quite
problem dependent. In the cross-pole solid body rotation test case by [21], the
cell number shows a different variation in terms of resolutions.

It could be argued that the cell number is not the only a measure of the
usefulness of AMR. Compared with the non-adaptive meshes, the data structure
and extra steps that allows us to enable AMR can lead to overhead, as stated
in the Algorithm 2. However, with careful choice of the refinement criterion,
fewer memory and less time is required relative to the implementations on non-
adaptive meshes. This is because numerical schemes use less time with fewer
cells and the overhead can be compensated as shown in Table 1. Additionally,
it is expected that an optimized implementation has similar behavior while the
specific values may differ. In [7] successful optimization and parallelization of
forest of trees data structures could be demonstrated.

Table 1. The time used for different components of the adaptive mesh refinement.
Update represents the time used for FFSL, velocity is the time used for updating the
velocity for next time step and update mesh from Mn to Mn+1, refine is the extra
time used for refinement, including the predicting time and mesh refinement.

Finest Zero level Refinement One level Refinement Two level Refinement
Resolution update velocity update refine velocity update refine velocity

5◦ 8.162 60.80 3.33 30.37 17.81 2.65 36.84 21.64

2.5◦ 1193.81 132.56 466.45 291.14 52.89 459.91 338.74 38.55

1.25◦ 2216.10 23883.67 937.61 8977.73 5843.90 622.01 7150.97 6111.59

Compared with wall clock time, the cell number is more closely related to the
memory usage. As shown in Fig 7, the adaptive mesh runs use significantly less
memory compared with non-adaptive mesh runs. Similar memory usage appears
on all maximum resolutions.

The test case shows that forest of trees data structure is able to handle AMR
with various initial refinement levels. Although the implementation is not fully
optimized, benefits of AMR can still be observed. With the current refinement
criterion, AMR achieves better accuracy with less memorie and time usage.
AMR runs require less wall clock time and fewer cells than uniformly refined
simulations at the same finest resolution. The results also show that the forest
of trees data structure can successfully handle the information from arrays.

4 Summary and Future Work

We explore the use of a forest of trees data structure to enable AMR in single
components of an existing atmospheric model. Our data structure is tested on a

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

Enabling Adaptive Mesh Refinement for Single Components in ECHAM6 13

tracer transport scheme used in the atmospheric model ECHAM6 for an idealized
test case.

We show that our data structure is compatible with the arrays used in
ECHAM6. Compatibility between the array data structure used in ECHAM6
and the forest of trees is guaranteed as the forest of trees can simply be re-
duced to an array on non-adaptive meshes. We combine a forest of trees data
structure with an indexing system for mesh management. The data structure is
equivalent to arrays on the uniform meshes since no leaves are present on the
trees. With the help of a doubly linked list the traversal of potentially adaptively
refined meshes is the same as a traversal of an array and the operation for find-
ing arbitrary cells by index is limited by the level of refinements for adaptivity.
Therefore, the asymptotical computational complexity of the numerical scheme
on adaptive meshes does not increase over the scheme on non-adaptive meshes.

We use a simple gradient based refinement criterion for our numerical test.
Although the scheme is not fully optimized and parallelized less computation
time is used for AMR while similar accuracy can be achieved using fewer cells -
provided the refinement criterion is chosen with care. The results of the AMR
runs show less memory and time use compared to non-adaptive meshes.

Acknowledgment

This work was supported by German Federal Ministry of Education and Research
(BMBF) as Research for Sustainability initiative (FONA); www.fona.de through
Palmod project (FKZ: 01LP1513A).

References

1. Aghedo, A.M., Rast, S., Schultz, M.G.: Sensitivity of tracer transport to model
resolution, prescribed meteorology and tracer lifetime in the general circulation
model echam5. Atmospheric Chemistry and Physics 10(7) (2010) 3385–3396

2. Berger, M.J., Oliger, J.: Adaptive mesh refinement for hyperbolic partial differen-
tial equations. Journal of Computational Physics 53(3) (1984) 484–512

3. Berger, M.J., LeVeque, R.J.: Adaptive mesh refinement using wave-propagation
algorithms for hyperbolic systems. SIAM J. Numer. Anal. 35 (1998) 2298–2316

