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Abstract. Based on previous work on in-situ data transfer infrastruc-
ture and compiler-based software analysis, we have designed a virtual ob-
servation system for real time computer simulations. This paper presents
an event detection framework for a virtual observation system. By using
signal processing and detection approaches to the memory-based data
streams, this framework can be reconfigured to capture high-frequency
events and low-frequency events. These approaches used in the frame-
work can dramatically reduce the data transfer needed for in-situ data
analysis (between distributed computing nodes or between the CPU/GPU
nodes). In the paper, we also use a terrestrial ecosystem system simula-
tion within the Earth System Model to demonstrate the practical values
of this effort.

1 Introduction

Considerable effort has been made to develop accurate and efficient climate and
Earth system simulations in the last two decades. Climate change analysis with
both domain knowledge and observational datasets has drawn more and more at-
tention since it seeks to assess whether extreme climate events are consistent with
internal climate variability only, or are consistent with the expected response to
different combinations of external forces and internal variability[10][12]. How-
ever, detecting extreme events in large datasets is a major challenge in climate
science research. Current algorithms for detecting extreme events are founded
upon scientific experience in defining events based on subjective thresholds of
relevant physical variables[7]. dos Santos et al. proposes an approach to detect
phenological changes through compact images[11]. Spampinato et al. propose an
automatic event detection system based on the Makov Model[3]. Nissen et al.
propose a technique for the identification of heavy precipitation events, but only
by means of threshold identifications, which is not suitable for big database[7].
Gao et al. detect the occurrence of heavy precipitation events by using compos-
ites to identify distinct large-scale atmospheric conditions[9]. Zscheischler et al.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_4

https://dx.doi.org/10.1007/978-3-319-93701-4_4


present a methodological framework, also using thresholds, to detect spatiotem-
porally contiguous extremes and the likely pathways of climate anomalies[17].
Shirvani et al. develop and investigate a temperature detection model to detect
climate change, but it is limited to a single domain[14]. The common theme in
all of the above event detection methods is that it only considers post simulation
data analysis. When analyses are performed in post-simulation mode, some or
all of the data is transferred to different processors, either on the same machine
or all together on different computing resources all together[4]. However, in re-
ality, the data streams in climate simulations are enormous, which makes the
data transfer over network unaffordable. In addition, with such enormous data
streams, the memory and the calculating power of the remote machine would be
rapidly exceeded. Furthermore, researchers can take action immediately based
on the detected events while the system simulation is running and benefit most
from the performance of graphics processing unit (GPU). We propose an unsu-
pervised event detection approach that does not require human-labelled data as
was required by [3][1]. This is an advantage since it is not clear how many labels
are needed to understand events in a huge database. Instead of human labeling,
we expect the infrastructure to learn bench patterns through long-term experi-
ment datasets under an unknown background. For all these reasons, we propose
an event detection framework for the virtual observation system (VOS) that pro-
vides run-time observation capability and in-situ data analysis. Our detection
method enables our processing framework to detect events efficiently since the
complexity of the output space is reduced. In this paper, we begin by introduc-
ing the VOS framework and then describe the functionalities of its components.
Secondly, we explain how to apply signal-processing theory to reduce data and
capture high and low frequency anomalies. Finally, we use the framework to
identify anomalies and events then verify the detected events using observed
datasets in Accelerated Climate Modeling for Energy (ACME) simulation.

2 Event Detection for Virtual Observation System

2.1 Virtual Observation System and Design Considerations

Over the past few decades, climate scientists and researchers have made tremen-
dous progress in designing and building a robust hierarchy framework to simulate
the fully coupled Earth system. This simulation can advance our understand-
ing of climate evolution and climate extreme events at multiple scales. Signifi-
cant examples of event information about extreme climate phenomena include
floods[8], precise water availability, storms probability, sea level, the frequency
and duration of drought, and the intensity and duration of the extreme heat.
Understanding the role of climate extremes is of major interest for global change
assessments; in addition, such phenomena have enduring and extensive influence
on national economies. In detecting events in such a large dataset within the
extreme-scale computing context, I/O constraints can be a great challenge. Sci-
entists typically tolerate only minimal impact on simulation performance, which
places significant restrictions on the analysis. In-situ analysis typically shares
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primary computing resources with simulation and thereby encounters fewer re-
source limitations because the entirety of the simulation data is locally available.
Therefore, a potential solution is to change the data analysis pipeline from post-
process centric to a concurrent approach based on in-situ processing. Moreover,
a GPU has a massively parallel architecture consisting of thousands of smaller,
more efficient cores designed for handling multiple tasks simultaneously which
accelerate analytics. The simulation only analyze variables status in real time. In
stead, scientists and researchers want to know what elements increase/decrease
abnormal immediately, therefore they would decide what action to take when
what type of event hanppens. A previous paper[15] presented a virtually observed
system (VOS) that provides interactive observation and run-time analysis capa-
bility through high-performance data transport and in-situ data process method
during system simulation.

