
1

Viscoelastic Crustal Deformation Computation
Method with Reduced Random Memory

Accesses for GPU-based Computers

Takuma Yamaguchi1, Kohei Fujita1,2, Tsuyoshi Ichimura1,2, Anne Glerum3,
Ylona van Dinther4, Takane Hori5, Olaf Schenk6, Muneo Hori1,2, and

Lalith Wijerathne1,2

1 Earthquake Research Institute and Department of Civil Engineering, The
University of Tokyo, Bunkyo, Tokyo, Japan

{yamaguchi, fujita, ichimura, hori, lalith}@eri.u-tokyo.ac.jp
2 Advanced Institute for Computational Science, RIKEN, Kobe, Japan

3 Helmholtz-Centre Potsdam, GFZ German Research Centre for Geosciences,
Potsdam, Germany

acglerum@gfz-potsdam.de
4 Institute of Geophysics, ETH Zurich, Zurich, Switzerland

ylona.vandinther@erdw.ethz.ch
5 Research and Development Center for Earthquake and Tsunami, Japan Agency for

Marine-Earth Science and Technology, Yokosuka, Japan
horit@jamstec.go.jp

6 Faculty of Informatics, Università della Svizzera italiana, Lugano, Switzerland
olaf.schenk@usi.ch

Abstract. The computation of crustal deformation following a given
fault slip is important for understanding earthquake generation processes
and reduction of damage. In crustal deformation analysis, reflecting the
complex geometry and material heterogeneity of the crust is important,
and use of large-scale unstructured finite-element method is suitable.
However, since the computation area is large, its computation cost has
been a bottleneck. In this study, we develop a fast unstructured finite-
element solver for GPU-based large-scale computers. By computing sev-
eral times steps together, we reduce random access, together with the
use of predictors suitable for viscoelastic analysis to reduce the total
computational cost. The developed solver enabled 2.79 times speedup
from the conventional solver. We show an application example of the
developed method through a viscoelastic deformation analysis of the
Eastern Mediterranean crust and mantle following a hypothetical M 9
earthquake in Greece by using a 2,403,562,056 degree-of-freedom finite-
element model.

Keywords: CUDA, Finite Element Analysis, Conjugate Gradient Method

1 Introduction

One of the targets of solid earth science is the prediction of the place, magnitude,
and time of earthquakes. One approach to this target is to estimate earthquake

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

2

occurrence probability by comparing the current plate conditions with plate con-
ditions when past earthquakes have occurred [9]. In this process, inverse analysis
is required to estimate the current inter-plate displacement distribution using the
crustal deformation data observed at the surface. In order to realize this inverse
analysis, forward analysis methods computing elastic and viscoelastic crustal
deformation for a given inter-plate slip distribution are under development.

In previous crustal deformation analyses, simplified models such as horizon-
tally stratified layers were used [8]. However, recent studies point out that the
simplification of crustal geometry has significant effects on the response [11].
Recently, 3D crust property data as well as crustal deformation data measured
at observation stations are being accumulated. Thus, 3D crustal deformation
analyses reflecting these data in full resolution are being anticipated.

The 3D finite-element method is capable of modeling 3D geometry and ma-
terial heterogeneity of the crust. However, modeling the available 1 km res-
olution crust property data fully into 3D finite-element crustal deformation
analysis leads to large computational problems with more than 109 degrees-
of-freedom. Thus, acceleration of this analysis using high-performance comput-
ers is required. Targeting the elastic crustal deformation analysis problem, we
have been developing unstructured finite-element solvers suitable for GPU-based
high-performance computers by developing algorithms considering the underly-
ing hardware [7]. When compared with elastic analysis, viscoelastic analysis
requires solving many time steps and thus its computational cost becomes even
larger; therefore we target further acceleration of this solver in this paper.

Due to its high floating point performance, GPUs generally have relatively
low memory bandwidth. Furthermore, data transfer performance is further de-
creased when memory access is not coalesced. Finite-element analysis mainly
consists of memory bandwidth bound kernels, and the most computationally
expensive sparse matrix-vector product kernel has many random memory ac-
cesses. Thus, it is not straight forward to utilize the high arithmetic capability
of GPUs in finite-element solvers. Reduction of data transfer and random access
is important to improve computational efficiency. In this study, we accelerate
the previous GPU solver by introducing algorithms that reduce data transfer by
reduction of solver iterations, and reduce random access of the major computa-
tional kernels. Here we use a multi-time step method together with a predictor
to obtain the initial solution of the iterative solver. We improve the convergency
of the iterative solver by adapting the predictor to the characteristic of solutions
for the viscoelastic problem. In addition, by using several vectors for computa-
tion, we can reduce random memory access in the major sparse matrix-vector
kernel and improve performance.