4. MacNeice, P., Olson, K.M., Mobarry, C., De Fainchtein, R., Packer, C.: Paramesh:
A parallel adaptive mesh refinement community toolkit. Computer physics com-
munications 126(3) (2000) 330–354

5. Oehmke, R.H., Stout, Q.F.: Parallel adaptive blocks on a sphere. In: PPSC. (2001)
6. Behrens, J., Rakowsky, N., Hiller, W., Handorf, D., Läuter, M., Päpke, J., Dethloff,

K.: amatos: Parallel adaptive mesh generator for atmospheric and oceanic simula-
tion. Ocean Modelling 10(1–2) (2005) 171–183

7. Burstedde, C., Wilcox, L.C., Ghattas, O.: p4est: Scalable algorithms for paral-
lel adaptive mesh refinement on forests of octrees. SIAM Journal on Scientific
Computing 33(3) (2011) 1103–1133

8. Adams, M., Schwartz, P.O., Johansen, H., Colella, P., Ligocki, T.J., Martin, D.,
Keen, N., Graves, D., Modiano, D., Van Straalen, B., et al.: Chombo software
package for amr applications-design document. Technical report (2015)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

14 Y. Chen et al.

9. Jablonowski, C., Oehmke, R.C., Stout, Q.F.: Block-structured adaptive meshes and
reduced grids for atmospheric general circulation models. Philosophical Transac-
tions of the Royal Society of London A: Mathematical, Physical and Engineering
Sciences 367(1907) (2009) 4497–4522

10. McCorquodale, P., Ullrich, P., Johansen, H., Colella, P.: An adaptive multiblock
high-order finite-volume method for solving the shallow-water equations on the
sphere. Communications in Applied Mathematics and Computational Science
10(2) (2015) 121–162

11. Stevens, B., Giorgetta, M., Esch, M., Mauritsen, T., Crueger, T., Rast, S., Salz-
mann, M., Schmidt, H., Bader, J., Block, K., et al.: Atmospheric component of
the mpi-m earth system model: Echam6. Journal of Advances in Modeling Earth
Systems 5(2) (2013) 146–172

12. Ji, H., Lien, F.S., Yee, E.: A new adaptive mesh refinement data structure with
an application to detonation. Journal of Computational Physics 229(23) (2010)
8981–8993

13. Behrens, J.: An adaptive semi-Lagrangian advection scheme and its parallelization.
Mon. Wea. Rev. 124(10) (1996) 2386–2395

14. Jablonowski, C., Herzog, M., Penner, J.E., Oehmke, R.C., Stout, Q.F., Van Leer,
B., Powell, K.G.: Block-structured adaptive grids on the sphere: Advection exper-
iments. Monthly weather review 134(12) (2006) 3691–3713

15. Blayo, E., Debreu, L.: Adaptive mesh refinement for finite-difference ocean models:
first experiments. Journal of Physical Oceanography 29(6) (1999) 1239–1250

16. Behrens, J.: Atmospheric and ocean modeling with an adaptive finite element
solver for the shallow-water equations. Applied Numerical Mathematics 26(1-2)
(1998) 217–226

17. Ullrich, P.A., Jablonowski, C.: An analysis of 1d finite-volume methods for geophys-
ical problems on refined grids. Journal of Computational Physics 230(3) (2011)
706–725

18. Nair, R.D., Jablonowski, C.: Moving vortices on the sphere: A test case for hori-
zontal advection problems. Monthly Weather Review 136(2) (2008) 699–711

19. Lin, S.J., Rood, R.B.: Multidimensional Flux-Form Semi-Lagrangian Transport
Schemes. Mon. Weather Rev. 124 (1996) 2046–2070

20. Nair, R.D., Machenhauer, B.: The mass-conservative cell-integrated semi-
lagrangian advection scheme on the sphere. Monthly Weather Review 130(3)
(2002) 649–667

21. Williamson, D.L., Drake, J.B., Hack, J.J., Jakob, R., Swarztrauber, P.N.: A stan-
dard test set for numerical approximations to the shallow water equations in spher-
ical geometry. Journal of Computational Physics 102(1) (1992) 211–224

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_5

https://dx.doi.org/10.1007/978-3-319-93701-4_5