Fig. 1. VOS Overview.

Figure 1. illustrates how the VOS works. The VOS framework has three
components: the first one is a compiler-based parser, which analyses target mod-
ules’internal data structure and inserts the data stream’s statement to the origi-
nal model code. The second component is the communication service using CCI
(common communication interface), an API that is portable, efficient, and robust
to meet the needs of network-intensive applications[2]. Once the instrumented
scientific code starts to simulate, the VOS turns on the CCI channel to listen
and interact with the simulation. The CCI channel employs a Remote Memory
Access method to send remote buffers to the data analysis component in GPU
through network since the parallelism of CPU is much lower than GPU[5]. The
last component is data analysis, which collects and analyses data signals and
then visualizes events for end-users. The first two components are explained in
our previous work[15][6]. This paper will focus on presenting the event detection
in data analysis component.

2.2 Data Reduction via Signal Processing

Within the VOS for climate simulation, the analysis component can potentially
receive hundreds of variables every simulation timestep (half an hour) from ev-
ery single function module. To deal with the I/O challenge presented by the
enormous, periodic data transfer features, signal processing is proposed. Signal
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processing is an enabling technology that encompasses the fundamental theory,
applications, algorithms and implementations of processing or transferring in-
formation contained in many different physical, symbolic or abstract formats
broadly designated as signals[6]. Because the memory and computation capa-
bility of the second resource is limited, the use of a lower sampling rate results
in a implementation with less resource requirement. Nonetheless, downsampling
alone causes signal components to be misinterpreted by subsequent users of the
data. Therefore, for different science research requirements, different signal filter
methods are needed to smooth the signal to an acceptable level. If researchers are
interested in long period events result from multi physical elements anomalies, a
low-pass filter can be used to remove the short-term fluctuations, and leave the
longer-term trend through, since the low-pass filter only permits low-frequency
signals and weakens signals with frequencies higher than the cutoff frequency.
In contrast, if researchers are interested in abrupt change in a short time pe-
riod, a filter can be used to pass high-frequency signals and weaken lower than
cutoff frequency signals. Our data reduction process consists of two steps: first,
a digital filter is used to pass low/high-frequency signal samplings and reduce
high/low-frequency variable samplings and then the filtered signal sampling rate
is decimated by an integer factor α, which means only keep every α th sample.
Based on Nyquist sampling theorem, the sufficient α could be doubled or larger
than the original frequency. Nyquist sampling theorem establishes a sufficient
condition for a sample rate that permits a discrete sequence of samples to cap-
ture all the information from a continuous-time signal of finite bandwidth[13].

3 A Case Demonstration for Acme Land Model

This section reports a detailed event detection implementation and result ver-
ification for the ACME case. The ACME is a fully-coupled, global climate
model that provides state-of-the-art computer simulations of the Earthrq’s past,
present, and future climate states. Within ACME, the ACME Land Model
(ALM) is the active component to simulate surface energy, river routing, carbon
cycle, nitrogen fluxes and vegetation dynamics[16].

3.1 ACME Land Model for NGEE Arctic Simulation

In this case study, ALM was configured as a single-landscape grid cell simulation
conducted offline over Barrow, Alaska, the Next Generation Ecosystem Exper-
iments Arctic site. The purpose of the case study was to investigate terrestrial
ecosystem responses to specific atmospheric forcing. The ALM has three hier-
archical scales within a model grid cell: the land unit, the snow/soil column,
and the plant functional type (PFTs). Each grid cell has a different quantity
of land units with various columns, and each column has multiple PFTs. For
demonstration purposes, the observation system only tracks the variable flow of
a CNAllocation module which has been developed to allocate key chemical ele-
ments of a plant (such as carbon, nitrogen and phosphorus) within a terrestrial
ecosystem.
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3.2 Detection Framework

For the single CNAllocation module, the data flow includes three hundred vari-
ables. The NGEE simulation generates and sends out variables every half hour.
The whole simulation period is 30 years, which means the data analysis com-
ponent receives hundreds of multi-dimensional variables for 30*365*48=525600
times. To manage the huge quantities of data generated by the simulation, each
of which had a large frequency, we employed frequency domain signal process-
ing. The framework is schematically illustrated in Figure 2., which identifies
anomalies of various durations and spatial extents in the Barrow Ecosystem Ob-
servatory (BEO) land unit datasets. In the first step, the framework filters out
the interesting elements from the dimensional arrays and then apples decimation
process to reduce the 30 years worth of variables. To find the average monthly
pattern, only the first 6 years worth of data are initially selected. Once the
monthly pattern for each variable is calculated from the training set, the frame-
work proposes a detection algorithm based on Euclidean distance and compares
the Euclidean distance the 30 years’data with the monthly pattern. If the nor-
malized distance exceeds a threshold, the framework marks this variable in this
month and this year as an anomaly alert. Finally, if the number of accumulated
alerts in one year is very large, this time period is considered as an interesting
event. Each detected event can consist of several patch boxes and can last for
several time steps. Below is the detailed detection process.

