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Abstract. For knowledge graph completion, translation-based methods such as
Trans(E and H) are promising, which embed knowledge graphs into continuous
vector spaces and construct translation operation between head and tail entities.
However, TransE and TransH still have limitations in preserving mapping prop-
erties of complex relation facts for knowledge graphs. In this paper, we propose
a novel translation-based method called translation on generalized hyperplanes
(TransGH), which extends TransH by defining a generalized hyperplane for en-
tities projection. TransGH projects head and tail embeddings from a triplet into
a generalized relation-specific hyperplane determined by a set of basis vectors,
and then fulfills translation operation on the hyperplane. Compared with TransH,
TransGH can capture more fertile interactions between entities and relations,
and simultaneously has strong expression in mapping properties for knowledge
graphs. Experimental results on two tasks, link prediction and triplet classifica-
tion, show that TransGH can significantly outperform the state-of-the-art embed-
ding methods.

Keywords: Knowledge Representation,Knowledge Embedding,Knowledge Graph
Completion.

1 Introduction

Knowledge graphs like Freebase [1], WordNet [15] and Google Knowledge Graph play
extremely practical roles in numerous AI applications, such as Question Answering
System [7] and Information Extraction [9]. A typical knowledge graph (KG) is a multi-
relational directed graph, in which nodes represent entities and edges represent different
types of relations. That is, a basic triplet fact (h, r, t) in KG represents that the relation-
ship r links the head entity h and tail entity t. e.g., (Barack Obama, Place of Birth,
Hawai). Although there are huge amounts of structured data, a knowledge graph is
factually far from completeness. Knowledge graph completion aims to predict new re-
lational facts under supervision of the existing knowledge graph.

In the past decade, massive traditional approaches based on logic and symbol [16,
17] have been done for knowledge graph completion, but they are intractable and not
enough convergence for large scale knowledge graphs. Recently an emerging approach
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called knowledge graph embedding, which embeds all objects(entities and relation-
s) of a KG into a low-dimensional space, have highly attracted attention. Following
this approach, many models described in Section ”Related Work” have been presented.
Among these models, Trans(E, H, R and D) [5, 19, 12, 11] are fundamental and efficient
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Fig. 1. Simple visualization of TransE, TransH and TransGH.

while achieving state-of-the-art predictive performance. TransE [5] simply and directly
build entity and relation embeddings by regarding a relation as translation from head
entity to tail entity, but there are flaws in dealing with complex relations, such as reflex-
ive, one-to-many, many-to-one, and many-to-many relations. To address these issues of
TransE, TransH [19] considers some mapping properties of complex relations in embed-
ding, and projects entity embeddings into relation-specific hyperplanes. But for TransH,
there is only one normal vector used for modeling relation-specific hyperplane, which
leads that entities and relations are still in the same space and a limit representation
for mapping properties. TransR [12] regards to map entity embeddings into r-relation
space with a transfer matrix, and TransD [11] uses the product of two projection vectors
of an entity-relation pair to construct the transfer matrix. Such transfer matrix can build
entity and relation embeddings in separate spaces and has more general representation
for mapping properties, however, it will cost much more computations and memories
on the mappings.

In this paper, we propose an expressive model named translation on generalized hy-
perplanes (TransGH) to promote TransH. Instead of the only one normal vector, Trans-
GH uses a set of basis vectors to determine a generalized hyperplane. Figure 1 simply
shows the differences of TransE, TransH and TransGH.

– TransE builds the translation from head embedding to tail embedding as h+ r ≈ t
when the triplet (h, r, t) holds.

– TransH projects entity embeddings into relation-specific hyperplanes characterized
by one normal vector wr, and builds translation between the projected entities on
the hyperplane as h⊥ + r ≈ t⊥, where h⊥ = h−wT

r hwr and t⊥ = t−wT
r twr.

– Different from TransH, TransGH uses a set of basis vectors {w1
r ,w

2
r , ...,w

v
r},

(v << |h|) to determine a generalized relation-specific hyperplane, and the map-
pings of the entity embeddings on the hyperplane are h⊥ = h−

∑
iw

i
r
T
hwi

r and
t⊥ = t−

∑
iw

i
r
T
hwi

r(i ∈ [1, v]).
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The basic idea of TransGH illustrated in Figure 1(c) is that for a given triplet (h, r, t),
firstly the entity embeddings h and t are projected on the generalized hyperplane as h⊥
and t⊥ with a set of basis vectors respectively, where the embedding h⊥ is expected to
be close to the embedding t⊥ by adding the relation embedding r.

