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Abstract. In soft complex grounds, earthquakes cause damages with
large deformation such as landslides and subsidence. Use of elasto-plastic
models as the constitutive equation of soils is suitable for evaluation of
nonlinear wave propagation with large ground deformation. However,
there is no example of elasto-plastic nonlinear wave propagation analysis
method capable of simulating a large-scale soil deformation problem. In
this study, we developed a scalable elasto-plastic nonlinear wave prop-
agation analysis program based on three-dimensional nonlinear finite-
element method. The program attains 86.2% strong scaling efficiency
from 240 CPU cores to 3840 CPU cores of PRIMEHPC FX10 based
Oakleaf-FX[1], with 8.85 TFLOPS (15.6% of peak) performance on 3840
CPU cores. We verified the elasto-plastic nonlinear wave propagation
program through convergence analysis, and conducted an analysis with
large deformation for an actual soft ground modeled using 47,813,250
degrees-of-freedom.

1 Introduction

Large earthquakes often cause severe damage in cut-and-fill land developed for
housing. It is said that earthquake waves are amplified locally by impedance con-
trast between the cut layer and fill layer, which causes damage. To evaluate this
wave amplification, 3D wave propagation analysis with high spatial resolution
considering nonlinearity of soil properties is required. Finite-element methods
(FEM) are suitable for solving problems with complex geometry, and nonlinear
constitutive relations can be implemented. However, large-scale finite-element
analysis is computational expensive to assure convergence of the numerical so-
lution.

Efficient use of high performance computers is effective for solving this prob-
lem [2, 3]. For example, Ichimura et al. [4] developed a fast and scalable 3D
nonlinear wave propagation analysis method based on nonlinear FEM, and was
selected as a Gordon Bell Prize Finalist in SC14. Here, computational methods
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for speeding up the iterative solver was developed, which enabled large-scale
analysis on distributed-shared memory parallel supercomputers such as the K
computer[5]. In this method, a simple nonlinear model (Ramberg-Osgood model
[6] with the Masing rule [7]) was used for the constitutive equation of soils, and
the program was used for estimating earthquake damage at sites with complex
grounds [8]. However, this simple constitutive equation is insufficient for simu-
lating permanent ground displacement; 3D elasto-plastic constitutive equations
are required to conduct reliable nonlinear wave propagation analysis for soft
grounds. On the other hand, existing elasto-plastic nonlinear wave propagation
analysis programs based on nonlinear FEM for seismic response of soils are not
designed for high performance computers, and thus they cannot be used for large
scale analyses.

In this study, we develop a scalable 3D elasto-plastic nonlinear wave propa-
gation analysis method based on the highly efficient FEM solver described in [4].
Here, we incorporate a standard 3D elasto-plastic constitutive equation for soft
soils (i.e., super-subloading surface Sekiguchi-Ohta EC model [9–11]) into this
FEM solver. The FEM solver is also extended to conduct self-weight analysis,
which is essential for conducting elasto-plastic analysis. This enables large-scale
3D elasto-plastic nonlinear wave propagation analysis, which is required for as-
suring numerical convergence when computing seismic response of soft grounds.

The rest of the paper is organized as follows. In Section 2, we describe the
target equation and the developed nonlinear wave propagation analysis method.
In Section 3, we verify the method through a convergence test, apply the method
to an actual site, and measure the computational performance of the method.
Section 4 concludes the paper.

2 Methodology

Previous wave propagation analysis based on nonlinear FEM [4] used the Ramberg-
Osgood model and Masing rule for the constitutive equation of soils. Instead,
we apply an elasto-plastic model (super-subloading surface Sekiguchi-Ohta EC
model) to this FEM solver for analyzing large ground deformation. In elasto-
plastic nonlinear wave propagation analysis, we first find an initial stress state
by conducting initial stress analysis considering gravitational forces, and then
conduct nonlinear wave propagation analysis by inputting seismic waves. Since
the previous FEM implementation was not able to carry out initial stress analy-
sis and nonlinear wave propagation analysis successively, we extended the solver.
In this section, we first describe the target wave propagation problem with the
super-subloading surface Sekiguchi-Ohta EC model, and then we describe the
developed scalable elasto-plastic nonlinear wave propagation analysis method.