Section 2 explains the developed method. Section 3 shows the performance
of the developed method on Piz Daint [4], which is a P100 GPU based super-
computer system. Section 4 shows an application example using the developed
method. Section 5 summarizes the paper and gives future prospects.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

3

2 Methodology

We target elastic and viscoelastic crustal deformation to a given fault slip. Fol-
lowing [8], the governing equation is

σij,j + fi = 0, (1)

with

σ̇ = λϵ̇kkδij + 2µϵ̇ij −
µ

η

(
σij −

1

3
σkkδij

)
, (2)

ϵij =
1

2
(ui,j + uj,i), (3)

where σij and fi are the stress tensor and outer force. (˙), (),i, δij , η, ϵij , and ui

are the first derivative in time, spatial derivative in the i-th direction, Kronecker
delta, viscosity coefficient, strain tensor, and displacement, respectively. λ and
µ are Lame’s constants. Discretization of this equation by the finite-element
method leads to solving a large system of linear equations. For a solver, (i)
good convergency and (ii) small computational cost in each kernel are basically
required to reduce the time-to-solution. The proposed method considering these
requirements is based on viscoelastic analysis by [10], which can be described as
follows (Algorithm 1 and 2).

An adaptive preconditioned conjugate gradient solver with Element-by-
Element method [13], multi-grid method, and mixed-precision arithmetic is used
in Algorithm 2. Most of the computational cost is in the inner loop of Algo-
rithm 2. It can be computed in single precision, and we can reduce computational
cost and data transfer size; thereby we can expect it to be suitable for GPU sys-
tems. In addition, we introduce the multi-grid method and use a coarse model
to estimate the initial solution for the preconditioning part. This procedure re-
duces the whole computation cost in the preconditioner as the coarse model has
less degrees-of-freedom compared to the target model. Below, we call line 7 of
Algorithm 2(a) as the inner coarse loop and line 9 of Algorithm 2(a) as the inner
fine loop. First-order tetrahedral elements are used in the inner coarse loop and
second-order tetrahedral elements are used in the inner fine loop, respectively.
The most computational costly kernel is the Element-by-Element kernel which
computes sparse matrix-vector products. The Element-by-Element kernel com-
putes the product of the element stiffness matrix and vectors element wise, and
adds the results for all elements to compute a global matrix vector product. As
element matrices are computed on the fly, the data transfer size from memory
can be reduced significantly. This leads to circumventing the memory bandwidth
bottleneck, and thus is suitable for recent architectures including GPUs, which
have low memory bandwidth compared with its arithmetic capability. In sum-
mary, our base solver [1] computes much part of computation in single precision,
reduces the amount of data transfer and computation, and avoids memory bound
computation in sparse matrix-vector multiplication. They are desirable condi-
tions for GPU computation to exhibit higher performance. On the other hand,

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

4

1 Compute f1 by split-node technique
2 Solve Ku1 = f1

3 {σj}4j=1 ⇐ DBu1

4 {δuj}4j=1 ⇐ 0

5 i ⇐ 2
6 while i ≤ Nt do
7 if 6 ≤ i ≤ 8 then
8 Compute initial guess solution by 2nd-order Adams-Bashforth

method δui+3 ⇐ ui − 3ui+1 + 2ui+2

9 end
10 if i ≥ 9 then
11 Compute initial guess solution by linear predictor

δui+3 ⇐ (−17δui−7 − 10δui−6 − 3δui−5 + 4δui−4 + 11δui−3 +
18δui−2 + 25δui−1)/28

12 end
13 while ∥Kvδui − f i∥ > ϵ do

14 {f j}i+3
j=i ⇐

∑
k

∫
Ωk

e
BT (dtDv{βj}i+3

j=i − {σj}i+3
j=i)dΩe + f0

15 Solve Kv{δuj}i+3
j=i = {f j}i+3

j=i using Algorithm 2

16 {σj}i+3
j=i+1 ⇐ {σj}i+2

j=i +Dv(B{δuj}i+2
j=i − dt{βj}i+2

j=i)