Our contributions in this paper are: (1) We propose a novel model TransGH, which
models each relation as a vector on the generalized hyperplane determined by a set of
basis vectors. (2) TransGH has the similar parameters to TransH as it only extends one
normal vector to a set of basis vectors, indicating that TranGH is applicable to large
scale KGs. (3) In the two tasks of link prediction and triplet classification, TransGH has
significant improvements comparing with previous Trans(E,H,R and D).

2 Related Work

2.1 Translation-based Models

Translation-based models usually embed entities and relations into a low-dimensional
vector space, and enforce vector embeddings compatible under a score function f(h, r, t).
Different models have the different definitions of score functions. Below we briefly
summarize some baseline translation-based models and give the corresponding score
functions.

TransE [5] embeds entities and relations into the same spaceRm, and interprets each
relation as a translation vector from the head entity embedding to tail entity embedding.
Hence the score function is defined as f(h, r, t) =‖ h + r − t ‖22 for a triplet (h, r, t).
TransE is effective for one-to-one relations but has flaws in dealing with one-to-many,
many-to-one and many-to-many relations.

To overcome the issues of TransE, TransH [19] projects entity embeddings into
relation-specific hyperplanes to enable an entity has distinct representations when in-
volved in different relations. It models each relation r as a vector r on the hyperplane
with a normal vector wr, therefore the scoring function is defined as f(h, r, t) =‖ h⊥+
r− t⊥ ‖22. With ‖ wr ‖2= 1, it is easily to get h⊥ = h−wT

r hwr, t⊥ = t−wr
T twr,

and h, t, r,wr ∈Rm.
Both TransE and TransH embed entities and relations into the same vector space

without considering that entities and relations are different types of objects. TransR/CtransR
[12] regards entities and relations as completely different objects via embedding enti-
ties and relations into entity space Rm and relation spaces Rn, respectively. It maps
entity embeddings from entity space to r-relation space with a mapping matrix Mr.
Then the score function is defined as f(h, r, t) =‖ hr + r− tr ‖22, where hr = hMr,
tr = tMr and h, t ∈ Rm, r ∈ Rn,Mr ∈ Rm×n. CtransR is an extension of TransR,
which divides all the entity pair(h, t) in the training data into multiple groups(clusters)
and learns independent relation vector for each group.

TransD [11] is an improvement of TransR/CtransR, which considers the multiple
types of entities and relations simultaneously. It replaces the transfer matrix by the
product of two projection vectors of an entity-relation pair. Therefore score function
is denoted as f(h, r, t) =‖ Mrhh + r −Mrtt ‖22, where Mrh = rphp

T + In×m,
Mrt = rptp

T + In×m, and h,hp, t, tp ∈ Rm, r, rp ∈ Rn.
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Recently TransE-RS and TransH-RS [20] combine a limit-based scoring loss for
learning knowledge embeddings, which have significant improvements compared to
state-of-the-art baselines.

2.2 Other Models

Unstructured Molel(UM) [4] is a simplified version of TransE with considering the
knowledge graph as none-relation and setting all relation vectors as r = 0, which leads
to the score function fr(h, r, t) =‖ h − t ‖. Obviously, this model can not deal with
the different relations.

Structured Embedding(SE) [6] interprets entities as vectors and each relation as
two independent matrices Mh

r and Mt
r for projecting the head entity embedding and

tail entity embedding. Then score function is fr(h, r, t) = −‖Mh
rh −Mt

rt‖. SE can
not capture the information between entities and relations since it uses the two separate
matrices.

Latent Factor Model(LFM) [10, 18] encodes entities as vectors and sets each rela-
tion as a matrix. Each r-specific matrix is asymmetric and directly operates between
two entity embeddings. The score function is f(h, r, t) = hTMrt.

Semantic Matching Energy(SME) [3, 2] introduces two definitions of semantic match-
ing energy functions for optimization, a linear form f(h, r, t) = (M1h + M2r +
b1)

T (M3t+M4r+b2), and a bilinear form f(h, r, t) = (M1h⊗M2r+b1)
T (M3t⊗

M4r+ b2), where M1,M2,M3,M4 are weight matrices, b1 and b2 are bias vectors
and ⊗ is Hadamard product.