2.1 Target problem

We use the following equation obtained by discretizing the nonlinear wave equa-
tion in the spatial domain by FEM and the time domain by the Newmark-β
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M +
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dt
Cn + Kn
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δun =
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(
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)
, (1)

with 
qn = qn−1 + Knδun,

un = un−1 + δun,

vn = −vn−1 + 2
dtδu

n,

an = −an−1 − 4
dtv

n−1 + 4
dt2 δu

n.

(2)

Here, δu, u, v, a, and f are vectors describing incremental displacement, dis-
placement, velocity, acceleration, and external force, respectively. M, C, and
K are the mass, damping, and stiffness matrices. dt, and n are the time step
increment and the time step number, respectively. In the case that nonlinearity
occurs, C, K change every time steps. Rayleigh damping is used for the damping
matrix C, where the element damping matrix Cn

e is calculated using the element
mass matrix Me and the element stiffness matrix Kn

e as follows:

Cn
e = α∗Me + β∗Kn

e ,

The coefficients α∗ and β∗ are determined by solving the following least-squares
equation,

minimize

[∫ fmax

fmin

(
hn − 1

2

(
α∗

2πf
+ 2πfβ∗

))2

df

]
.

where fmax and fmin are the maximum and minimum target frequencies and
hn is the damping ratio at time step n. Small elements are locally generated
when modeling complex geometry with solid elements, and therefore satisfy-
ing the Courant condition when using explicit time integration methods (e.g.,
central difference method) leads to small time increments and considerable com-
putational cost. Thus, the Newmark-β method is used for time integration with
β=1/4, δ=1/2 (β and δ are parameters of the Newmark-β method). By applying
Semi-infinite absorbing boundary conditions to the bottom and side boundaries
of the simulation domain, we take dissipation character and semi-infinite char-
acter into consideration.

Next we summarize the super-subloading surface Sekiguchi-Ohta EC model
[9–11], which is one of the 3D elasto-plastic constitutive equations used in nonlin-
ear wave propagation analysis of soils. The super-subloading surface Sekiguchi-
Ohta EC model is described using subloading and superloading surfaces sum-
marized in Fig. 1. The subloading surface is a yield surface defined inside of
the normal yield surface. It is similar in shape to the normal yield surface and
a current stress state is always on it. We can take into account plastic defor-
mation in the normal yield surface and reproduce smooth change from elastic
state to plastic state by introducing the subloading surface. On the other hand,
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the superloading surface is a yield surface defined outside of the normal yield
surface. It is similar in shape to the normal yield surface and the subloading
surface. Relative contraction of the superloading surface (i.e., the expansion of
the normal yield surface) describes the decay of the structure as plastic deforma-
tion proceeds. At the end, the superloading surface and the normal yield surface
become identical. Similarity ratios of the subloading surface to the superloading
surface, of the normal yield surface to the superloading surface are denoted by
R, R∗, respectively (0 < R ≤ 1, 0 < R∗ ≤ 1). 1/R is overconsolidation ratio
and R is the index of degree of structure. As plastic deformation proceeds, the
subloading surface expands and the superloading surface relatively contracts.
The expansion speed Ṙ and contraction speed Ṙ∗ are calculated as in Fig. 1.
D, ε̇p are the coefficient of dilatancy, the plastic volumetric strain speed and m,
a, b, c are the degradation parameters of overconsolidated state and structures
state, respectively. Using this R and R∗, a yield function of the subloading sur-
face is described as f (σ′, εv

p) in Fig. 1. Here, M , nE , σ′, σ0
′ are the critical

state parameter, the fitting parameter, the effective stress tensor, the effective
initial stress tensor and η∗, p′, q are the stress parameter proposed by Sekiguchi
and Ohta (1977), the effective mean stress, the deviatoric stress. The following
stress-strain relationship is obtained by solving the simultaneous equations in
Fig. 1.