17 end
18 ui ⇐ ui−1 + δui

19 σi+4 ⇐ σi+3 +Dv(Bδui+3 − dtβi+3)
20 i ⇐ i+ 1

21 end
Algorithm 1: Coseismic/postseismic crustal deformation computation
against given fault displacement. ()n is the variables in the nth timestep. dt is
time increment and βn = D−1Aσn, where σn = (σn

11, σ
n
22, σ

n
33, σ

n
12, σ

n
23, σ

n
13)

T.
B is the displacement-strain transformation matrix and D and A are 6 × 6
matrices indicating material properties. Dv = (D−1 + αdtβ′), where α is a
controlling parameter and β′ is the Jacobian matrix of β.

the key kernel in the solver, Element-by-Element kernel, requires many random
data accesses when adding up element wise results. This data access becomes
the bottleneck in the solver. In this paper, we aim to improve the performance
of the Element-by-Element kernel. We add two techniques described in following
subsections, into our baseline solver.

2.1 Parallel computation of multiple time steps

In the developed method, we solve four time steps in the analysis in parallel.
[6] describes its approach to obtain the accurate predictor using multiple time
steps for linear wave propagation simulation. This paper extends the algorithm to
viscoelastic analyses. As the stress of the step before needs to be obtained before
solving the next step, only one time step can be solved exactly. In Algorithm 1, we
focus on solving the equation on i-th timestep. Here we compute until the error

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

5

1

(a) Outer loop
1 r ⇐

∑
Keue

2 r ⇐ f − r
3 β ⇐ 0

4 u ⇐ M
−1

r

5 rc ⇐ P
T
r

6 uc ⇐ P
T
u

7 Solve uc = K
−1

c rc in (b) with ϵinc and Nc

8 u ⇐ Puc

9 Solve u = K
−1

r in (b) with ϵin and N
10 u ⇐ u
11 p ⇐ z+ βp
12 q ⇐

∑
Kepe

13 ρ ⇐ (z, r)
14 γ ⇐ (p,q)
15 α ⇐ ρ/γ
16 r ⇐ r− αq
17 u ⇐ u+ αp

(b) Inner loop

1 e ⇐
∑

Keue

2 e ⇐ r− e

3 β ⇐ 0
4 i ⇐ 1
while ∥e1∥2/∥r1∥2 > ϵ
and N > i do

5 z ⇐ M
−1

e
6 ρa ⇐ (z, e)

if i > 1 then

7 β ⇐ ρa/ρb
end

8 p ⇐ z+ βp

9 q ⇐
∑

Kepe

10 γ ⇐ (p,q)
11 α ⇐ ρa/γ
12 ρb ⇐ ρa
13 e ⇐ e− αq
14 u ⇐ u+ αp
15 i ⇐ i+ 1

end
Algorithm 2: The iterative solver to obtain a solution u. ()c are variables
in first-order tetrahedral model, while others are in second-order tetrahedral
model. (¯) represents single-precision variables, while the others are double-
precision variables. The input variables are K,K,Kc,P,u, f , ϵinc , Nc, ϵ

in, and
N . The other variables are temporal. P is a mapping matrix from the coarse
model to the target model. This algorithm computes four vectors at the same
time, so coefficients have the size of four and vectors have the size of 4 ×
DOF. All computation steps in this solver, except MPI synchronization and
coefficient computation, are performed in GPUs.

of the i-th time step (displacement) becomes smaller than prescribed threshold
ϵ as described in lines 13 to 17 of Algorithm 1. The next three time steps, i+1,
i+ 2, and i+ 3-th time steps, are solved using the solutions of the steps before
to estimate the solution. The estimated solution of the step before is used to
update the stress state and outer force vector, which is corresponding to lines 18
and 19 in Algorithm 1. By using this method, we can obtain estimated solutions
for improving the convergency of the solver. In this method, four vectors for
i, i + 1, i + 2, and i + 3-th time steps can be computed simultaneously. In the
Element-by-Element kernel, the matrix is read only once for four vectors; thus we
can improve the computation efficiency. In addition, four values corresponding
to the four time steps will be consecutive in memory address space. Therefore
we can reduce random memory accesses and computation time compared to
conducting the Element-by-Element kernel of one vector for four times. That is,
the arithmetic count per iteration increases by approximately four times, but

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

6

=

=

=

global
vector

atomic
add

element

#1

element

#2

element

#3

Ke

Ke

Ke

u

f

(a) Original scheme. Element-wise
results are added to the global
vector directly using atomic op-
erations.