Single Layer Model(SLM) [17] is designed as a plain baseline of NTN. It intro-
duces nonlinear transformations by neural networks. The score function is f(h, r, t) =
ur

T g(Mrhh+Mrtt+ br), where Mrh and Mrt are weight matrices, and g(·) is the
function tanh(·).

The Neural Tensor Network(NTN) [17] uses a bilinear tensor layer related two enti-
ty vectors to replace a standard linear neural network layer. It computes a score to mea-
sure the plausibility of a triplet (h, r, t) by the function f(h, r, t) = ur

T g(hTMrt +
Vr[h; t] + br) where g(·) = tanh(·); [h; t] denotes the vertical stacking of vectors h
and t, Vr is weight matrix and Mr is a 3-way tensor.

3 Our Model

TransGH considers the translation operation on a generalized hyperplane determined
by a set of basis vectors, to achieve the generalized ability for preserving mapping
properties of complex relation facts, and also avoid much more computations on entity
mappings.

3.1 Generalized Hyperplane

We extend the hyperplane of TransH to the generalized hperplane by a set of basis
vectors {w1

r ,w
2
r , ...,w

v
r}, (wi

r ∈ Rm, i ∈ [1, v]), the basis vectors are orthogonal to
each other. With the same setting of TransH, we also restrict ‖wi

r‖2 = 1 for each set
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Fig. 2. The two phases of TransGH. The red bold arrows represent wi
r
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of r-relation vectors. For an entity embedding e, a transfer vector er on the set of basis
vectors can be written as:

er = w1
r
T
ew1

r + . . .+wv
r
Tewv

r =
∑
i

wi
r

T
ewi

r

where v is the number of vectors and m is the dimension of entity (relation) vector s-
pace. Based on the transfer vector er, we can obtain the projection e⊥ of entity embed-
ding e on the generalized hyperplane as e⊥ = e− er. Thus the generalized hyperplane
determined by the set of basis vectors {w1

r ,w
2
r , ...,w

v
r}, can be described as

{e⊥|e⊥ = e−
∑
i

wi
r

T
ewi

r}

where wi
r ∈ Rm and ‖wi

r‖2 = 1. The proposed hyperplane is a generalisation of that
in TransH.

3.2 TransGH

As shown in Figure 2, the basic idea of TransGH can be summed up in two steps: (1)
projection: projecting entity embeddings on the generalized hyperplane.(2) translation:
connecting projected entities with the relation-specific translation vector. Specifically,
for a triplet (h, r, t):
• In the projection phase, with the restriction ‖wi

r‖2 = 1, it is easily to get the
projections of head and tail embedding on the generalized hyperplane, that is

h⊥ = h−
∑
i

wi
r

T
hwi

r, t⊥ = t−
∑
i

wi
r

T
twi

r

• In the translation phase, the relation r is interpreted as the translation vector r
from the head projections h⊥ to the tail projection t⊥. Therefore, the score function is
denoted as:

f(h, r, t) = ‖(h−
∑
i

wi
r
T
hwi

r) + r− (t−
∑
i

wi
r
T
twi

r)‖22

The score function is to measure the compatible of a positive triplet, and also is expect-
ed to be low for a positive triplet, otherwise high for a negative triplet.
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3.3 Training Method and Implementation Details

We use the following margin-based loss function to encourage discrimination between
positive triplets and negative triplets:

Ł =
∑

(h,r,t)∈P

∑
(h′,r,t′)∈N

[0, f(h, r, t) + γ − f(h′, r, t′)]+

Here, [x]+ = max(0, x) means to get the maximum number between 0 and x, P is the
set of positive triplets; N is the set of negative triplets, that is N = {(h′, r, t) | (h′ ∈
E ∧ h′ 6= h) ∪ (h, r, t′) | (t′ ∈ E ∧ t′ 6= t)}. E is the entities set. γ > 0 is the margin
hyper-parameter with expectation of dividing the positive triplets and negative triplets.
Then we minimize the loss function with considering the following constraints:

∀e ∈ E, ‖e‖2 ≤ 1,∀r ∈ R, ‖r‖2 ≤ 1 (1)

∀r ∈ R, i ∈ [1, v], ‖wi
r‖2 = 1 (2)

∀r ∈ R, i ∈ [1, v],
|
∑

i w
i
r
T
r|

‖r‖2
≤ ε (3)