σ̇′ =

Ce −
Ce : ∂f

∂σ′ ⊗
∂f
∂σ′ : Ce

∂f
∂σ′ : Ce : ∂f

∂σ′ −
∂f
∂εvp

∂f
∂p′ + m

D (lnR) ∂f
∂R

∣∣∣∣∣∣ ∂f∂σ′ ∣∣∣∣∣∣− a (R∗)
b

(1 −R∗)
c ∂f
∂R∗

∣∣∣∣∣∣ ∂f∂σ′ ∣∣∣∣∣∣
 : ε̇,

= Cep : ε̇, (3)

where,

Ceijkl =

(
K − 2

3
G

)
δijδkl +G (δikδjl + δilδjk) ,

K =
Λ

MD (1 − Λ)
p′, G =

3 (1 − 2ν′)

2 (1 + ν′)
K,

Ce(Ceijkl), Cep are the elasticity tensor, the elasto-plasticity tensor and K, G, Λ,
ν′ are the bulk modulus, the shear modulus, the irreversibility ratio, the effective
Poisson’s ratio, respectively.

2.2 Fast and scalable elasto-plastic nonlinear analysis method

In this subsection, we first summarize the solver algorithm in [4] following Algo-
rithm 1. By changing the K matrix in Algorithm 1 according to the change in
the constitutive model, we can expect high computational efficiency when con-
ducting elasto-plastic analyses. In the latter part of the subsection, we describe
the initial stress analysis and nonlinear wave propagation analysis procedure.

The majority of the cost in conducting finite-element analysis is in solving the
linear equation in Eq. (1). The solver in [4] enables fast and scalable solving of
Eq. (1) by using adaptive conjugate gradient (CG) method with multi-grid pre-
conditioning, mixed precision arithmetics, and fast matrix-vector multiplication
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Fig. 1. Governing equation of stress-strain relation and relation of yield surfaces

based on the Element-by-Element method. Instead of storing a fixed precondi-
tioning matrix, the preconditioning equation is solved roughly using an another
CG solver. In Algorithm 1, outer loop means the iterative calculation of the CG
method solving Ax = b, and the inner loop means the computation of precondi-
tioning equation (solving z = A−1r by CG method). Since the preconditioning
equation needs only be solved roughly, single-precision arithmetic is used in
the preconditioner, while double precision arithmetic is used in the outer loop.
Furthermore, the multi-grid method is used in the preconditioner to improve
convergence in the inner loop itself. Here, a two-step grid with second-order
tetrahedral mesh (FEMmodel) and first-order tetrahedral mesh (FEMmodelc)
is used. Specifically, an initial solution of z = A−1r is estimated by computing
zc = Ac

−1rc, which reduces the number of iterations in solving z = A−1r. In
order to reduce memory footprint, memory transfer sizes, and improve load bal-
ance, a matrix-free method is used to compute matrix-vector products instead
of storing the global matrix on memory. This algorithm is implemented using
MPI/OpenMP for computation on distributed-shared memory computers.

We enable initial stress analysis and nonlinear wave propagation analysis
successively by changing the right hand side of Eq. (1). The calculation algorithm
for each time step of the elasto-plastic nonlinear wave propagation analysis is
shown in Algorithm 2. Here, the same algorithm is used for both the initial
stress analysis and the wave propagation analysis. In the following, we describe
initial stress analysis and nonlinear wave propagation analysis after initial stress
analysis.

In this study, we use self-weight analysis as initial stress analysis. Gravity is
considered by calculating the external force vector in Eq. (1) as

fn = fn +

∫
ρgNdV, (4)
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Algorithm 1 Algorithm for solving Ax = b. The matrix-vector multiplication
Ay is computed using an Element-by-Element method. diag [ ], (¯) and ε indicate
the 3 × 3 block Jacobi of [ ], single-precision variable, and tolerance for relative
error, respectively. ( )c indicates the calculation related to FEMmodelc, and the
other is related to calculation of the FEMmodel. ( )in indicates the value in the
inner loop. P̄ is a mapping matrix, from FEMmodelc to FEMmodel, which is
defined by interpolating the displacement in each element of FEMmodelc.