Fig. 2. Detection Framework. It first decimates 30 years’ variables values, then uses
first 6 years’ data to find averaged monthly patterns, last tracks the Euclidean distance
to find anomalies.

3.3 Event Detection

Variable Preprocess The climate change system defines, generates and calcu-
lates nutrient dynamics as the way they are in an ecosystem (build up, retain,
transfer etc). In our work, the module CNAllocation has 320 nutrient dynamics
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related variables, some of which are one-dimensional array, and some of which
are two-dimensional array. For example, in cnstate vars%activeroot prof col
(number of active root distributed through column), the first dimension denotes
the column number and the second dimension stores the active root numbers for
that relevant column. The variable carbonstate vars%leafc storage patch is a
one-dimensional array with 32 elements that stand for the C storage in a leaf for
every PFT level. The purpose of this step is to select out four elements from the
default, since the BEO site only has four different plant types. Table 1. shows
the indexes of these plant types and their meanings.

Table 1. Variable’s PFT index meaning.

PFT Index Meaning

0 Not vegetated plants
9 Shrub with broadleaf and evergreen
11 Boreal shrub with broadleaf and deciduous
12 Arctic grass with c3

Data Process To simultaneously save memory and retain as many of the data’s
contours as possible, the framework uses low-pass filter and down sampling data
processing method. For example, the variable carbonflux vars%cpool to xsmrpool patch
in year 1997, maintenance of respiration storage pool, the original values shown
in the upper left panel of Figure 3. include all year-round (17520 timestep)
value of a single variable. The size of these data requires around 0.07MB in
disk space. The total store memory would be 672 MB if we catch and store all
variables’information that is not necessary and burdensome for in-situ analysis.
However, if the framework applies the data reduction method directly to the orig-
inal dataset, the signal becomes aliased of original continuous signal, just as the
information shown in the lower left panel of Figure 3. The first and third quar-
ters information are phased out. In other words, whether the decimated signal
information maintains the original features massively depends on which decima-
tor the algorithm chooses. If the decimator reflects the variable’s frequency, the
output signal line will be similar to the original; otherwise, the signal line will
change considerably. The framework applies low-pass filter first in consideration
of long run trends and anomalies. The right two panels in Figure 3. represent
the result of the low-pass method and the subsequent downsampling output,
respectively, which together maintain the original features. In the experiment,
the downsampling decimator 1/α was set to 1/48, which eventually downsized
the one-year variable’s memory to 1.49KB for single timestep.

Pattern Estimation The framework estimates the monthly averaged pattern for
every variable in each month (Jan-Dec) using the simulation data of the past six
years’and gets 12*320=3840 bench month patterns in total. Every thin line in

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_4

https://dx.doi.org/10.1007/978-3-319-93701-4_4


Fig. 3. Downsampling and interpolation. The left panel shows the result directly come
from downsampled signals. The right panel shows result signals through filtering and
downsampling, which is more accurate than left.

Figure 4. shows the value and pattern of July a conopyflux variable. The name
of this variable is CNCarbonF lux%cpool to xsmrpool patch, which represents
the flux from total carbon pool to the maintenance respiration storage pool, and
the thick blue line represents the averaged pattern of this variable in July.

Anomaly Identification Based on the monthly averaged patterns, we can com-
pare the Euclidean distance between the data in each individual month and the
monthly averaged pattern using:

Di =

√∑
t

[Xi(t)− X̄(t)]2, (1)

X̄(t) = avg[Xj(t)], j ∈ [i−N, i− 1] (2)

The distance is normalized to get a more robust relationships to adjust values
measurement from different scales to same scales and reduce the effect of data
anomalies. Below is used to normalize every Euclidean distance to range in [0,1]:

∼
D
i

=

[ Di −min
j
Dj

max
j
Dj −min

j
Dj

]+
, (3)

j ∈ [i−N, i− 1] (4)
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Below is used to evaluate whether the variable of individual month becomes
anomaly:

Alert =

0
∼
D
i
> γ,

1
∼
D
i
≤ γ.