∀r ∈ R, i, j ∈ [1, v](i 6= j),
|
∑

(i,j) w
i
r
T
wj

r|
‖wj

r‖2
≤ ε (4)

where ε is a small scalar, R is the relations set, constraint (3) assures the translation
vector r is on the generalized hyperplane and constraint (4) guarantees each two basis
vectors are orthogonal. Afterwards we directly optimize the following loss function
with soft constraints:

Ł =
∑

(h,r,t)∈P

∑
(h′,r,t′)∈N

[0, f(h, r, t) + γ − f(h′, r, t′)]+

+ C(A1 +A2)

(5)

where we set

A1 =
∑
e∈E

[‖e‖22 − 1]+ +
∑
r∈R

[‖r‖22 − 1]+

A2 =
∑
r∈R
{[(

∑
i w

i
r
T
r

‖r‖2
)2 − ε2]+ + [(

∑
(i,j) w

i
r
T
wj

r

‖wj
r‖2

)2 − ε2]+}
(6)

and C is a hyper-parameter used to measure the importance of soft constrains.
The loss function favors the lower scores for positive triplets than that for nega-

tive triplets. We adopt stochastic gradient descent(SGD) [8] to minimize the above loss
function. Notice that the constrain (2) is missed in Eq 5. To satisfy it, we set each vec-
tor wi

r to unit l2-ball before traversing each mini-batch. Moreover, negative triplets are
generated via replacing either the head or tail of original triplets exited in KGs by a ran-
dom entity, but not both at the same time. For reducing the false negative triplets, here
we follow [19] and set different probabilities for the replacement. In experiment, the
traditional sampling method is denoted as ”unif” and the new method [19] as ”bern”.
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Table 1. Complexity(the number of parameters and the number of multiplication operations).

Model # Parameters # Operations(Time complexity)
UM [4] O(Nem) O(Nt)
SE [6] O(Nem+ 2Nrn

2)(m = n) O(2m2Nt)
LFM [10] O(Nem+Nrn

2)(m = n) O((m2 +m)Nt)
SME(BILIN) [2] O(Nem+Nrn+ 4mks+ 4k)(m = n) O(4mksNt)

SLM [17] O(Nem+Nr(2k + 2nk))(m = n) O((2mk + k)Nt)
NTN [17] O(Nem+Nr(n

2s+ 2ns+ 2s))(m = n) O(((m2 +m)s+ 2mk + k)Nt)
TransE [5] O(Nem+Nrn)(m = n) O(Nt)

TransH [19] O(Nem+ 2Nrn)(m = n) O(2mNt)
TransR [12] O(Nem+Nr(m+ 1)n) O(2mnNt)
TransD [11] O(2Nem+ 2Nrn) O(2nNt)

TransE-RS [20] O(Nem+Nrn)(m = n) O(Nt)
TransH-RS [20] O(Nem+ 2Nrn)(m = n) O(2mNt)

TransGH (this paper) O(Nem+Nr(1 + v)n)(m = n), v � m O(2vmNt)

Generally, all embeddings of entities {ei}|E|i=1, relations {rk}|R|k=1 and relation-specific
vectors {w1

r ,w
2
r , ...,w

v
r}
|R|
r=1 are learned by TransGH. Hence parameters of this model

isNem+Nr(1+v)n and the time complexity is 2vmNt, which is similar to TransH as
we usually set v � m, e.g., v = 2, 3, 4. We compare the parameters and time complex-
ities with several baselines in Table 1. We denote Ne as the number of entities, Nr as
the number of relations and Nt as the number of triplets in a knowledge graph respec-
tively. m and n separately represent the dimension of entity space and relation space. d
denotes the average number of clusters of a relation. k is the number of hidden nodes
of a neural network, s is the number of slice of a tensor. v is the number of vectors for
a relation.

4 Experiments and Analysis

We study and evaluate our model on two tasks: link prediction [5, 19] and triplet clas-
sification [17]. In our experiments, two datasets including FreeBase [1] and WordNet
[15] are used. Then we show the experimental results and some analysis of them.

4.1 Datasets

WordNet is designed to build an usable dictionary and support automatic text analysis.
In WordNet, each entity represents a synset containing several words, which are corre-
sponding to a distinct word sense. Relationships indicate the lexical relations between
synsets, such as hypernym, hyponym, meronym and holonym. An example of triplets is
( warship NN 1, hyponym, torpedo boat NN 1). The two data sets from WordNet,
WN18 and WN11, are used in our experiments. WN18 contains 18 relations and WN11
contains 11 relations. The number of entities involved in the two data sets is close.