1: set b according to boundary condition
2: x⇐ 0
3: B̄⇐ diag [A]
4: B̄c ⇐ diag [Ac]
5: r⇐ b
6: β ⇐ 0
7: i ⇐ 1
8: (*outer loop start*)
9: while ‖r‖2/‖b‖2 ≥ ε do

10: (*inner loop start*)
11: r̄⇐ r
12: z̄⇐ B−1r
13: r̄c ⇐ P̄T r̄
14: z̄c ⇐ P̄T z̄
15: z̄c ⇐ Ā−1

c r̄c (*Inner coarse loop: solved on FEMmodelc with εc
in and initial

solution z̄c*)
16: z̄⇐ P̄z̄c

17: z̄ ⇐ Ā−1r̄ (*Inner fine loop: solved on FEMmodel with εin and initial solution
z̄*)

18: z⇐ z̄
19: (*inner loop end*)
20: if i > 1 then
21: β ⇐ (z,q)/ρ
22: end if
23: p⇐ z + βp
24: q⇐ Ap
25: ρ⇐ (z, r)
26: α⇐ ρ/(p,q)
27: q⇐ −αq
28: r⇐ r + q
29: x⇐ x + αp
30: i⇐ i+ 1
31: end while
32: (*outer loop end*)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93701-4_1

https://dx.doi.org/10.1007/978-3-319-93701-4_1


7

Algorithm 2 Algorithm for elasto-plastic nonlinear wave propagation analysis
in each time step. D, ε, σ and ε indicate the constitutive tensor, strain, stress and
tolerance for error, respectively. ( )n(i) indicates the value during i-th iteration
in the n-th time step.

1: calculate Kn, Cn by using Dn

2: calculate δun
(1) by solving Eq. (1) taking Eq. (4) and Eq. (5) into account

3: update each value by Eq. (2)
4: i ⇐ 1
5: δun

(0) ⇐∞
6: (*iteration start*)
7: while max |δun

(i) − δun
(i−1)| ≥ ε do

8: calculate εn(i) by using δun
(i)

9: δεn(i) ⇐ εn(i) − εn−1

10: calculate δσn
(i) and Dn

(i)

11: re-evaluate Kn, Cn by using Dn
(i)

12: re-calculate δun
(i+1) by solving Eq. (1)

13: re-update each value by Eq. (2)
14: i ⇐ i + 1
15: end while
16: (*iteration end*)
17: σn ⇐ σn−1 + δσn

(i−1)

18: Dn+1 ⇐ Dn
(i−1)

where ρ, g, and N are density, gravitational acceleration and the shape func-
tion, respectively. We apply the Dirichlet boundary condition by fixing vertical
displacement at bottom nodes of the model.

During nonlinear wave propagation analysis, waves are inputted from the
bottom of the model. Thus, instead of using Dirichlet boundary conditions at
the bottom of the model, we balance gravitational forces by adding reaction force
to the bottom of the model obtained at the last step of initial stress analysis
(step t0). Here, the reaction force

−f t0 + qt0−1, (5)

is added to the bottom nodes of the model in Eq. (1). Here, fn is calculated as
in Eq. (4).

3 Numerical experiments

3.1 Verification of proposed method

As we cannot obtain analytical solutions for elasto-plastic nonlinear wave propa-
gation analysis, we cannot verify the developed program by comparing numerical
solutions with analytical solutions. However, we can compare 1D numerical anal-
ysis results with the same elasto-plastic constitutive models with 3D numerical
analysis results on a horizontally stratified soil structure to verify the consistency
between the 1D and 3D analyses as well as the numerical convergence with fine
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a) Whole view b) Enlarged view

c) Ground property. Vp, Vs and hmax are the P-wave velocity,
the S-wave velocity and the maximum damping ratio.

d) Elasto-plastic property of soft layer

Fig. 2. Horizontally layered model and ground property

discretization of the analyses. As we use the results of the 1D analysis (stress and
velocity) with the same elasto-plastic models as the boundary condition at base
and side faces of the 3D model for 3D analyses, we can check the consistency
between the 3D and 1D analyses and their numerical convergence by checking
the uniformity of 3D analysis results in the x− y plane.