=

=

=

shared
memory

global
vector

atomic

add

Ke

Ke

Ke

element

#1

element

#2

element

#3

u

f

(b) Proposed scheme. Element-wise re-
sults are firstly summarized using
shared memory, and then nodal values
are added to the global vector.

Fig. 1: Rough scheme for reduction in Element-by-Element kernel to compute f ⇐∑
Keue.

the decrease in the number of iterations and the improvement of computational
efficiency of the Element-by-Element kernel are expected to reduce the time-to-
solution.

In order to improve convergency, it is important to estimate the initial solu-
tion of the fourth time step accurately. We can use a typical predictor such as
the Adams-Bashforth method, however we developed more accurate predictor
considering that solutions for viscoelastic analysis smoothly change in each time
step, as described in lines 7 to 12 in Algorithm 1. For predicting the 9th step and
on, we use a linear predictor. In this linear predictor, a linear regression based on
the accurately computed 7 time steps are used to predict the future time step.
As regressions based on higher order polynomials or exponential base functions
may lead to jumps in the prediction, we will not use them in this study.

2.2 Reduction of atomic access

The algorithm introduced in previous subsection is assumed to circumvent the
bottleneck of the performance of Element-by-Element kernel. On the other hand,
implementation in the previous study [7] requires to add up element wise results
directly to the global vector using atomic function, as shown in Fig. 1a. Con-
sidering that each node can be shared by multiple elements, performance may
decrease due to the race condition; thereby we need to modify its algorithm
to improve the efficiency of the Element-by-Element kernel. We use a buffer-
ing method to reduce the number of accesses to the global vector. Regarding
NVIDIA GPU, we can utilize a shared memory, in which values can be referred
among threads in the same Block. The computation procedure is as below and
also described in Fig. 1b.

1. Group elements in to blocks, and store element wise results into a shared
memory

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

7

●

●

● ●

● ● ● ●

● ● ● ●● ●

● ●● ● ●● ●●

●●●●●●●●●●●●

●●●●●●●●●●●●

1 2 3 4 5 6 7 8 9 10 11 12

reordering

●

●

●●

●●●●

●●●●●●

●●●●●●●●

●●●●●●●●●●●●

●●●●●●●●●●●●

1 11 3 8 6 9 4 12 2 5 7 10Node #

Temporal results

Fig. 2: Reordering of reduction table. Temporal results are aligned in corresponding
node number. In this figure, we assume there are two threads per warp and 12
nodes in the thread block for simplicity. Load balance in warp is improved by
reordering.

2. Add up nodal values in shared memory using a precomputed table
3. Add up nodal values to global vector

We can expect the performance improvement as the number of atomic oper-
ations to the global vector can be reduced and summation of temporal results
is mainly performed in preliminary reduction in a shared memory, which has
wider bandwidth. In this scheme, the setting of block size is assumed to have
some impact on its performance. By allocating more elements in a Block, we can
improve the number of reduction of nodal values in shared memory. However,
the total number of threads is constrained by the shared memory size. In addi-
tion, we need to synchronize threads in a Block when switching from element
wise matrix-vector multiplication to data addition part, using large number of
threads in a Block leads to an increase in synchronization cost. Under these cir-
cumstances, we allocate 128 threads (32 elements × four time steps) per Block.

In GPU computation, SIMT composing of 32 threads is used [12]. When the
number of computation differs between the 32 threads, it is expected to lead to
decrease in performance. In reduction phase, we need to assign threads per node.
However, since the number of connected elements differs significantly between
nodes, we can expect large load imbalance among the 32 threads. Thus we sort
the nodes according to the number of elements to be added up as described in
Fig. 2. This leads to good load balance among the 32 threads, leading to higher
computational efficiency.