FreeBase is a large and rising knowledge graph of general facts. An example of
FreeBase is (nietzchka keene, place of death, madison), it builds a relation place of death
between a name entity nietzchka keene and a place entity madison. We use two data sets
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with FreeBase in this paper, FB15k and FB13. FB15k consists of 592,213 triplets with
14,951 entities and 1,345 relations. FB13 is a more dense subgraph including 75,043
entities and 13 relations. The statistics of these data sets are listed in Table 2.

Table 2. Data sets used in the experiments.

DataSet #Relation #Entity #Train #Valid #Test
FB15k 1,345 14,951 483,142 50,000 59,071
WN18 18 40,943 141,442 5,000 5,000
FB13 13 75,043 316,232 5,908 23,733
WN11 11 38,696 112,581 2,609 10,544

4.2 Link prediction

Link prediction is to predict the missing h or t for a positive triplet (h, r, t), used in [5,
19, 12, 11]. In this task, it focuses more on ranking a set of candidate entities from the
knowledge graph rather than obtaining the best one for each position of missing entity.
The data sets used in this task are WN18 and FB15k, which are same settings to [5, 19,
12, 11].

Evaluation Rules. We adopt the same protocols used in [5, 19, 12, 11] to evaluate this
task. Specifically, in testing phase, for each test triplet (h, r, t), we replace the head(tail)
entity by every entity e from the set of entities for a KG and calculate the scores of these
corrupted triplets by using the score function f(h, r, t), then we get the rank of the
original triplet after ranking these scores in ascending order. Following [5, 19, 12, 11],
two metrics are used to evaluation: the average rank(Mean Rank) and the proportion of
ranks not larger than 10 (Hit@10). This is called ”raw” setting. Notice that the corrupted
triplets may exit in the KG, they can be regarded as correct triplets, hence it is not wrong
to rank them before the original triplet. To eliminate this case, we filter out corrupted
triplets existing in a KG before ranking. This is called ”filt” setting. In both settings,
lower Mean and higher Hit@10 are excepted.

Implementation. In training phase, we select the learning rate η for SGD from {0.001,
0.01, 0.1}, the γ from{1, 2, 3, 4, 5, 6, 7, 8}, the entity(relation) embedding dimension
m from{50, 100, 150}, the number of vectors v from {0.25, 0.5, 1, 2, 3, 4, 5, 6, 7, 8, 9,
10}, the batch size b from{480, 960, 1200, 4800}, the hyper-parameter C from {0.005,
0.0625, 0.25, 0.5}. The best parameters are determined by validation set. Under unif
setting, the best optimal configures are η = 0.01, γ = 7, m = 100, v = 2, b = 1200, C =
0.0625 on WN18; η = 0.01, γ = 2, m = 100, v = 6, b = 1200, C = 0.0625 on FB15k.
Under bern setting, the best optimal configures are η = 0.01, γ = 7, m = 100, v = 2, b
= 1200, C = 0.005 on WN18; η = 0.01, γ = 1, m = 100, v = 4, b = 480, C = 0.0625 on
FB15k. We traverse all the training triplets for 5000 rounds and take L1 as dissimilarity
on both datasets.
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Table 3. Link prediction results.

Dataset WN18 FB15k

Metric
Mean Hits@10 Mean Hits@10

raw filt raw filt raw filt raw filt
RESCAL [16] 1,180 1,163 37.2 52.8 828 683 28.4 44.1

UM [4] 315 304 35.3 38.2 1074 979 4.5 6.3
SE [6] 1011 985 68.5 80.5 273 162 28.8 39.8

SME(LIN) [3] 545 533 65.1 74.1 274 154 30.7 40.8
SME(BILIN) [2] 526 509 54.7 61.3 284 158 31.3 41.3
BILINEAR [10] 469 456 71.4 81.6 283 164 26.0 33.1

TransE [5] 263 251 75.4 89.2 243 125 34.9 47.1
TransH(unif) [19] 318 303 75.4 86.7 211 84 42.5 58.5
TransH(bern) [19] 400.8 388 73.0 82.3 212 87 45.7 64.4
TransR(unif) [12] 232 219 78.3 91.7 226 78 43.8 65.5
TransR(bern) [12] 238 225 79.8 92.0 198 77 48.2 68.7