We conducted numerical tests on a horizontally stratified ground structure
with soft layer of 10 m thickness on top of bedrock of 40 m thickness. The size
of the 3D model was 0 ≤ x ≤ 16 m, 0 ≤ y ≤ 16 m, 0 ≤ z ≤ 50 m (Fig. 2).
The ground properties of each layer and elasto-plastic parameters of the soft
layer are described in Fig. 2. Here, Ki and K0 are the coefficient of initial earth
pressure at rest and the coefficient of earth pressure at rest, respectively. We used
hmax × 0.01 for Rayleigh damping of the soft layer. Following previous studies
[8], we chose element size ds such that it satisfies

ds ≤ Vs
χfmax

. (6)

Here, fmax and χ are the maximum target frequency and the number of elements
per wavelength, respectively. χ is set to χ > 10 for nonlinear layers and χ > 5
for linear layers for numerical convergence of the solution. Taking the above
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a) Kobe wave b) Mashiki wave

Fig. 3. Input wave

conditions into account, we considered two models whose minimum element size
is 1 m and 2 m, respectively, and the maximum element size is 8 m in both 1D
analysis and 3D analysis. We used the seismic wave observed at the Kobe Marine
Meteorological Observatory during the Great Hanshin Earthquake in 1995 (Fig.
3, Kobe wave). We pull back this wave to the bedrock and input it to the bottom
of the 3D model. Since the major components of the response is influenced by
waves below 2.5 Hz, we conduct analysis targeting frequency range between 0.1
and 2.5 Hz. We first conduct self-weight analysis with dt = 0.001 s × 700,000
time steps, and then conduct nonlinear wave propagation analysis with dt =
0.001 s × 40,000 time steps using the Kobe wave. Instead of loading the full
gravitational force at the initial step, we increased the gravitational force by
0.000002 times every time step until 500,000 time steps for both the 1D and 3D
analyses. For the 3D analysis, we used the Oakleaf-FX system at the University
of Tokyo consisting of 4,800 computing nodes each with single 16 core SPARC64
IXfx CPUs (Fujitsu’s PRIMEHPC FX10 massively parallel supercomputer with
a peak performance of 1.13 PFLOPS). For the model with minimum element
size of 1 m, the degrees-of-freedom was 85,839, and the 3D analysis took 20,619
s using 576 CPU cores (72 MPI processes × 8 OpenMP threads). For the model
with minimum element size of 2 m, the degrees-of-freedom was 14,427, and the
3D analysis took 12,278 s by using 64 CPU cores (8 MPI processes × 8 OpenMP
threads).

Results of the 1D and 3D analyses are shown in Fig. 4 and Fig. 5. From
Fig. 4, we can see that the time history of displacement on ground surface for
each analysis are almost identical. Figure 5 shows the displacement distribution
at surface of the 3D analysis. We can see that the difference of displacement
values at each point is converged within about 0.75%. Although not shown, the
maximum difference was about 2% for the case with element size of 2 m. We
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a) During self-weight analysis (z direction) b) During wave propagation analysis

Fig. 4. Displacement time history at surface for horizontally stratified ground model

can see that the 3D analysis results converge to the 1D analysis results by using
sufficiently small elements (in this case, 1 m elements).

x direction y direction z direction
After self-weight analysis (700 s)

x direction y direction z direction
After wave propagation analysis (740 s)

Fig. 5. Displacement on surface for horizontally stratified ground model (ds = 1 m)
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3.2 Application example

The Kumamoto earthquake occurring successively on September 14 and 16, 2016
caused heavy damage such as landslides and house collapse. At a residential
area in the Minamiaso village with large-scale embankment, houses near the
valley collapsed due to landslide and some cracks occurred in the east-west di-
rection[14]. In addition, ground subsidence occurred at a residential area little
far from the valley. Targeting this residential area, we conducted elasto-plastic
nonlinear wave propagation analysis using the developed program.