This method on shared memory requires implementation by CUDA. We also
use CUDA for inner product computation to improve the memory access pattern
and thus improve efficiency. On the other hand, other computations such as
vector addition and subtraction are very simple computation; thus each thread
uses almost the same number of registers whether we use CUDA or OpenACC.
Also it is not necessary to use functions specialized for NVIDIA GPUs such as
shared memory or warp function. For these reasons, the computations result in
memory bandwidth bound and there is little difference between implementation
by CUDA and by OpenACC. Thus we use CUDA for these performance sensitive
kernels, and use OpenACC for the other parts. The CUDA part is called via a
wrapper function.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

8

Table 1: Configuration of Element-by-Element kernels for performance comparison

Reduction using Reordering of nodes
Case # of vectors shared memory in reduction
A 1 x -
B 4 x -
C 4 o x
D 4 o o

3 Performance Measurement

Wemeasure performance of the developed method on hybrid nodes of Piz Daint1.

3.1 Performance measurement of the Element-by-Element kernel

We use one P100 GPU on Piz Daint to measure performance of the Element-
by-Element kernels. The target finite-element problem consists of 959,128 tetra-
hedral elements, with 4,004,319 degrees-of-freedom in second-order tetrahedral
mesh and 522,639 degrees-of-freedom in first-order tetrahedral mesh. Here we
compare four versions of the kernels summarized in Table 1. Case A corresponds
to the conventional Element-by-Element kernel, and Case D corresponds to the
proposed kernel.

Figure 3 shows the normalized elapsed time per vector of the kernels in inner
fine and coarse loops. We can see that the use of four vectors, reduction, and
reordering significantly improves performance. In order to assess the time spent
for data access, we also indicate the time measured for the Element-by-Element
kernel without computing the element wise matrix-vector products. We can see
that the data access is dominant in the Element-by-Element kernel on P100
GPUs, and that the elapsed time of the kernel has decreased with the decrease in
memory access by reduction. When compared to the performance in second-order
tetrahedral mesh, the performance in first-order tetrahedral mesh was further
improved by reduction using shared memory. This effect can be confirmed by the
number of call for atomic add to the global vector: In second-order tetrahedral
mesh, atomic addition is performed 115,095,360 times in Case B and 43,189,848
times in Case D; thereby the number of calls is reduced by about 37%. For the
first-order tetrahedral mesh, atomic addition is performed 46,038,144 times in
Case B and 10,786,920 times in Case D; thus the number of calls is reduced
by about 23%. In total, we can see that the computational performance of the
developed kernel (Case D) has improved by 3.3 times in first-order tetrahedral
mesh and 2.2 times in second-order tetrahedral mesh when comparing with the
conventional kernel (Case A).
1 Piz Daint comprises of 1,431 × multicore compute node (Two Intel Xeon E5-2695
v4) and 5,320 × hybrid compute node (Intel Xeon E5-2690 v3 + NVIDIA Tesla
P100) connected by Cray Aries routing and communications ASIC, and Dragonfly
network topology.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

9

486.5

309.4

164.8

149.1

443.5

304.7

129.8

113.7

0 100 200 300 400 500

A

B

C

D

Elapsed time per vector (us)

C
a
s
e

Totality Without computation

(a) First-order tetrahedral mesh

1,346.3

803.5

758.1

607.3

1,292.2

785.5

680.2

529.9

0 500 1000 1500

A

B

C

D

Elapsed time per vector (us)

C
a
s
e

Totality Without computation

(b) Second-order tetrahedral mesh

Fig. 3: Elapsed time per Element-by-Element kernel call. Elapsed times are divided
by four when using four vectors.

3.2 Comparison of solver performance

We compare the developed solver with the previous viscoelastic solver in [10]
using GPUs in Piz Daint. This solver is originally designed for CPU-based
supercomputers and we port this to GPU computation environment and for
performance measurement. The solver uses CRS-based matrix-vector products,
however, we modify this to Element-by-Element method, because it would be
more clear to confirm the effects of our proposed method. The same toler-
ances of solvers is used for both methods, ϵ = 10−8 is used for the outer loop,
(ϵ̄inc , Nc) = (0.1, 300) is used for the inner coarse loop, and (ϵ̄in, N) = (0.2, 30) is
used for the inner fine loop. These tolerance numbers are selected to minimize the
elapsed time for both solvers. We use time step increment dt = 2592000 s with
Nt = 300 time steps, and measure performance of the viscoelastic computation
part (time step 2 to 300).