CTransR(unif) [12] 243 230 78.9 92.3 233 82 44 66.3
CTransR(bern) [12] 231 218 79.4 92.3 199 75 48.4 70.2
TransD(unif) [11] 242 229 79.2 92.5 211 67 49.4 74.2
TransD(bern) [11] 224 212 79.6 92.2 194 91 53.4 77.3

TransE-RS(unif)[20] 362 348 80.3 93.7 161 62 53.1 72.3
TransE-RS(bern)[20] 385 371 80.4 93.7 161 63 53.2 72.1
TransH-RS(unif)[20] 401 389 81.2 94.7 163 64 53.4 72.6
TransH-RS(bern)[20] 371 357 80.3 94.5 178 77 53.6 75.0

TransGH(unif) 191 179 81.4 94.8 186 66 54.0 79.8
TransGH(bern) 210 197 81.6 95.3 186 64 54.1 80.1

Results. The results on both WN18 and FB15k are shown in Table 3. The results of
previous studies are referred from their report, since the same datasets are used. Our
model consistently and significantly outperforms previous models on both the metrics
of WN18 and FB15k, where the results of our Mean(raw) is 191, Mean(filt) is 179,
Hit@10(raw) is 94.8%, Hit@10(filt) is 95.0% on WN18, and that of Mean(raw) is 186,
Mean(filt) is 64, Hit@10(raw) is 54.1% and Hit@10(filt) is 80.1% on FB15k. More-
over, our model has respectively remarkable improvements on metrics of Mean(raw),
Mean(filt), Hit@10(raw) and Hit@10(filt) comparing with TransH, which are 172, 124,
6.2% and 8.3% on WN18, and 25, 23, 8.4% and 15.7% on FB15k higher than those of
TransH. We believe the improved performance of our model is due to its use of the set
of basis vectors.

Table 4 analyzes Hits@10 results on FB15k with respect to the relation categories.
Following the same rules in [5] on FB15k, we separate the 1345 relations into four cat-
egories, including one-to-one, one-to-many, many-to-one and many-to-many relations.
From Table 4 we can observe that TransGH significantly performs better results than
all baselines on both unif and bern settings. Our method has highest accuracies on pre-
dicting head(one-to-one 87.0%, one-to-many 95.8%, many-to-one 47.9% and many-to-
many 80.8%) and predicting tail(one-to-one 86.8%,one-to-many 55.8%, many-to-one
94.8% and many-to-many 84.3%). Additionally, comparing with TransH, we also give
the result on Hit@10 metric of some typical complex relations in Table 5. In this ex-
periment, we directly copy the results reported in [19]. shows TransGH has remark-

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_48

https://dx.doi.org/10.1007/978-3-319-93698-7_48


10 Q. Zhu and X. Zhou et al.

Table 4. Results on FB15k by relation category.

Dataset Predicting left (Hit@10) Predicting right (Hit@10)
Relation Category 1-to-1 1-to-n n-to-1 n-to-n 1-to-1 1-to-n n-to-1 n-to-n

UM [6] 34.5 2.5 6.1 6.6 34.3 4.2 1.9 6.6
SE [6] 35.6 62.6 17.2 37.5 34.9 14.6 68.3 41.3

SME(LIN) [3] 35.1 53.7 19.0 40.3 32.7 14.9 61.6 43.3
SME(BILIN) [2] 30.9 69.6 19.9 38.6 28.2 13.1 76.0 41.8

TransE [5] 43.7 65.7 18.2 47.2 43.7 19.7 66.7 50.0
TransH(unif) [19] 66.7 81.7 30.2 57.4 63.7 30.1 83.2 60.8
TransH(bern) [19] 66.8 87.6 28.7 64.5 65.5 39.8 83.3 67.2
TransR(unif) [12] 76.9 77.9 38.1 66.9 76.2 38.4 76.2 69.1
TransR(bern) [12] 78.8 89.2 34.1 69.2 79.2 37.4 90.4 72.1

CTransR(unif) [12] 78.6 77.8 36.4 68.0 77.4 37.8 78.0 70.3
CTransR(bern) [12] 81.5 89.0 34.7 71.2 80.8 38.6 90.1 73.8
TransD(unif) [11] 80.7 85.8 47.1 75.6 80.0 54.5 80.7 77.9
TransD(bern) [11] 86.1 95.5 39.8 78.5 85.4 50.6 94.4 81.2