The FEM model used is shown in Fig. 6. There is no borehole logs in the
target area, so we estimate the thickness and shape of the soft layer based on
borehole logs measured near the target area. The elevation was based on the
digital elevation map of the Geospatial Information Authority of Japan. Finally,
we assume the ground consists of two layers. The size of the model was 0 ≤
x ≤ 720 m, 0 ≤ y ≤ 640 m, 0 ≤ z ≤ about 100 m. The ground properties of
each layer shown in Fig. 6 were set based on [15]. Here we used hmax× 0.01
as the Rayleigh damping of the soft layer. Based on the results of Sec. 3.1,
we set the minimum element size to 1 m, and the maximum element size to
16 m. The model consisted of 47,813,250 degrees-of-freedom, 15,937,750 nodes,
and 11,204,117 tetrahedral elements. We pulled the seismic wave observed at
the KiK-net[16] station KMMH16 during the Kumamoto earthquake (Fig. 3,
Mashiki wave) to the bedrock and computed the response targeting frequency
range between 0.1 and 2.5 Hz. We first conducted self-weight analysis with dt =
0.001 × 350,000 time steps and then conducted wave propagation analysis with

a) Whole view & Enlarged view b) Contour of ground surface c) Contour of bedrock

e) Ground property

f) Elasto-plastic property of soft layer

Fig. 6. Geometry and ground property of application problem
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Fig. 7. Strong scaling measured for solving 25 time steps of application problem. Num-
bers in brackets indicate floating-point performance efficiency to hardware peak.

dt = 0.001 × 55,000 time steps. Here we increased the self-weight by 0.000004
times every time step until full loading at 250,000 time steps.

In order to check the computational performance of the developed program,
we measured strong scaling on this model using the first 25 time steps. As shown
in Fig. 7, the program attained 86.2% strong scaling efficiency from 240 CPU
cores (30 MPI processes × 8 OpenMP threads) to 3840 CPU cores (480 MPI
processes × 8 OpenMP threads). This enabled 8.85 TFLOPS (15.6% of peak)
when using 3840 CPU cores of Oakleaf-FX (480 MPI processes × 8 OpenMP
threads), leading to feasible analysis time of 31 h 13 min (112,388 s) for con-
ducting the whole initial stress and wave propagation analysis. This high peak
performance could be attained by the method using matrix free matrix-vector
multiplication, single-precision arithmetic and so on indicated in Section 2.2.

The magnitude of the displacement in the x, y directions and the displace-
ment distribution in the z direction on ground surface are shown in Fig. 8. From
this figure, we can see permanent displacement towards the north valley at part
of the soft layer after wave propagation analysis. We can also see large subsi-
dence at the center of the soft layer. These results are effects caused by using the
elasto-plastic model into the 3D analysis. By setting more suitable parameters
to the soft soil based on on site measurements, we can expect improvement of
analysis results following the actual phenomenon.

4 Concluding Remarks

In this study, we developed a scalable 3D elasto-plastic nonlinear wave propa-
gation analysis method. We showed its capability of conducting large-scale non-
linear wave propagation analysis with large deformation through a verifcation
analysis, scaling test, and application to the embankment of the Minamiaso vil-
lage. The program attained high performance on Oakleaf-FX, with 8.85 TFLOPS
(15.6% of peak) on 3840 CPU cores. In the future, we plan to apply this method
to the seismic response analysis for roads in mountain region and bridges which
are prone to seismic damage.
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After self-weight During wave After wave
analysis (350 s) propagation analysis (360 s) propagation analysis (405 s)

Magnitude and direction of displacement in x− y plane

After self-weight During wave After wave
analysis (350 s) propagation analysis (360 s) propagation analysis (405 s)

z direction

Magnitude and direction of displacement in x− y plane after 350 s (Enlarged view)

Fig. 8. Displacement on ground surface. Black arrow indicates the displacement direc-
tion in x− y plane.
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