(5)

If the normalized distance is larger than the set up threshold of value 0.8, the
framework will flag the input simulation data streams as an interesting anomaly
alert. Figure 4. shows the variable cpool to xsmrpool patch of July 1992 is an
extreme anomaly because the normalized distance is big.

Event Detection The framework identifies the entire anomaly for every single
variable in every month of 30 years and records the total number of alerts in each
month. Figure 5. displays accumulated alert count in 30 years with 320 variables.
The overall anomaly peaks can be found in the monthly comparison curve and
are accumulated among the year dots. Four extreme events were detected from
the horizontal comparison. These events happened in May 1991, which had more
than 120 alerts, October 2000, which has 180 alerts, Jun and Jul 1997 and Sep
1998 which had more than 100 alerts. From the vertical comparison, the year
of 1997, 1998 and 2000 have the most alerts caused by extreme events. Based
on this analysis, we can see that extreme weather events may take place in year
1997, 1998 from Jun to Sep and year 2000 from Jun to Nov. Further verification
is needed to for the detection results. Furthermore, we need to investigate what
kind of event occurred and the cause of those events.

3.4 Event Verification

In the last step, we verify the event through the input data and identify the
event type. The climate experience tells us that temperature and precipitation
are the top two factors that affect the results. Therefore, the two variables from
year 1990 to 2000 were collected and analyzed. Figure 6. show the tempera-
ture at the beginning of December in year 1995 was high and the month had
large temperature fluctuation. In year 1996, the temperature trend was similar
to that of year 1995, but temperature was higher than any other years. These
two curves explain the year 1996 had a warm winter that was part of an arc-
tic warming trend. This trend is most observable during winter. Although most
ecosystem activity is in dormancy in cold winter, soil microbial activity can still
be significant especially if lasting or significant warming occurs. This includes
enhanced soil heterotrophic respiration, methane generation, and nitrogen min-
eralization and its cascading reactions like nitrification and denitrification. The
consequent Inorganic N accumulation during winter period can also cause large
denitrification in early spring due to snow melting, which cause saturated soil
conditions. Therefore, in the years 1997 and 1998, there was a great deal of
variation among different variables, which caused many alerts. Figure 7. com-
pares precipitation from year 1995 to 2000, showing that the daily precipitation
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Fig. 4. July pattern comparison of variable cpool to xsmrpool patch from year 1992
to year 1997. Among them, bold line is the July averaged pattern.

Fig. 5. Accumulated 320 variables anomaly alert count comparison from May. to Nov.
in 30 years. Year 1997 and year 1998 have continuous events since the alert counts keep
peak among all these years.
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Fig. 6. December daily temperature in F from year 1991 to year 1996, which explains
why year 1997 and year 1998 have more than 100 anomaly alerts. December daily
temperature in the year 1996 was higher than any other years’ and the warmer winter
feature could also be reflected from Figure 5’s November alert count. The warming
trend therefore caused a great deal of variation among different variables in year 1997
and year 1998.

in Year 2000 was greater than that in the other years. Heavy precipitation or
rainfall usually causes soil saturation (i.e. anaerobic conditions), which favors
methane production, and N gaseous emission from mineralization, nitrification
and especially denitrification. Extreme rainfall has a huge impact on sponta-
neous and large fluxes of greenhouse N gas and methane from soils. Therefore,
the numbers of alerts are significant from July to November in Year 2000.

4 Conclusions

Climate change analysis of large datasets is time-consuming; in addition, the
post-simulation processes that transfer tremendous data to other resources rapidly
exceed the latter’s memory and calculation power. In previous work, the virtual
observable system with data flow analysis parser and in-situ communication in-
frastructure was proposed in previous work to analyze climate model data in real
time. This paper presents an event detection analysis framework under the VOS.
By using the decimation method in digital signal processing, the framework can
reduce data transfer considerably and maintain most features of the original
data. Through the event detection approach and the in-situ infrastructure, the
framework can capture high frequency and low frequency anomalies, long-term
extremes and abrupt events. It can also dramatically reduce pressure on remote
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Fig. 7. Daily precipitation from years 1995 to year 2000.The precipitation in the second
half of 2000 is heavier than any other years, which verify our detection result that from
Jun to Nov, the total alert count is high due to the extreme rainfall’s impact on
spontaneous and large fluxes of greenhouse N gas and methane from soils.

processors. The practical values of this framework have been verified and demon-
strated through the case study of a land model system simulation at BEO in
Barrow, Alaska. In the future, after learned from the found patterns” features,
we can use the variables collected from censors in the experiment combined with
machine learning algorithms to predict the big event in advance.
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