TransE-RS(unif) [20] 87.2 96.2 35.9 71.8 87.0 45.0 95.5 75.4
TransE-RS(bern) [20] 87.4 96.3 35.3 71.7 86.5 44.2 95.4 75.2
TransH-RS(unif) [20] 87.6 95.9 35.6 72.5 86.3 44.9 95.5 75.8
TransH-RS(bern) [20] 85.6 95.5 37.4 75.5 85.7 47.4 94.9 78.7

TransGH(unif) 86.4 95.6 47.6 80.6 85.8 55.8 94.8 83.4
TransGH(bern) 87.0 95.8 47.9 80.8 86.8 55.7 94.8 84.3

able improvement on Hit@10 metric of some typical complex relations compared with
TransH. It indicates TransGH can capture more fertile information between entities and
relations, and achieve the better ability for modeling mapping properties of complex
relation facts. As Table Table 6 and 7 shown, TransGH rationality enables the same
category objects(entities and relations) to have similar vector embeddings.

Table 5. Hits@10(filt)bern of TransGH and TransH on some examples of one-to-many∗, many-
to-one†, many-to-many‡ and symmetric§ relations.

Relations Hit@10(TransH/TranGH) on FB15k
Predict Head Predict Tail

/football position/players∗ 100 / 100 22.2 / 88.9
/production company/films∗ 85.6 / 96.8 16.0 / 52.4

/director/film∗ 89.6 / 96.2 80.2 / 94.3
/disease/treatments† 66.6 / 66.6 100 / 100

/person/place of birth† 37.5 / 77.9 87.6 / 92.0
/film/production companies† 21.0 / 47.5 87.8 / 96.7

/field of study/students majoring‡ 66.0 / 92.2 62.3 / 70.5
/award winner/awards won‡ 87.5 / 99.0 86.6 / 99.5

/sports position/players‡ 100 / 100 86.2 / 99.6
/person/sibling s§ 63.2 / 68.4 36.8 / 68.4
/person/spouse s§ 35.2 / 70.4 42.6 / 59.3
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Table 6. The Top-3 similarity entities with regard to some examples on WN18. The similarity
scores are computed with cosine function.

Dataset WN18

Entity and Definitions mountain sheep NN 1
any wild sheep inhabiting
mountainous regions

Similar Entities
and Definitions

white sheep NN 1
large white wild sheep of
northwestern Canada
and Alaska

rocky mountain sheep NN 1

wild sheep of mountainous
regions of western North
America having massive
curled horns

wild sheep NN 1 undomesticated sheep
Entity and Definitions sharpen VB 8 make (one’s senses) more acute

Similar Entities
and Definitions

screw up VB 1 make more intense
raise VB 13 increase

intensify VB 2
make more intense, stronger,
or more marked

Table 7. The Top-3 similarity relations with regard to some examples on FB15k. The similarity
scores are computed with cosine function.

Dataset FB15k
Relation /location/statistical region/rent50 3./measurement unit/dated money value/currency

Similar
relations

/location/statistical region/rent50 0./measurement unit/dated money value/currency
/location/statistical region/rent50 1./measurement unit/dated money value/currency
/location/statistical region/rent50 2./measurement unit/dated money value/currency

Relation /people/person/nationality

Similar
relations

/people/person/places lived./people/place lived/location
/people/person/place of birth

/people/deceased person/place of death

4.3 Triplet Classification

Triplet classification is to decide whether a given triplet (h, r, t) is correct or not. This is
a binary classification task, which has been presented by [17]. In this task, three data sets
WN11, FB13 and FB15k are used, and negative triplets are needed to the evaluation of
binary classification. The first two sets appeared in [17] already have negative triplets,
but the third one including negative triplets has not been published recently. For FB15k,
we construct it by following the same principles used for FB13 in [17].

Evaluation Rules. There exists a simple decision rule for triplet classification: we
first get a relation-specific threshold δr determined by maximizing the classification
accuracy on the validation set. For a triplet (h, r, t), if the dissimilarity score gained
by the score function f(h, r, t) is below δr, then predict positive. Otherwise predict
negative.