A model with 41,725,739 degrees-of-freedom and 30,720,000 second-order
tetrahedral elements is computed using 32 Piz Daint nodes. Figure 4 shows
the number of iterations and elapsed time of the solvers. By using the multistep

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

10

predictor, the number of iterations of the most computationally costly inner
coarse loop has decreased by 2.3 times. In addition, Element-by-Element ker-
nel performance is improved as measured in the previous subsection. These two
modifications to the solver have decreased the total elapsed time by 2.79 times.

793.59

284.55

0 200 400 600 800

Previous

Proposed

Elapsed Time (s)

Other Outer Loop Inner Fine Loop Inner Coarse Loop

406 + 5689 + 83766

1327 + 10555 + 189892

Fig. 4: Performance comparison of the entire solver. The numbers of iteration for outer
loop, inner fine loop, and inner coarse loop are described below each bar.

4 Application Example

We apply the developed solver to a viscoelastic deformation problem following
a hypothetical earthquake on the Hellenic arc subduction interface, which af-
fects deformation measured in Greece and across the Eastern Mediterranean.
We selected this Hellenic region, because recent analysis of time-scale bridging
numerical models suggests that the large amount of sediments subducting could
mean that a larger than anticipated M 9 earthquake might be able to occur in
this highly populated region [3]. To model the complete viscoelastic response of
the system we simulate a large depth range, including the Earth’s crust, litho-
sphere and complete mantle down to the core boundary. The target domain is
of size 3,686 km × 3,686 km × 2,857 km. Geometry data of layered structure is
given in spatial resolution of 1 km [2].

To fully reflect the geometry data into the analysis model, we set resolution of
finite-element model to 0.9 km (second-order tetrahedral element size is 1.8 km).
As this becomes a large scale problem, we use a parallel mesh generator capable
of robust meshing of large complex shaped multiple material problems [5, 6]. This
leads to a finite-element model of 589,422,093 second-order tetrahedral elements,
801,187,352 nodes, and 2,403,562,056 degrees-of-freedom shown in Figure 5a-d.
We can see that the layered structure geometry is reflected into the model. We
input a hypothetical fault slip in the direction of the subduction, that is, slip
with (dx, dy, dz) = (25, 25, -10) m, at the subduction interface separating the
continental crust of Africa and Europe in the center of the model with diameter
of 250 km. Following this hypothetical M 9 earthquake we compute the elastic
coseismic surface deformation and postseismic viscoelastic deformation due to
viscoelastic relaxation of the crust, lithosphere and mantle.. Following [10], a split

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

11

node method is used to input the fault dislocation, and time step increment dt
is set to 30 days (2,592,000 s). The analysis of 2,000 time steps took 4587 s using
512 P100 GPUs on Piz Daint.

Figure 5e,f shows the surface deformation snapshots. We can see that elastic
coseismic response as well as the viscoelastic response is computed reflecting the
3D geometry and heterogeneity of crust. We can expect more realistic response
distribution by inputting fault slip distributions following current solid earth
science knowledge.

b) Cross section

Close up area in c)

y

z

a) Overview

x

yz

Cross section in b)

Input fault below

circle

Coastline

Crust weak zones

Continental crust

(Eurasia)

Continental crust

(Nubia and Arabia)

Old oceanic crust

y

z

Continental crust

(Nubia and Arabia)

Slab

Mantle

weak

zone

Mantle

Continental crust

(Eurasia)

Crust weak

zone

Mantle

Old oceanic

crust

c) Cross section close up

Close up area in d)

x

y

0.0 0.53 m0.27

e) Elastic coseismic surface

displacement magnitude

0.0 17.1 m8.5

d) View of mesh

f) Viscoelastic postseismic

surface displacement magnitude

(t = 167 years)

x

y

Fig. 5: Finite-element mesh for application problem. The 10 layered crust is modeled
using 0.9 km resolution mesh. Elastic coseismic and viscoelastic postseismic
displacements. a) Overview of finite-element mesh with position of input fault
and position of cross section. b) Cross section of finite element mesh. c) Close
up area in the cross section. d) Close up view of mesh. e) Elastic coseismic
response and f) viscoelastic postseismic response.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

12

5 Conclusion

We developed a fast unstructured finite-element solver for viscoelastic crust
deformation analysis targeting GPU-based computers. The target problem be-
comes very computationally costly since it requires solving a problem with more
than 109 degrees-of-freedom. In this analysis, the random data access in Element-
by-Element method in matrix-vector products was the bottleneck. To eliminate
this bottleneck, we proposed two methods: one is a reduction method to use
shared memory of GPUs, and the other one is a multi-step predictor and linear
predictor to improve the convergency of the solver. Performance measurement
on Piz Daint showed 2.79 times speedup from the previous solver. By the accel-
eration of viscoelastic analysis by the developed solver, we expect applications
to inverse analysis of crust properties or many case analysis.