Implementation. We compare our model with several baseline methods mentioned in
[11]. For the sake of fairness, word embedding [14] is not used in our experiments. In
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training stage, we select the same configuration with link prediction. The best parame-
ters are also determined by validation set. On unif setting, the best optimal configures
are η = 0.01, γ = 11, m = 100, v = 3, b = 480, C = 0.25 on WN11; η = 0.01, γ = 0.25,
m = 100, v = 2, b = 1200, C = 0.0625 on FB13; η = 0.01, γ = 1, m = 100, v = 6, b =
480, C = 0.0625 on FB15k. On bern setting, the best optimal configures are η = 0.01, γ
= 11, m = 100, v = 3, b = 480, C = 0.0625 on WN11; η = 0.01, γ = 0.25, m = 100, v =
2, b = 1200, C = 0.005 on FB13; η = 0.01, γ = 1, m = 100, v = 10, b = 480, C = 0.0625
on FB15k. We set the number of epochs to 5000 for three data sets. Meanwhile we also
take L1 as dissimilarity on WN11, FB15k and L2 on FB13.

Table 8. triplet classification accu-
racies.

Dataset WN11 FB13 FB15k
SLM 69.9 85.3 -
NTN 70.4 87.1 -
SE 53.0 75.2 72.2

SME 70.0 63.7 71.6
TransE(unif) 75.9 70.9 79.5
TransE(bern) 75.9 81.5 80.4
TransH(unif) 77.7 76.5 79.9
TransH(bern) 78.8 83.3 80.0
TransR(unif) 85.5 74.7 81.2
TransR(bern) 85.9 82.5 82.5
TransD(unif) 85.6 85.9 86.0
TransD(bern) 86.4 89.1 88.2
TransE-RS 85.3 83.0 81.9
TransH-RS 86.4 81.6 83.2

TransGH(unif) 87.2 84.7 91.4
TransGH(bern) 87.3 85.2 91.2

Fig. 3. Classification accuracies of on WN11.
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Results. Evaluation results of triplet classification are shown in Table 8. TransGH
consistently scores better accuracy on WN11 and FB15k than the current state-of-the-
art model, where accuracies are 87.3% and 91.2% on WN11 and FB15k respectively.
TransGH has slightly worse accuracy on FB13. This is mainly because that FB13 has
the most entities and therefore good representations of rarely occurring entities are d-
ifficult for learning. Additionally TransGH achieves at least 8.5%, 1.9%, 11.4% higher
than TransH on the three datasets. Therefore we believe the set of basis vectors is bene-
ficial to model the complex relations and learn the embeddings of entities and relations
of a knowledge graph. We also compare the classification accuracies of different re-
lations by TransH and TransGH on WN11. In this experiment, we rerun TransH with
the parameters reported in [19], and obtain slightly different accuracies 76.5%(unif )
and 77.6%(bern) with the reported results in Table 8. We ignore the differences derived
from randomly experiments. The accuracies of eleven relations on WN11 are given sep-
arately in Figure 3. From results of Figure 3, TransGH significantly improve TransH in
each relation classification expect for the relation similar to. As reported in [11], the
prediction accuracy needs more information while the number of entity pairs linked by
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relation similar to only accounts for 1.5% in all train data, therefore the inadequate
entity pairs linked by relation similar to is the main cause.

5 Conclusion and Future Work

In this paper, we have proposed a new knowledge graph embedding method TransGH.
The key idea of TransGH is to learn embeddings via modeling each relation as the
translation vector between projected entities on the generalized hyperplane, which is
characterized by a set of basis vectors. In addition, TrasGH is efficient for preserving
mapping properties of complex relation facts while keeping low complexity of param-
eters. We empirically conduct experiments on triplet classification and link prediction
with two knowledge graphs FreeBase and WordNet. The experimental results show that
TransGH significantly and consistently has considerable improvement over baselines,
and achieve state-of-the-art performance, which demonstrates the superiority and gen-
erality of our model.

In the future, we will explore the following directions: (1) We will utilize the word
embeddings obtained from word2vec[13] in our experiments for improving the perfor-
mance of our model TransGH. (2) We will train our model TransGH using the promis-
ing limit-based scoring loss function introduced by [20] for future improvement. (3) We
will devise and exploit a question answering system based on TransGH.
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July 27 -31, 2014, Québec City, Québec, Canada. pp. 1112–1119 (2014)

20. Zhou, X., Zhu, Q., Liu, P., Guo, L.: Learning knowledge embeddings by combining limit-
based scoring loss. In: CIKM 2017. pp. 1009–1018 (2017)

ICCS Camera Ready Version 2018
To cite this paper please use the final published version:

DOI: 10.1007/978-3-319-93698-7_48

https://dx.doi.org/10.1007/978-3-319-93698-7_48