References

1. Ryoichiro Agata, Tsuyoshi Ichimura, Kazuro Hirahara, Mamoru Hyodo, Takane
Hori, and Muneo Hori. Robust and portable capacity computing method for many
finite element analyses of a high-fidelity crustal structure model aimed for coseismic
slip estimation. Computers & Geosciences, 94:121–130, 2016.

2. Peter Bird. An updated digital model of plate boundaries. Geochemistry, Geo-
physics, Geosystems, 4(3):n/a–n/a, 2003. 1027.

3. S. Brizzi, Iris van Zelst, Ylona van Dinther, Francesca Funiciello, and Fabio Corbi.
How long-term dynamics of sediment subduction controls short-term dynamics of
seismicity. In American Geophysical Union, 2017.

4. Piz Daint. https://www.cscs.ch/computers/piz-daint/.
5. Kohei Fujita, Keisuke Katsushima, Tsuyoshi Ichimura, Muneo Hori, and Lalith

Maddegedara. Octree-based multiple-material parallel unstructured mesh genera-
tion method for seismic response analysis of soil-structure systems. Procedia Com-
puter Science, 80:1624 – 1634, 2016. International Conference on Computational
Science 2016, ICCS 2016, 6-8 June 2016, San Diego, California, USA.

6. Kohei Fujita, Keisuke Katsushima, Tsuyoshi Ichimura, Masashi Horikoshi, Kengo
Nakajima, Muneo Hori, and Lalith Maddegedara. Wave propagation simulation of
complex multi-material problems with fast low-order unstructured finite-element
meshing and analysis. In Proceedings of the International Conference on High
Performance Computing in Asia-Pacific Region, HPC Asia 2018, pages 24–35,
New York, NY, USA, 2018. ACM.

7. Kohei Fujita, Takuma Yamaguchi, Tsuyoshi Ichimura, Muneo Hori, and Lalith
Maddegedara. Acceleration of element-by-element kernel in unstructured implicit
low-order finite-element earthquake simulation using openacc on pascal gpus. In
Proceedings of the Third International Workshop on Accelerator Programming Us-
ing Directives, pages 1–12. IEEE Press, 2016.

8. Yukitoshi Fukahata and Mitsuhiro Matsu’ura. Quasi-static internal deformation
due to a dislocation source in a multilayered elastic/viscoelastic half-space and an
equivalence theorem. Geophysical Journal International, 166(1):418–434, 2006.

9. Takane Hori, Mamoru Hyodo, Shin’ichi Miyazaki, and Yoshiyuki Kaneda. Numer-
ical forecasting of the time interval between successive m8 earthquakes along the
nankai trough, southwest japan, using ocean bottom cable network data. Marine
Geophysical Research, 35(3):285–294, 2014.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

13

10. Tsuyoshi Ichimura, Ryoichiro Agata, Takane Hori, Kazuro Hirahara, Chihiro
Hashimoto, Muneo Hori, and Yukitoshi Fukahata. An elastic/viscoelastic finite el-
ement analysis method for crustal deformation using a 3-d island-scale high-fidelity
model. Geophysical Journal International, 206(1):114–129, 2016.

11. Timothy Masterlark. Finite element model predictions of static deformation from
dislocation sources in a subduction zone: sensitivities to homogeneous, isotropic,
poisson-solid, and half-space assumptions. Journal of Geophysical Research: Solid
Earth, 108(B11), 2003.

12. John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. Scalable parallel
programming with cuda. Queue, 6(2):40–53, 2008.

13. James M Winget and Thomas JR Hughes. Solution algorithms for nonlinear tran-
sient heat conduction analysis employing element-by-element iterative strategies.
Computer Methods in Applied Mechanics and Engineering, 52(1-3):711–815, 1985.

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_3

https://dx.doi.org/10.1007/978-3-319-93701-4_3

